Looking Towards the Future

Total Page:16

File Type:pdf, Size:1020Kb

Looking Towards the Future VVolumeolume 1100 IIssuessue 2 WWinterinter 22007007 Looking Towards the Future his is a 10th anniversary issue and the question naturally arises: what is PIMS going to look like in T10 years? Now generally, what is the scientifi c world going to look like in 2017? It seems to us that, by that time, problems arising from the global effects of human activity will feature much more prominently in the scientifi c agenda than they do now. Understanding and mitigat- ing global warming, preserving biodiversity and natural resources, preventing new infectious diseases from arising and spreading, creating the conditions of fair economic development and just societies around the world, all these challenges will have to be dealt with, and all of them have some component of mathematical modeling. This is where PIMS wants to go. Three of the CRGs we will open in 2007 are oriented towards the environment. But no institute, in fact no country by itself can make a signifi cant contribution to solving such problems. This is really a problem for global scientifi c networks, stretching across oceans and boundaries. PIMS by itself is a regional network, and we are now associating with others to create international networks. In 10 years, we hope that the PRIMA network, which is barely one year old, will have become a global enterprise for training and research in emerging areas of mathematics. We also hope that PIMS will have become an active part of the CNRS network and through the CNRS a member of the European research community. In this way PIMS will stand as a gateway, a crossroads between the Pacifi c Rim, the Americas and Europe, bringing different mathematical traditions to study global problems. Let this be our wish for the future. Fields Medals 2006 PIMS partners with Inside this issue Cinvestav The 2006 Fields Medals were awarded on Aug. 22, Director’s Notes 2 PIMS is pleased to announce a 2006, at the International Congress of Mathematicians new collaborative agreement with New PIMS CRGs 3 in Madrid. The winners are: Andrei Okounkov, for his Centro de Investigación y Estudios contributions bridging probability, Wendelin Werner profile 4 Avanzados, Cinvestav (Center for representation theory and algebraic Research and Advanced Studies), Andre Okounkov profile 6 geometry; Grigori Perelman, for Mexico. A History of the Trace Formula, by his contributions to geometry and As part of the agreement, PIMS James Arthur 8 his revolutionary insights into the and Cinvestav will collaborate on analytical and geometric structure PIMS Collaborations 12 research projects in the mathemati- of the Ricci fl ow (Dr. Perelman de- cal sciences. The institutes plan to The Founding of PIMS, by Nassif clined to accept the Medal); Terence hold joint events and conferences Ghoussoub 13 Tao, for his contributions to partial to facilitate the exchange of re- differential equations, combinator- Andrei Okounkov CRM-Fields-PIMS Prize 2006 14 searchers and knowledge between ics, harmonic analysis and additive Canada, the USA, and Mexico. Mathematical Biology at UA: An number theory; and Wendelin Werner, for his contributions http://www.cinvestav.mx interview with Mark Lewis 15 to the development of stochastic Loewner evolution, the geometry of two-dimensional Brownian motion, and 10th Anniversary Events 16 conformal fi eld theory. Diversity in Mathematics 19 Please turn to page 4 for an article on Dr. Werner’s work, and page 6 for an article on Dr. Okounkov’s work, A Phenomenology of Mathematics exclusive in this issue of the PIMS Newsletter. in the XXIst Century, by François Lalonde 20 Four New CRGs Approved by PIMS Symposium on Kinetic Equations Scientifi c Review Panel and Methods, UVic 24 Please see page 3 Director’s Notes by Ivar Ekeland, PIMS Director n this issue we will be celebrating the 10th anniversary of PIMS. IIt will be for others to say to what extent this new concept of a mathematical institute distributed across six different universities and an international border has been a success. What we can say is that during these 10 years, mathematics has changed, and PIMS is proud to have contributed to some of these changes. The 2006 Fields Medalists have been announced, and PIMS is proud to have connections to three of this year’s winners. The work of Terence Tao and Ben Green on arithmetic sequences of prime numbers was done while Ben Green was a PIMS postdoctoral fellow. Andreai Okounkov and Wendelin Werner have close collaborators at PIMS universities, who report on their award-winning work in this issue. These achievements stand out among so much excellent work that has been done within the Collaborative Research Groups over the past 10 years, in mathematical biology and in number theory, in inverse problems and in probability theory, and in so many other fi elds of pure and applied mathematics. (l to r) Alejandro Adem, (PIMS Deputy Director), Ivar Ekeland (PIMS Director), The past 10 years have also seen many structural changes in Canadian Nassif Ghoussoub (BIRS Scientific Director and Past PIMS Director) mathematics – the emergence of PIMS, of course, but also the creation of MITACS and BIRS. PIMS is proud to have been the driving force behind these changes. We feel that, with the three institutes (PIMS, CRM and the the various aspects of mathematics in Canada, and develop indicators truly Fields Institute), MITACS, BIRS and the professional societies, Canada adapted to the unique position of mathematics as a non-experimental but now has the necessary tools to sustain a vibrant research community in pluri-disciplinary science. mathematics, and to connect mathematics with other disciplines, with Having appropriate institutions will be crucial for the future of math- industry, with education and with society in general. ematics in Canada – But let us put this aside for the time being and just This is no small feat. It would be extremely easy to have a purely enjoy mathematics. In this issue, you will fi nd a paper by Jim Arthur on the academic community, incased in its ivory tower, or to have a community history of the trace formula that he delivered as a PIMS 10th anniversary cut off from basic research, which is the heart and soul of mathematics. lecture. There is no subject that goes deeper into so many different areas of Any science that consists only of repeating what is already known, or mathematics. You will also fi nd a paper by François Lalonde on the future of applying old solutions to new situations, will soon wither and die. The mathematics and the role women will play. Both are remarkable papers, and Canadian mathematical community has found a unique and perhaps frag- I thank Jim and François for contributing them to the PIMS Newsletter. ile equilibrium. The three institutes, MITACS, BIRS and the professional What about the next 10 years? Much will depend, of course, on the out- societies have all found their place in a complex network of relations and come to the proposal we have submitted to NSERC for 2008-2013. I expect, exchanges between universities, industry, education, provincial govern- however, our collaborations with Fields, CRM and MITACS to become ever ments, federal agencies and the international scientifi c community. closer. I expect PIMS to become a gateway to the Pacifi c Rim Countries, I feel the time has come to think about institutional means to con- through the PRIMA network. Finally, I would like to announce that PIMS solidate that equilibrium. NSERC has started a process of reforming the has applied to become an Unite Mixte Internationale of the French CNRS. grant selection communities and this may be an opportunity. A global This will truly put PIMS in a unique position, as a research centre belong- envelope for mathematics at NSERC would be the right frame work to ing to Canada, the United States and France, and a scientifi c link between develop a strategic vision for mathematics in Canada. It would also be Europe and the Pacifi c Rim. Happy Birthday, PIMS! an excellent observatory, where one could centralize information about PRIMA Congress 2009 July 13-17, 2009 University of New South Wales, Australia. For more information,please visit http://primath.org/ 2 Volume 10 Issue 2 Four New PIMS CRGs Approved at November SRP Meeting by Alejandro Adem, PIMS Deputy Director ince its inception, PIMS has fostered research CRG in Interdisciplinary Research in Geo- Sacross the entire spectrum of the mathemati- physical and Complex Fluid Dynamics (2007- cal sciences, including pure mathematics, com- 2010) (SFU), Shen (San Diego), Steyn (UBC), Welch puter science, statistics, physics and economics. The primary focus of this CRG is the math- (UBC) and Zidek (UBC). PIMS aims to nurture the development of sustain- ematical modeling of complex and classic geo- At the same time, PIMS has a long tradition able networks of researchers in exciting interdis- physical fl uid dynamics, which are key elements of supporting excellence in pure mathematics. ciplinary subjects, where the emerging applica- in many geophysical phenomena such as volcanic The SRP gave enthusiastic approval for funding tions of mathematics beyond classical boundaries eruptions, mud slides and avalanches. Bringing a period of concentration for the new CRG in play an increasingly fundamental role. sophisticated mathematical and computational Differential Geometry and Analysis. The main PIMS has established its scientifi c leader- elements to bear on these problems is the main theme is geometric analysis, which is recog- ship in North America by actively engaging top motivation for this project, which will involve nized as one of the hottest areas of mathematics researchers in these emerging areas of mathemati- geophysicists as well as applied mathematicians. in light of the role it has played in the solution cal applications and working with the researchers Particular emphasis will be on complex geophysi- (by G.
Recommended publications
  • Potential Automorphy of $\Widehat {G} $-Local Systems
    Potential automorphy of G-local systems Jack A. Thorneb September 4, 2019 Abstract Vincent Lafforgue has recently made a spectacular breakthrough in the setting of the global Langlands correspondence for global fields of positive characteristic, by constructing the ‘automorphic–to–Galois’ direction of the correspondence for an arbitrary reductive group G. We discuss a result that starts with Lafforgue’s work and proceeds in the opposite (‘Galois– to–automorphic’) direction. 1 Introduction Let Fq be a finite field, and let G be a split reductive group over Fq. Let X be a smooth projective connected curve over Fq, and let K be its function field. Let AK denote the ring of ad`eles of K. Automorphic forms on G are locally constant functions f : G(AK ) → Q which are invariant under left translation 1 by the discrete group G(K) ⊂ G(AK ). The space of automorphic forms is a representation of G(AK ), and its irreducible constituents are called automorphic representations. Let ℓ ∤ q be a prime. According to the Langlands conjectures, any automor- phic representation π of G(AK ) should give rise to a continuous representation ´et ρ(π): π1 (U) → G(Qℓ) (for some open subscheme U ⊂ X). This should be com- patible with the (known) unramified local Langlands correspondence, which de- arXiv:1909.00655v1 [math.NT] 2 Sep 2019 b ´et scribes the pullback of ρ(π) to π1 (Fqv ) for every closed point v : Spec Fqv ֒→ U ′ in terms of the components πv of a factorization π = ⊗vπv into representations of the local groups G(Kv).
    [Show full text]
  • Mathematical
    2-12 JULY 2011 MATHEMATICAL HOST AND VENUE for Students Jacobs University Scientific Committee Étienne Ghys (École Normale The summer school is based on the park-like campus of Supérieure de Lyon, France), chair Jacobs University, with lecture halls, library, small group study rooms, cafeterias, and recreation facilities within Frances Kirwan (University of Oxford, UK) easy walking distance. Dierk Schleicher (Jacobs University, Germany) Alexei Sossinsky (Moscow University, Russia) Jacobs University is an international, highly selective, Sergei Tabachnikov (Penn State University, USA) residential campus university in the historic Hanseatic Anatoliy Vershik (St. Petersburg State University, Russia) city of Bremen. It features an attractive math program Wendelin Werner (Université Paris-Sud, France) with personal attention to students and their individual interests. Jean-Christophe Yoccoz (Collège de France) Don Zagier (Max Planck-Institute Bonn, Germany; › Home to approximately 1,200 students from over Collège de France) 100 different countries Günter M. Ziegler (Freie Universität Berlin, Germany) › English language university › Committed to excellence in higher education Organizing Committee › Has a special program with fellowships for the most Anke Allner (Universität Hamburg, Germany) talented students in mathematics from all countries Martin Andler (Université Versailles-Saint-Quentin, › Venue of the 50th International Mathematical Olympiad France) (IMO) 2009 Victor Kleptsyn (Université de Rennes, France) Marcel Oliver (Jacobs University, Germany) For more information about the mathematics program Stephanie Schiemann (Freie Universität Berlin, Germany) at Jacobs University, please visit: Dierk Schleicher (Jacobs University, Germany) math.jacobs-university.de Sergei Tabachnikov (Penn State University, USA) at Jacobs University, Bremen The School is an initiative in the framework of the European Campus of Excellence (ECE).
    [Show full text]
  • Annual Report 2005-2006
    CORNELL UNIVERSITY DEPARTMENT OF MATHEMATICS ANNUAL REPORT 2005–2006 The Department of Mathematics at Cornell University is known throughout the world for its distinguished faculty and stimulating mathematical atmosphere. Close to 40 tenured and tenure-track faculty represent a broad spectrum of current mathematical research, with a lively group of postdoctoral fellows and frequent research and teaching visitors. The graduate program includes over 70 graduate students from many different countries. The undergraduate program includes several math major programs, and the department offers a wide selection of courses for all types of users of mathematics. A private endowed university and the federal land-grant institution of New York State, Cornell is a member of the Ivy League and a partner of the State University of New York. There are approximately 19,500 students at Cornell’s Ithaca campus enrolled in seven undergraduate units and four graduate and professional units. Nearly 14,000 of those students are undergraduates, and most of those take at least one math course during their time at Cornell. The Mathematics Department is part of the College of Arts and Sciences, a community of 6,000 students and faculty in 50 departments and programs, encompassing the humanities, sciences, mathematics, fine arts, and social sciences. We are located in Malott Hall, in the center of the Cornell campus, atop a hill between two spectacular gorges that run down to Cayuga Lake in the beautiful Finger Lakes region of New York State. Department Chair: Prof. Kenneth Brown Director of Undergraduate Studies (DUS): Prof. Allen Hatcher Director of Graduate Studies (DGS): Prof.
    [Show full text]
  • Joel Feldman
    Essay‐Contest 2017/18 Lukas Lanik, International School Kufstein, 9. Schulstufe, Fremdsprachenerwerb: 5 Jahre Joel Feldman Physics, mathematics and computer science belong to my favourite subjects in school and are definitely sciences that I would like to study at university. That is why I think the work and research that Joel Feldman does is really interesting. He is a mathematician and a mathematical physicist. He did his bachelor’s degree in 1970 at the University of Toronto and his masters and PhD at Harvard University in 1971 and 1974. He has made important contributions to quantum field theory, many‐body theory, Schrödinger operator theory, the theory of infinite genus Riemann surfaces and on Fermi liquids. His research on Fermi liquids and infinite genus Riemann surfaces was done in collaboration with Horst Knörrer and Eugene Trubowitz. Over the years professor Feldman won many prizes because of his outstanding contributions in Mathematics and Theoretical Physics and is a part of the Royal Society of Canada. In 1996 he won the John L. Synge Award, in 2004 he won the Jeffery‐ Williams Prize and in 2007 he won the CRM‐Fields‐PIMS Prize together with CAP‐CRM in Theoretical and Mathematical Physics. But why are contributions to research in physics so important? How do they help to push humanity forward? Physics helps us understand the nature of the universe. It helps us understand why certain things work the way they work. Take, for example, the European robin. At first glance, it seems like an ordinary bird. But once we start asking how is it possible that during winter the bird is able to find its way to southern Europe and back, things start to get weird, because the answer to this question lies in the mysterious realm of quantum mechanics.
    [Show full text]
  • Strength in Numbers: the Rising of Academic Statistics Departments In
    Agresti · Meng Agresti Eds. Alan Agresti · Xiao-Li Meng Editors Strength in Numbers: The Rising of Academic Statistics DepartmentsStatistics in the U.S. Rising of Academic The in Numbers: Strength Statistics Departments in the U.S. Strength in Numbers: The Rising of Academic Statistics Departments in the U.S. Alan Agresti • Xiao-Li Meng Editors Strength in Numbers: The Rising of Academic Statistics Departments in the U.S. 123 Editors Alan Agresti Xiao-Li Meng Department of Statistics Department of Statistics University of Florida Harvard University Gainesville, FL Cambridge, MA USA USA ISBN 978-1-4614-3648-5 ISBN 978-1-4614-3649-2 (eBook) DOI 10.1007/978-1-4614-3649-2 Springer New York Heidelberg Dordrecht London Library of Congress Control Number: 2012942702 Ó Springer Science+Business Media New York 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
    [Show full text]
  • Downloads Over 8,000)
    Volume 47 • Issue 1 IMS Bulletin January/February 2018 National Academy new member The US National Academy of Medicine (NAM) has announced the election of 70 reg- CONTENTS ular members and 10 international members. Among them is Nicholas Patrick Jewell, 1 National Academy of University of California, Berkeley. Medicine elects Jewell Election to the Academy is considered one of the highest honors in the fields of 2 Members’ news: Nick Horton, health and medicine, recognizing individuals who have made major contributions to Eric Kolaczyk, Hongzhe Li, the advancement of the medical sciences, health care, and public health. A diversity Runze Li, Douglas Simpson, of talent among NAM’s membership is Greg Lawler, Mike Jordan, Mir assured by its Articles of Organization, Masoom Ali which stipulate that at least one-quarter 3 Journal news: EJP, ECP, Prob of the membership is selected from fields Surveys; OECD guidelines outside the health professions, for exam- 4 Takis Konstantopoulos: new ple, from law, engineering, social sciences, column and the humanities—and statistics. The newly elected members bring 6 Recent papers: Electronic Journal of Probability; Electronic NAM’s total membership to 2,127 and Communications in Probability the number of international members to 172. 11 Special Invited Lecturers; IMS Fellow Nicholas P. Jewell is New Textbook Professor of Biostatistics and Statistics 12 Obituary: Ron Getoor at the University of California, Berkeley. 13 IMS Awards Since arriving at Berkeley in 1981, he has held various academic and administrative 15 Student Puzzle Corner 19; New Researcher Award positions, most notably serving as Vice Provost from 1994 to 2000.
    [Show full text]
  • View from the Chair
    View from the Chair This past summer we initiated a major new program for John Imbrie research experiences for undergraduates (REUs), Professor of Mathematics/Chair combining Ken Ono's long-running program in number theory with a new program in geometry and topology, I write at the conclusion of an extraordinary year for our supported by the RTG grant. Despite the challenges of work- department. As 2020 began, we were gearing up to host the ing remotely, the program was very successful -- see the AMS sectional, which was to start on March 12. Early article below by Ken Ono and Tom Mark. Other indications were that large gatherings were a major highlights of this Virginia Math Bulletin include an article on contributor to the spread of the pandemic, so we hastily our new bridge program, by David Sherman (our new cancelled the event, which was to bring 700 participants to Director of Diversity, Equity, and Inclusion). Our Bridge to Charlottesville. Soon, the university cancelled classes and the Doctorate currently supports three students were abruptly sent post-baccalaureate students as they home. Faculty members and prepare for entry into a Ph.D. program. graduate students were tasked with quickly finding Sadly, it was impossible to conduct the a way to hold classes online. Gordon Keller math majors dinner. We The learning curve was had planned to host UVa graduate steep, but we came together and McShane Prize winner Adrew Booker, to reinvent our modes of who was in the news for work leading to teaching. Now we reach the the long-sought integer solutions to conclusion of a semester x3 + y3 + z3 = 33 and x3 + y3 + z3 = 42.
    [Show full text]
  • Shtukas for Reductive Groups and Langlands Correspondence for Functions Fields
    SHTUKAS FOR REDUCTIVE GROUPS AND LANGLANDS CORRESPONDENCE FOR FUNCTIONS FIELDS VINCENT LAFFORGUE This text gives an introduction to the Langlands correspondence for function fields and in particular to some recent works in this subject. We begin with a short historical account (all notions used below are recalled in the text). The Langlands correspondence [49] is a conjecture of utmost impor- tance, concerning global fields, i.e. number fields and function fields. Many excellent surveys are available, for example [39, 14, 13, 79, 31, 5]. The Langlands correspondence belongs to a huge system of conjectures (Langlands functoriality, Grothendieck’s vision of motives, special val- ues of L-functions, Ramanujan-Petersson conjecture, generalized Rie- mann hypothesis). This system has a remarkable deepness and logical coherence and many cases of these conjectures have already been es- tablished. Moreover the Langlands correspondence over function fields admits a geometrization, the “geometric Langlands program”, which is related to conformal field theory in Theoretical Physics. Let G be a connected reductive group over a global field F . For the sake of simplicity we assume G is split. The Langlands correspondence relates two fundamental objects, of very different nature, whose definition will be recalled later, • the automorphic forms for G, • the global Langlands parameters , i.e. the conjugacy classes of morphisms from the Galois group Gal(F =F ) to the Langlands b dual group G(Q`). b For G = GL1 we have G = GL1 and this is class field theory, which describes the abelianization of Gal(F =F ) (one particular case of it for Q is the law of quadratic reciprocity, which dates back to Euler, Legendre and Gauss).
    [Show full text]
  • The Work of Wendelin Werner
    The work of Wendelin Werner Charles M. Newman∗ 1. Introduction It is my great pleasure to briefly report on some of Wendelin Werner’s research ac- complishments that have led to his being awarded a Fields Medal at this International Congress of Mathematicians of 2006. There are a number of aspects of Werner’s work that add to my pleasure in this event. One is that he was trained as a probabilist, receiving his Ph.D. in 1993 under the supervision of Jean-François Le Gall in Paris with a dissertation concerning planar Brownian Motion – which, as we shall see, plays a major role in his later work as well. Until now, Probability Theory had not been represented among Fields Medals and so I am enormously pleased to be here to witness a change in that history. I myself was originally trained, not in Probability Theory, but in Mathematical Physics. Werner’s work, together with his collaborators such as Greg Lawler, Oded Schramm and Stas Smirnov, involves applications of Probablity and Conformal Map- ping Theory to fundamental issues in Statistical Physics, as we shall discuss. A second source of pleasure is my belief that this, together with other work of recent years, represents a watershed in the interaction between Mathematics and Physics generally. Namely, mathematicians such as Werner are not only providing rigorous proofs of already existing claims in the Physics literature, but beyond that are provid- ing quite new conceptual understanding of basic phenomena – in this case, a direct geometric picture of the intrinsically random structure of physical systems at their critical points (at least in two dimensions).
    [Show full text]
  • Party Time for Mathematicians in Heidelberg
    Mathematical Communities Marjorie Senechal, Editor eidelberg, one of Germany’s ancient places of Party Time HHlearning, is making a new bid for fame with the Heidelberg Laureate Forum (HLF). Each year, two hundred young researchers from all over the world—one for Mathematicians hundred mathematicians and one hundred computer scientists—are selected by application to attend the one- week event, which is usually held in September. The young in Heidelberg scientists attend lectures by preeminent scholars, all of whom are laureates of the Abel Prize (awarded by the OSMO PEKONEN Norwegian Academy of Science and Letters), the Fields Medal (awarded by the International Mathematical Union), the Nevanlinna Prize (awarded by the International Math- ematical Union and the University of Helsinki, Finland), or the Computing Prize and the Turing Prize (both awarded This column is a forum for discussion of mathematical by the Association for Computing Machinery). communities throughout the world, and through all In 2018, for instance, the following eminences appeared as lecturers at the sixth HLF, which I attended as a science time. Our definition of ‘‘mathematical community’’ is journalist: Sir Michael Atiyah and Gregory Margulis (both Abel laureates and Fields medalists); the Abel laureate the broadest: ‘‘schools’’ of mathematics, circles of Srinivasa S. R. Varadhan; the Fields medalists Caucher Bir- kar, Gerd Faltings, Alessio Figalli, Shigefumi Mori, Bào correspondence, mathematical societies, student Chaˆu Ngoˆ, Wendelin Werner, and Efim Zelmanov; Robert organizations, extracurricular educational activities Endre Tarjan and Leslie G. Valiant (who are both Nevan- linna and Turing laureates); the Nevanlinna laureate (math camps, math museums, math clubs), and more.
    [Show full text]
  • Mathematical Tripos Part III Lecture Courses in 2013-2014
    Mathematical Tripos Part III Lecture Courses in 2013-2014 Department of Pure Mathematics & Mathematical Statistics Department of Applied Mathematics & Theoretical Physics Notes and Disclaimers. • Students may take any combination of lectures that is allowed by the timetable. The examination timetable corresponds to the lecture timetable and it is therefore not possible to take two courses for examination that are lectured in the same timetable slot. There is no requirement that students study only courses offered by one Department. • The code in parentheses after each course name indicates the term of the course (M: Michaelmas; L: Lent; E: Easter), and the number of lectures in the course. Unless indicated otherwise, a 16 lecture course is equivalent to 2 credit units, while a 24 lecture course is equivalent to 3 credit units. Please note that certain courses are non-examinable, and are indicated as such after the title. Some of these courses may be the basis for Part III essays. • At the start of some sections there is a paragraph indicating the desirable previous knowledge for courses in that section. On one hand, such paragraphs are not exhaustive, whilst on the other, not all courses require all the pre-requisite material indicated. However you are strongly recommended to read up on the material with which you are unfamiliar if you intend to take a significant number of courses from a particular section. • The courses described in this document apply only for the academic year 2013-14. Details for subsequent years are often broadly similar, but not necessarily identical. The courses evolve from year to year.
    [Show full text]
  • The Mathematical Work of the 2002 Fields Medalists, Volume 50
    The Mathematical Work of the 2002 Fields Medalists Eric M. Friedlander, Michael Rapoport, and Andrei Suslin The Work of Laurent Lafforgue hand and of the idèle class group A×/F × on the Michael Rapoport other hand. This is the reciprocity law of T. Takagi Laurent Lafforgue was awarded the Fields Medal for and E. Artin established in the 1920s as a far-reach- his proof of the Langlands correspondence for the ing generalization of the quadratic reciprocity law general linear groups GLr over function fields of going back to L. Euler. At the end of the 1960s, positive characteristic. His approach to this prob- R. Langlands proposed a nonabelian generaliza- lem follows the basic strategy introduced twenty- tion of this reciprocity law. It conjecturally relates five years ago by V. Drinfeld in his proof for GL2. the irreducible representations of rank r of Gal(F/F¯ ) Already Drinfeld’s proof is extremely difficult. Laf- (or, more generally, of the hypothetical motivic forgue’s proof is a real tour de force, taking up as Galois group of F) with cuspidal automorphic rep- it does several hundred pages of highly condensed resentations of GL (A). In fact, this conjecture is reasoning. By his achievement Lafforgue has proved r part of an even grander panorama of Langlands (the himself a mathematician of remarkable strength functoriality principle), in which homomorphisms and perseverance. In this brief report I will sketch the background between L-groups of reductive groups over F induce of Lafforgue’s result, state his theorems, and then relations between the automorphic representations mention some ingredients of his proof.
    [Show full text]