Rekindling of a Masterful Precedent; Bacteriophage: Reappraisal ’And Future Pursuits

Total Page:16

File Type:pdf, Size:1020Kb

Rekindling of a Masterful Precedent; Bacteriophage: Reappraisal ’And Future Pursuits REVIEW published: 31 May 2021 doi: 10.3389/fcimb.2021.635597 Rekindling of a Masterful Precedent; Bacteriophage: Reappraisal and Future Pursuits Israa M. Abd-Allah 1, Ghadir S. El-Housseiny 1, Ibrahim S. Yahia 2,3, Khaled M. Aboshanab 1* and Nadia A. Hassouna 1 1 Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt, 2 Research Center for Advanced Materials Science (RCAMS), Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, Abha, Saudi Arabia, 3 Nanoscience Laboratory for Environmental and Bio-Medical Applications (NLEBA), Semiconductor Lab., Metallurgical Lab, Physics Department, Faculty of Education, Ain Shams University, Cairo, Egypt Antibiotic resistance is exuberantly becoming a deleterious health problem world-wide. Seeking innovative approaches is necessary in order to circumvent such a hazard. An unconventional fill-in to antibiotics is bacteriophage. Bacteriophages are viruses capable of pervading bacterial cells and disrupting their natural activity, ultimately resulting in their defeat. In this article, we will run-through the historical record of bacteriophage and its Edited by: correlation with bacteria. We will also delineate the potential of bacteriophage as a Ayush Kumar, University of Manitoba, Canada therapeutic antibacterial agent, its supremacy over antibiotics in multiple aspects and Reviewed by: the challenges that could arise on the way to its utilization in reality. Pharmacodynamics, Laura Marise de Freitas, pharmacokinetics and genetic engineering of bacteriophages and its proteins will be University of São Paulo, Brazil fl Miguel Ignacio Uyaguari-Diaz, brie y discussed as well. In addition, we will highlight some of the in-use applications of University of Manitoba, Canada bacteriophages, and set an outlook for their future ones. We will also overview some of the *Correspondence: miscellaneous abilities of these tiny viruses in several fields other than the clinical one. This Khaled M. Aboshanab is an attempt to encourage tackling a long-forgotten hive. Perhaps, one day, the smallest [email protected] of the creatures would be of the greatest help. Specialty section: Keywords: bacteriophage, phage therapy, antibiotic resistance, phage proteins, phage pharmacotherapy This article was submitted to Bacteria and Host, a section of the journal Frontiers in Cellular and INTRODUCTION Infection Microbiology Received: 16 February 2021 With an approximate ubiquity ranging from 1031 to1032 (Carlton, 1999), bacteriophages (phages) Accepted: 13 May 2021 are the least sophisticated yet most numerous biological entities on Earth. They serve as the greatest Published: 31 May 2021 repository for genetic material. This is why they have been pictured as “the dark matter of the Citation: biosphere” (Hatfull, 2015). Technically, bacteriophages are viruses (Gordillo Altamirano and Barr, Abd-Allah IM, El-Housseiny GS, 2019) however, they are distinct from the viral archetype. Named after their inherent vocation, Yahia IS, Aboshanab KM and bacteriophages are obligate parasites that infect bacteria. They are their aboriginal destroyers. The Hassouna NA (2021) Rekindling of a earliest anecdotal news on bacteriophages is traced back to 1896 when the English naturalist, Ernest Masterful Precedent; Bacteriophage: “ Reappraisal and Future Pursuits. Hankin, published an article under the title of The bactericidal action of waters of Jumna and Front. Cell. Infect. Microbiol. 11:635597. Ganges on the Cholera microbe” (Abedon et al., 2011b) in which he described the absurd doi: 10.3389/fcimb.2021.635597 inexplicable observation of Ganges water self-clearing from the bacterium Vibrio cholera Frontiers in Cellular and Infection Microbiology | www.frontiersin.org1 May 2021 | Volume 11 | Article 635597 Abd-Allah et al. Rekindling of a Masterful Precedent; Bacteriophage (Abedon et al., 2011b; Chanishvili, 2012; Nm, 2018). Back then, CHARACTERS, STRUCTURE, this was known as the’’Hankin’s phenomenon’’ (Chanishvili, AND CLASSIFICATION 2012). Twenty years later, the formal chronicle of bacteriophage began. It is believed that phages were identified by Sir Frederick Bacteriophages are viruses that selectively utilize bacterial cells Twort in 1915 and separately two years later by the French- astheirhost.Beingviruses,theyarebasicallymadeupofa Canadian microbiologist Felix d’Hérelle who pursued his nucleic acid genome -either DNA or RNA, single or double discovery by closely investigating the nature of these stranded, encased into a cage of viral capsid proteins (Kasman phenomenal agents (Chanishvili, 2012; Nm, 2018). However, and Porter, 2020). They are mostly assembled as a simple build- obscurity has been always there, tainting the provenance of their up of head and tail. Despite this structure simplicity, discovery (Duckworth, 1976). Anyways, at least their appellation bacteriophages are widely varied in their morphology, size “bacteriophages’’ can be emphatically accredited to d’Herelle and genomic make-up. For example, some have round, cubic (Chanishvili, 2012). Figure 1 shows some of the milestones in or icosahedral heads that are joined to tails, others, though less the history of phages (Gelman et al., 2018). Being natural common, are filamentous. Their sizes range from 30 to 110 nm parasites, they are most likely found wherever their hosts are (Weinbauer and Peduzzi, 1994). Regardless of their appearance, amply present. Locales like sewage, wastewater, hospital bacteriophages are non-motile and are transported only via vicinities, soil, human and animal bodies are always lush Brownian motion (Kasman and Porter, 2020). Due to this high sources. They could be also found in extreme environments diversity, multiple classificationsofphagesareoutthere.For like marine water, ocean depths and the surroundings of low and example, phages are divided according to the genetic material high temperatures (Principi et al., 2019). they harbor into four major categories: single stranded DNA FIGURE 1 | Timeline of the most considerable milestones since phage discovery. Frontiers in Cellular and Infection Microbiology | www.frontiersin.org2 May 2021 | Volume 11 | Article 635597 Abd-Allah et al. Rekindling of a Masterful Precedent; Bacteriophage phages (ssDNA), double stranded DNA phages (dsDNA), Lytic Cycle (Performed by Virulent Phages) single stranded RNA phages (ssRNA), and double stranded RNA phages (dsRNA). Each of these groups is further classified i. Adsorption: After recognition of certain receptors on the into different families based on their morphology and the bacterial cell wall or even other organelles such as sex pili and configuration of their genome; with dsDNA comprising the flagella, phages bind specifically to their hosts mostly using largest number: nine families, followed by ssDNA: two families. specialized attachment structures positioned onto their tails. Relatively, DNA phages are better covered in literature, but ii. Injection: Unlike most of the viruses, no uncoating occurs. limited reports are available on RNA ones. So, in few words, we Bacteriophages manage to insert their nucleic acid relying on are to spot some light on them. RNA phages comprise 2 some enzymes that drill through the bacterial cell wall families. On the dsRNA side: the family of Cystoviridae. Two (Olszak et al., 2017). years ago, a lytic Cystoviridae phage was isolated against For those attached to pili or flagella, the genome Streptococcus salivarius and proved its potential for managing penetrates through these hollow pipes. the infections it causes in the oral cavity (Cystoviridae, 2012; iii. Replication: Once invaded by nucleic acid, the bacterial Beheshti-Maal, 2018). The other family is called Leviviridae macromolecule machinery is commandeered to synthesize which accommodates the ssRNA phages. ssRNA phages are phages’ structural protein components and replicate their probably the simplest of all identified viruses and their genomes nucleic acid. range between 3500 and 4200 nucleotides. They are specificfor iv. Assembly: The resulting phage coat particles assemble Gram negative bacteria with pili. They all code for three around the newly-formed nucleic acid molecules bringing proteins: coat, maturation and replicase. The coat protein about a quiverful of whole bacteriophages. In turn, these lurk builds up so that the capsid is composed of dimers. The inside the cells waiting for release and working for it. maturation protein is the one responsible for the adsorption v. Liberation: Thenceforth, a two-step process led by phage- of the phage particle to the bacterial pili. The replicase protein: encoded enzymes, causes disintegration of the bacterial cell an RNA-dependent RNA polymerase that is used by the wall. Two protein groups are involved: holins and infected cells to synthesize RNA from the RNA template of endolysins. Both together collaborate to form a lytic system the virion. ssRNA phages have been long utilized as study tools that controls the timing of cell burst (Doss et al., 2017). First, in the field of molecular biology because of their structure holins act as a timekeeper; from inside the cell, they punch intelligibility. They were also used to learn about the process of holes in the host’s cell membrane allowing the other protein protein synthesis and its regulation, and to closely examine group to make their way out towards the cell wall each of the RNA replication, viral assembly and protein-RNA peptidoglycan.
Recommended publications
  • Properties of a Genetically Unique Mycobacteriophage Amanda K
    Western Kentucky University TopSCHOLAR® Masters Theses & Specialist Projects Graduate School Spring 2019 Properties of a Genetically Unique Mycobacteriophage Amanda K. Staples Follow this and additional works at: https://digitalcommons.wku.edu/theses Part of the Environmental Microbiology and Microbial Ecology Commons, Microbial Physiology Commons, Other Microbiology Commons, and the Virology Commons This Thesis is brought to you for free and open access by TopSCHOLAR®. It has been accepted for inclusion in Masters Theses & Specialist Projects by an authorized administrator of TopSCHOLAR®. For more information, please contact [email protected]. PROPERTIES OF A GENETICALLY UNIQUE MYCOBACTERIOPHAGE A Thesis Presented to The Faculty of the Department of Biology Western Kentucky University Bowling Green, Kentucky In Partial Fulfillment Of the Requirements for the Degree Master of Science By Amanda K. Staples May 2019 I dedicate this thesis to my sons, Donovan and Dresden Staples. Life is filled with good times and bad times. I wish you both all the strength and wisdom to face the challenges that come your way. Learn and grow from everything and everyone. Always listen to your heart and don’t be afraid to take the road less traveled. Never forget how much I love you both. ACKNOWLEDGMENTS I would like to take the opportunity to express my profound gratitude to all those who contributed to the support and guidance vital in completing this research. Though I am not able to thank all the caring people involved, their assistance has been invaluable. First and foremost, I must pay homage to my family, beginning with my mom. Without her, I would not be able to manage the majority of the chaos surrounding my life.
    [Show full text]
  • Entry of the Membrane-Containing Bacteriophages Into Their Hosts
    Entry of the membrane-containing bacteriophages into their hosts - Institute of Biotechnology and Department of Biosciences Division of General Microbiology Faculty of Biosciences and Viikki Graduate School in Molecular Biosciences University of Helsinki ACADEMIC DISSERTATION To be presented for public examination with the permission of the Faculty of Biosciences, University of Helsinki, in the auditorium 3 of Info center Korona, Viikinkaari 11, Helsinki, on June 18th, at 8 a.m. HELSINKI 2010 Supervisor Professor Dennis H. Bamford Department of Biosciences University of Helsinki, Finland Reviewers Professor Martin Romantschuk Department of Ecological and Environmental Sciences University of Helsinki, Finland Professor Mikael Skurnik Department of Bacteriology and Immunology University of Helsinki, Finland Opponent Dr. Alasdair C. Steven Laboratory of Structural Biology Research National Institute of Arthritis and Musculoskeletal and Skin Diseases National Institutes of Health, USA ISBN 978-952-10-6280-3 (paperback) ISBN 978-952-10-6281-0 (PDF) ISSN 1795-7079 Yliopistopaino, Helsinki University Printing House Helsinki 2010 ORIGINAL PUBLICATIONS This thesis is based on the following publications, which are referred to in the text by their roman numerals: I. 6 - Verkhovskaya R, Bamford DH. 2005. Penetration of enveloped double- stranded RNA bacteriophages phi13 and phi6 into Pseudomonas syringae cells. J Virol. 79(8):5017-26. II. Gaidelyt A*, Cvirkait-Krupovi V*, Daugelaviius R, Bamford JK, Bamford DH. 2006. The entry mechanism of membrane-containing phage Bam35 infecting Bacillus thuringiensis. J Bacteriol. 188(16):5925-34. III. Cvirkait-Krupovi V, Krupovi M, Daugelaviius R, Bamford DH. 2010. Calcium ion-dependent entry of the membrane-containing bacteriophage PM2 into Pseudoalteromonas host.
    [Show full text]
  • A Persistent Giant Algal Virus, with a Unique Morphology, Encodes An
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.30.228163; this version posted January 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 A persistent giant algal virus, with a unique morphology, encodes an 2 unprecedented number of genes involved in energy metabolism 3 4 Romain Blanc-Mathieu1,2, Håkon Dahle3, Antje Hofgaard4, David Brandt5, Hiroki 5 Ban1, Jörn Kalinowski5, Hiroyuki Ogata1 and Ruth-Anne Sandaa6* 6 7 1: Institute for Chemical Research, Kyoto University, Gokasho, Uji, 611-0011, Japan 8 2: Laboratoire de Physiologie Cellulaire & Végétale, CEA, Univ. Grenoble Alpes, 9 CNRS, INRA, IRIG, Grenoble, France 10 3: Department of Biological Sciences and K.G. Jebsen Center for Deep Sea Research, 11 University of Bergen, Bergen, Norway 12 4: Department of Biosciences, University of Oslo, Norway 13 5: Center for Biotechnology, Universität Bielefeld, Bielefeld, 33615, Germany 14 6: Department of Biological Sciences, University of Bergen, Bergen, Norway 15 *Corresponding author: Ruth-Anne Sandaa, +47 55584646, [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.30.228163; this version posted January 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 16 Abstract 17 Viruses have long been viewed as entities possessing extremely limited metabolic 18 capacities.
    [Show full text]
  • Genetic Content and Evolution of Adenoviruses Andrew J
    Journal of General Virology (2003), 84, 2895–2908 DOI 10.1099/vir.0.19497-0 Review Genetic content and evolution of adenoviruses Andrew J. Davison,1 Ma´ria Benko´´ 2 and Bala´zs Harrach2 Correspondence 1MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK Andrew Davison 2Veterinary Medical Research Institute, Hungarian Academy of Sciences, H-1581 Budapest, [email protected] Hungary This review provides an update of the genetic content, phylogeny and evolution of the family Adenoviridae. An appraisal of the condition of adenovirus genomics highlights the need to ensure that public sequence information is interpreted accurately. To this end, all complete genome sequences available have been reannotated. Adenoviruses fall into four recognized genera, plus possibly a fifth, which have apparently evolved with their vertebrate hosts, but have also engaged in a number of interspecies transmission events. Genes inherited by all modern adenoviruses from their common ancestor are located centrally in the genome and are involved in replication and packaging of viral DNA and formation and structure of the virion. Additional niche-specific genes have accumulated in each lineage, mostly near the genome termini. Capture and duplication of genes in the setting of a ‘leader–exon structure’, which results from widespread use of splicing, appear to have been central to adenovirus evolution. The antiquity of the pre-vertebrate lineages that ultimately gave rise to the Adenoviridae is illustrated by morphological similarities between adenoviruses and bacteriophages, and by use of a protein-primed DNA replication strategy by adenoviruses, certain bacteria and bacteriophages, and linear plasmids of fungi and plants.
    [Show full text]
  • Exposure Pathways to High-Consequence Pathogens in the Wastewater Collection and Treatment Systems
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/326786071 Exposure Pathways to High-Consequence Pathogens in the Wastewater Collection and Treatment Systems Technical Report · July 2018 DOI: 10.13140/RG.2.2.14738.15043 CITATIONS READS 0 608 2 authors: Sandip Chattopadhyay Sarah Taft United States Environmental Protection Agency United States Environmental Protection Agency 74 PUBLICATIONS 435 CITATIONS 17 PUBLICATIONS 170 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Exposure Assessment of Livestock Carcass Management Options During Emergencies View project Waste Management - Encapsulation of Contaminated Wastes View project All content following this page was uploaded by Sandip Chattopadhyay on 02 August 2018. The user has requested enhancement of the downloaded file. EPA/600/R-18/221 | July 2018 www.epa.gov/homeland-security-research Exposure Pathways to High-Consequence Pathogens in the Wastewater Collection and Treatment Systems Office of Research and Development Homeland Security Research Program EPA/600/R-18/221 July 2018 Exposure Pathways to High-Consequence Pathogens in the Wastewater Collection and Treatment Systems by Sandip Chattopadhyay, Ph.D. Sarah Taft, Ph.D. Threat and Consequence Assessment Division National Homeland Security Research Center Cincinnati, OH 45268 Contract No. EP-C-14-001 to ICF under Work Assignment 40 U.S. Environmental Protection Agency Project Officer Office of Research and Development Homeland Security Research Program Cincinnati, OH 45268 Disclaimer The U.S. Environmental Protection Agency (EPA) through its Office of Research and Development funded and managed the research described here under Contract No.
    [Show full text]
  • Geographic Differences in Sexual Reassortment in Rna Phage
    ORIGINAL ARTICLE doi:10.1111/j.1558-5646.2010.01040.x GEOGRAPHIC DIFFERENCES IN SEXUAL REASSORTMENT IN RNA PHAGE Kara J. O’Keefe,1,2 Olin K. Silander,3 Helen McCreery,4 Daniel M. Weinreich,5 Kevin M. Wright,6 Lin Chao,7 Scott V. Edwards,2 Susanna K. Remold,8 and Paul E. Turner1,9 1Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06520-8106 2Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138 3Core Program Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland 4Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 5Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912 6Department of Biology, Duke University, Durham, North Carolina 27708 7Section of Ecology, Evolution and Behavior, University of California, San Diego, La Jolla, California 92093 8Department of Biology, University of Louisville, Louisville, Kentucky 40292 9E-mail: [email protected] Received November 5, 2008 Accepted April 20, 2010 The genetic structure of natural bacteriophage populations is poorly understood. Recent metagenomic studies suggest that phage biogeography is characterized by frequent migration. Using virus samples mostly isolated in Southern California, we recently showed that very little population structure exists in segmented RNA phage of the Cystoviridae family due to frequent segment reassortment (sexual genetic mixis) between unrelated virus individuals. Here we use a larger genetic dataset to examine the structure of Cystoviridae phage isolated from three geographic locations in Southern New England. We document extensive natural variation in the physical sizes of RNA genome segments for these viruses.
    [Show full text]
  • Phagemid-Based Method of Producing Filamentous Bacteriophage Particles Displaying Antibody Molecules and the Corresponding Bacteriophage Particles
    Europäisches Patentamt *EP001433846A2* (19) European Patent Office Office européen des brevets (11) EP 1 433 846 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.7: C12N 15/10, C07K 16/00, 30.06.2004 Bulletin 2004/27 C12N 15/62, C12N 7/00, C12N 15/73 (21) Application number: 04005419.9 (22) Date of filing: 10.07.1991 (84) Designated Contracting States: • Griffiths, Andrew David AT BE CH DE DK ES FR GB GR IT LI LU NL SE Cambridge CB1 4AY (GB) • Jackson, Ronald Henry (30) Priority: 10.07.1990 GB 9015198 Cambridge CB1 2NU (GB) 19.10.1990 GB 9022845 • Holliger, Kaspar Philipp 12.11.1990 GB 9024503 Cambridge CB1 4HT (GB) 06.03.1991 GB 9104744 • Marks, James David 15.05.1991 GB 9110549 Kensington, CA 94707-1310 (US) • Clackson, Timothy Piers (62) Document number(s) of the earlier application(s) in Somerville, MA 02143 (US) accordance with Art. 76 EPC: • Chiswell, David John 97120149.6 / 0 844 306 Buckingham MK18 2LD (GB) 96112510.1 / 0 774 511 • Winter, Gregory Paul Cambridge CB2 1TQ (GB) (71) Applicants: • Bonnert, Timothy Peter • Cambridge Antibody Technology LTD Seattle, WA 98102 (US) Cambridge CB1 6GH (GB) • Medical Research Council (74) Representative: Walton, Seán Malcolm et al London W1B 1AL (GB) Mewburn Ellis LLP York House, (72) Inventors: 23 Kingsway • McCafferty, John London WC2B 6HP (GB) Babraham CB2 4AP (GB) • Pope, Anthony Richard Remarks: Cambridge CB1 2LW (GB) This application was filed on 08 - 03 - 2004 as a • Johnson, Kevin Stuart divisional application to the application mentioned Highfields, Cambridge CB3 7NY (GB) under INID code 62.
    [Show full text]
  • Indirect Selection Against Antibiotic Resistance Via Specialized Plasmid-Dependent Bacteriophages
    microorganisms Perspective Indirect Selection against Antibiotic Resistance via Specialized Plasmid-Dependent Bacteriophages Reetta Penttinen 1,2 , Cindy Given 1 and Matti Jalasvuori 1,* 1 Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Survontie 9C, P.O.Box 35, FI-40014 Jyväskylä, Finland; reetta.k.penttinen@jyu.fi (R.P.); cindy.j.given@jyu.fi (C.G.) 2 Department of Biology, University of Turku, FI-20014 Turku, Finland * Correspondence: matti.jalasvuori@jyu.fi; Tel.: +358-504135092 Abstract: Antibiotic resistance genes of important Gram-negative bacterial pathogens are residing in mobile genetic elements such as conjugative plasmids. These elements rapidly disperse between cells when antibiotics are present and hence our continuous use of antimicrobials selects for elements that often harbor multiple resistance genes. Plasmid-dependent (or male-specific or, in some cases, pilus-dependent) bacteriophages are bacterial viruses that infect specifically bacteria that carry certain plasmids. The introduction of these specialized phages into a plasmid-abundant bacterial community has many beneficial effects from an anthropocentric viewpoint: the majority of the plasmids are lost while the remaining plasmids acquire mutations that make them untransferable between pathogens. Recently, bacteriophage-based therapies have become a more acceptable choice to treat multi-resistant bacterial infections. Accordingly, there is a possibility to utilize these specialized phages, which are not dependent on any particular pathogenic species or strain but rather on the resistance-providing elements, in order to improve or enlengthen the lifespan of conventional antibiotic approaches. Here, Citation: Penttinen, R.; Given, C.; we take a snapshot of the current knowledge of plasmid-dependent bacteriophages.
    [Show full text]
  • Antibody Discovery for Development of a Serotyping Dengue Virus NS1 Capture Assay
    Antibody Discovery for Development of a Serotyping Dengue Virus NS1 Capture Assay Kebaneilwe Lebani Master of Biotechnology (Advanced) A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2014 Australian Institute for Bioengineering and Nanotechnology ABSTRACT Dengue virus (DENV) infections are a significant public health burden in tropical and sub-tropical regions of the world. Infections are caused by four different but antigenically related viruses which result in four DENV serotypes. The multifaceted nature of DENV pathogenesis hinders the sensitivity of assays designed for the diagnosis of infection. Different markers can be optimally detected at different stages of infection. Of particular clinical importance is the identification of acute viremia during the febrile phase of infection which is pivotal for management of infection. Non-structural protein 1 (NS1) has been identified as a good early surrogate marker of infection with possible applications in epidemiological surveillance and the development of blood screening assays. This contribution is towards using serotype-specificity to achieve specific and more sensitive diagnostic detection of DENV NS1. The general aim of this work is to isolate immune-reagents that can be used to develop an assay with improved sensitivity of DENV NS1 detection in a diagnostic setting. In this work, we sought to isolate serotype-specific antibodies that discern discreet antigenic differences in NS1 from each DENV serotype. Additionally, we also sought to isolate a pairing antibody that recognises NS1 from all four DENV serotypes (pan-reactive) for tandem capture of the DENV NS1. To achieve this, three naive, immunoglobulin gene libraries (a VH domain, a scFv and a Fab library) were interrogated for binders to recombinant NS1 antigen from all four DENV serotypes using phage display technology and various biopanning approaches.
    [Show full text]
  • Origins and Evolution of the Global RNA Virome
    bioRxiv preprint doi: https://doi.org/10.1101/451740; this version posted October 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Origins and Evolution of the Global RNA Virome 2 Yuri I. Wolfa, Darius Kazlauskasb,c, Jaime Iranzoa, Adriana Lucía-Sanza,d, Jens H. 3 Kuhne, Mart Krupovicc, Valerian V. Doljaf,#, Eugene V. Koonina 4 aNational Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA 5 b Vilniaus universitetas biotechnologijos institutas, Vilnius, Lithuania 6 c Département de Microbiologie, Institut Pasteur, Paris, France 7 dCentro Nacional de Biotecnología, Madrid, Spain 8 eIntegrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious 9 Diseases, National Institutes of Health, Frederick, Maryland, USA 10 fDepartment of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA 11 12 #Address correspondence to Valerian V. Dolja, [email protected] 13 14 Running title: Global RNA Virome 15 16 KEYWORDS 17 virus evolution, RNA virome, RNA-dependent RNA polymerase, phylogenomics, horizontal 18 virus transfer, virus classification, virus taxonomy 1 bioRxiv preprint doi: https://doi.org/10.1101/451740; this version posted October 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 19 ABSTRACT 20 Viruses with RNA genomes dominate the eukaryotic virome, reaching enormous diversity in 21 animals and plants. The recent advances of metaviromics prompted us to perform a detailed 22 phylogenomic reconstruction of the evolution of the dramatically expanded global RNA virome.
    [Show full text]
  • ICTV Code Assigned: 2011.001Ag Officers)
    This form should be used for all taxonomic proposals. Please complete all those modules that are applicable (and then delete the unwanted sections). For guidance, see the notes written in blue and the separate document “Help with completing a taxonomic proposal” Please try to keep related proposals within a single document; you can copy the modules to create more than one genus within a new family, for example. MODULE 1: TITLE, AUTHORS, etc (to be completed by ICTV Code assigned: 2011.001aG officers) Short title: Change existing virus species names to non-Latinized binomials (e.g. 6 new species in the genus Zetavirus) Modules attached 1 2 3 4 5 (modules 1 and 9 are required) 6 7 8 9 Author(s) with e-mail address(es) of the proposer: Van Regenmortel Marc, [email protected] Burke Donald, [email protected] Calisher Charles, [email protected] Dietzgen Ralf, [email protected] Fauquet Claude, [email protected] Ghabrial Said, [email protected] Jahrling Peter, [email protected] Johnson Karl, [email protected] Holbrook Michael, [email protected] Horzinek Marian, [email protected] Keil Guenther, [email protected] Kuhn Jens, [email protected] Mahy Brian, [email protected] Martelli Giovanni, [email protected] Pringle Craig, [email protected] Rybicki Ed, [email protected] Skern Tim, [email protected] Tesh Robert, [email protected] Wahl-Jensen Victoria, [email protected] Walker Peter, [email protected] Weaver Scott, [email protected] List the ICTV study group(s) that have seen this proposal: A list of study groups and contacts is provided at http://www.ictvonline.org/subcommittees.asp .
    [Show full text]
  • Unlocking the M13 (F1 and Fd) Virion
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. Unlocking the M13 (f1 and fd) virion Investigation into the role of the pIII C-domain of F specific filamentous bacteriophage in infection A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Biochemistry at Massey University, Palmerston North, New Zealand. Nicholas James Bennett 2009 Abstract Ff filamentous bacteriophage infect male (F+) strains of Escherichia coli and are assembled at the cell membranes, by a secretion-like, non-lethal process. The pIII protein, located at one end of the virion-filament, is required at both the beginning and the end of the phage life cycle. During infection, the N-terminal domains of pIII, N2 and N1, bind to the primary and secondary host receptors, F pilus and TolA protein, respectively. At the end of the life cycle, the pIII C-domain mediates the termination and release of virions. Thus, both entry and release involve structural transitions of the virus coupled to membrane transactions of the virion proteins. "Unlocking” of the highly stable virion presumably results in membrane integration during entry, whereas a reverse event, “locking” of the virion, occurs upon detachment from the membrane at termination step of assembly/secretion. Recently, it was shown that the pIII C-domain plays an active role at the step of entry. This finding implicates the C-domain of pIII in “unlocking” of the virion, presumably resulting in the exposure of the membrane anchor at the very C-terminus of pIII (Bennett & Rakonjac, 2006).
    [Show full text]