Sample Multiplexing for Targeted Pathway Proteomics in Aging Mice

Total Page:16

File Type:pdf, Size:1020Kb

Sample Multiplexing for Targeted Pathway Proteomics in Aging Mice Sample multiplexing for targeted pathway proteomics in aging mice Qing Yua, Haopeng Xiaoa,b, Mark P. Jedrychowskia,b, Devin K. Schweppea, Jose Navarrete-Pereaa, Jeffrey Knottc, John Rogersd, Edward T. Chouchania,b, and Steven P. Gygia,1 aDepartment of Cell Biology, Harvard Medical School, Boston, MA 02115; bDepartment of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115; cCell Signaling Technologies, Danvers, MA 01923; and dThermo Fisher Scientific, Rockford, IL 61101 Edited by Anne Brunet, Stanford University, Stanford, CA, and accepted by Editorial Board Member K. C. Garcia March 18, 2020 (received for review November 5, 2019) Pathway proteomics strategies measure protein expression changes High-throughput and precise quantitation of protein pathways in specific cellular processes that carry out related functions. Using is essential for systematic understanding the molecular basis for targeted tandem mass tags-based sample multiplexing, hundreds of complex physiological adaptation. This is perhaps best exempli- proteins can be quantified across 10 or more samples simultaneously. fied in the case of chronic physiological changes that occur with To facilitate these highly complex experiments, we introduce a strat- age. Tissue aging is characterized by a homeostatic decline in a egy that provides complete control over targeted sample multiplex- variety of physiological and psychological functions and is a ing experiments, termed Tomahto, and present its implementation major risk factor in many diseases. There has been a continuous on the Orbitrap Tribrid mass spectrometer platform. Importantly, this effort to understand the underlying cellular and molecular causes, and software monitors via the external desktop computer to the data various hypotheses exist (12). Changes in the genome, epige- stream and inserts optimized MS2 and MS3 scans in real time based nome, and transcriptome have all been observed and, as a result, on an application programming interface with the mass spectrome- genome instability, gene methylation levels, and transcriptional ter. Hundreds of proteins of interest from diverse biological samples changes have all been implicated in aging (13–15). In addition, can be targeted and accurately quantified in a sensitive and high- metabolism remodeling, inflammatory response, and the homeo- throughput fashion. It achieves sensitivity comparable to, if not bet- stasis of multiple organelles were frequently implicated (16, 17). ter than, deep fractionation and requires minimal total sample input However, little work has been done to investigate proteome changes (∼10 μg). As a proof-of-principle experiment, we selected four path- (18, 19) and, surprisingly, only a minimal disturbance was reported in CHEMISTRY ways important in metabolism- and inflammation-related processes the tissues studied (20). In addition to a lack of proteomic charac- (260 proteins/520 peptides) and measured their abundance across 90 terization in aging organisms, current knowledge suggests different samples (nine tissues from five old and five young mice) to explore tissues in an organism share common altered pathways due to aging effects of aging. Tissue-specific aging is presented here and we high- but also have their own unique responses which necessitate tissue- light the role of inflammation- and metabolism-related processes in specific investigation (21, 22). For example, Christensen et al. found white adipose tissue. We validated our approach through compari- strikingly different gene methylation profiles in multiple human tissues son with a global proteome survey across the tissues, work that we SYSTEMS BIOLOGY also provide as a general resource for the community. Significance targeted pathway proteomics | tissue-specific aging | isobaric labeling | A user-friendly workflow, termed Tomahto, enables real-time real-time instrument control | Tomahto targeted pathway proteomics assays using two-dimensional multiplexing technology. Hundreds of proteins of interest n proteomics, both targeted and untargeted approaches are from a multitude of samples can be targeted and accurately Iemployed depending on the experiment’s goal (1). While the quantified in a remarkably sensitive fashion. We highlight untargeted approach is widely used in a discovery phase to Tomahto’s ease of use, sensitivity, and accuracy and present identify potential protein signatures that underlie cellular pro- proof-of-principle utility by targeting 260 metabolism- and cesses (2), it often requires substantially more starting material, inflammation-related proteins across 90 samples (nine tissues extensive sample fractionation, and more instrument time rela- from five old and five young mice). Tissue-specific aging effects tive to targeted approaches (3, 4). It also can suffer from lower are presented with specific interest in metabolic and in- sampling reproducibility due to its stochastic nature. In contrast, flammatory pathways of white adipose tissue. We validated targeted approaches are favored if a preselected set of proteins our approach through comparison with a global proteome needs to be consistently measured across a large cohort of samples, survey across the tissues, work that we also provide as a such as in clinical settings, or when sample amount is limited (5). To general resource for the community. further improve throughput and reduce quantitative variability, two-dimensional (2D) multiplexing (i.e., multiplexing peptide tar- Author contributions: Q.Y., M.P.J., E.T.C., and S.P.G. designed research; Q.Y., H.X., J.N.-P., and J.K. performed research; Q.Y., D.K.S., and J.R. contributed new reagents/analytic gets and multiplexing samples) can be achieved via isobaric labeling tools; Q.Y. analyzed data; and Q.Y. and S.P.G. wrote the paper. strategies, such as using tandem mass tags (TMT) (6). Although the The authors declare no competing interest. quantitative accuracy using isobaric tags can be distorted by This article is a PNAS Direct Submission. A.B. is a guest editor invited by the cofragmenting peptide species within the isolation window (7, 8), it Editorial Board. can be readily restored by using synchronous precursor selection This open access article is distributed under Creative Commons Attribution-NonCommercial- and MS3 scans (SPS-MS3) (9). Previously, our laboratory in- NoDerivatives License 4.0 (CC BY-NC-ND). troduced a 2D multiplexing method (triggered by offset, multi- Data deposition: All MS raw files haven been deposited to the PRIDE archive with the plexed, accurate-mass, high-resolution, and absolute quantification identifier PXD017385. —TOMAHAQ), which incorporates TMT and SPS-MS3 with See online for related content such as Commentaries. targeted proteomics. The method exploits the use of synthetic 1To whom correspondence may be addressed. Email: [email protected]. trigger peptides, which completely obviates the need for peptide This article contains supporting information online at https://www.pnas.org/lookup/suppl/ detection prior to quantification. However, the method requires a doi:10.1073/pnas.1919410117/-/DCSupplemental. very cumbersome method structure, limiting its application (10, 11). First published April 24, 2020. www.pnas.org/cgi/doi/10.1073/pnas.1919410117 PNAS | May 5, 2020 | vol. 117 | no. 18 | 9723–9732 Downloaded by guest on September 29, 2021 (21) and Hudgins et al. reported highly variable expression of peptides to measure kinase levels across these lines (Fig. 2A). A senescence biomarkers in age- and tissue-specific manners (23). TMT10plex was created consisting of biological triplicates of In this paper we present an application programming interface HCT116 and MCF7 and quadruplicates of HEK293T cells. (API)-based algorithm, termed Tomahto, which enables real- Synthetic peptides were readily available for 77 kinases (154 time instrument control and decision making. Tomahto pro- peptides; see Dataset S1) that could be used in a Tomahto assay vides an array of functionalities including MS1 peak detection, to quantify kinase levels across these three cell lines. The sen- MS2 real-time peak matching (RTPM), MS2 fragmentation sitivity of Tomahto was exemplified by peptide FADIVSILDK pattern match, SPS ion purity filter, MS3 automatic gain control, from EPHA1 (Fig. 2B). The trigger peptide was readily detected MS3 quant scan insertion, and target peptide closeout. Re- and its sequence confirmed in real time by peak matching, markably, the only required input from a user is a list of peptide whereas the precursor of its endogenous counterpart was un- targets, greatly simplifying the experimental setup. We first detectable in MS1 scans. However, Tomahto allowed extensive benchmarked the technology with three well-established human yet specific accumulation of signals (>800 ms) to confirm its cell lines by targeting 154 peptides corresponding to 77 kinases. presence by an Orbitrap MS2 spectrum which resulted in a Next, to enable targeted protein profiling of age-related meta- subsequent successful quantification event. Seventy-one of the 77 bolic and inflammatory changes, we created a large Tomahto targeted kinases were detected and quantified from a 2-h gra- assay (520 peptides corresponding to 260 proteins). The assay can dient of the unfractionated mixture (2 h total) (Fig. 2C). The be readily adopted by any TMT-based targeted analysis in murine average coefficient of variation for replicates from the three cell systems. We demonstrate that white adipose tissue (WAT) was by lines was 3.7 ± 2.9%
Recommended publications
  • Standard Flow Multiplexed Proteomics (Sflompro) – an Accessible and Cost-Effective Alternative to Nanolc Workflows
    bioRxiv preprint doi: https://doi.org/10.1101/2020.02.25.964379; this version posted February 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Standard Flow Multiplexed Proteomics (SFloMPro) – An Accessible and Cost-Effective Alternative to NanoLC Workflows Conor Jenkins1 and Ben Orsburn2* 1Hood College Department of Biology, Frederick, MD 2University of Virginia Medical School, Charlottesville, VA *To whom correspondence should be addressed; [email protected] Abstract Multiplexed proteomics using isobaric tagging allows for simultaneously comparing the proteomes of multiple samples. In this technique, digested peptides from each sample are labeled with a chemical tag prior to pooling sample for LC-MS/MS with nanoflow chromatography (NanoLC). The isobaric nature of the tag prevents deconvolution of samples until fragmentation liberates the isotopically labeled reporter ions. To ensure efficient peptide labeling, large concentrations of labeling reagents are included in the reagent kits to allow scientists to use high ratios of chemical label per peptide. The increasing speed and sensitivity of mass spectrometers has reduced the peptide concentration required for analysis, leading to most of the label or labeled sample to be discarded. In conjunction, improvements in the speed of sample loading, reliable pump pressure, and stable gradient construction of analytical flow HPLCs has continued to improve the sample delivery process to the mass spectrometer. In this study we describe a method for performing multiplexed proteomics without the use of NanoLC by using offline fractionation of labeled peptides followed by rapid “standard flow” HPLC gradient LC-MS/MS.
    [Show full text]
  • W Yang Et Al. Proteomic Approaches to the Analysis of Multiprotein
    832 DOI 10.1002/pmic.200700650 Proteomics 2008, 8, 832–851 REVIEW Proteomic approaches to the analysis of multiprotein signaling complexes Wei Yang1, 2, Hanno Steen3 and Michael R. Freeman1, 2 1 The Urological Diseases Research Center, Department of Urology, Children’s Hospital Boston, Boston, MA, USA 2 Departments of Surgery, Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA 3 Department of Pathology, Harvard Medical School and Children’s Hospital Boston, Boston, MA, USA Signal transduction is one of the most active fields in modern biomedical research. Increasing Received: July 9, 2007 evidence has shown that signaling proteins associate with each other in characteristic ways to Revised: October 23, 2007 form large signaling complexes. These diverse structures operate to boost signaling efficiency, Accepted: October 23, 2007 ensure specificity and increase sensitivity of the biochemical circuitry. Traditional methods of protein analysis are inadequate to fully characterize and understand these structures, which are intricate, contain many components and are highly dynamic. Instead, proteomics technologies are currently being applied to investigate the nature and composition of multimeric signaling complexes. This review presents commonly used and potential proteomic methods of analyzing diverse protein complexes along with a discussion and a brief evaluation of alternative ap- proaches. Challenges associated with proteomic analysis of signaling complexes are also dis- cussed. Keywords: Cross-linking / Mass spectrometry / Post-translational modification / Quantitative proteomics / Signaling complexes 1 Introduction 1980s, astonishingly rapid progress has been made in understanding the mechanisms of signal transduction. The modern field of cell signaling can be traced back to the Many old concepts have been abandoned or revised and mid-1950s, when it was discovered that reversible phospho- new ones have emerged.
    [Show full text]
  • Simultaneous Analysis of Drugs in Forensic Cases by Liquid Chromatography–High‑Resolution Orbitrap Mass Spectrometry
    Chromatographia (2020) 83:53–64 https://doi.org/10.1007/s10337-019-03814-w ORIGINAL Simultaneous Analysis of Drugs in Forensic Cases by Liquid Chromatography–High‑Resolution Orbitrap Mass Spectrometry Siti U. Mokhtar1 · Chadin Kulsing2,3,4 · Jalal T. Althakafy2,5 · Alex Kotsos6 · Olaf H. Drummer6,7 · Philip J. Marriott2 Received: 10 May 2019 / Revised: 23 September 2019 / Accepted: 15 October 2019 / Published online: 31 October 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract In the present study, liquid chromatography coupled to an Orbitrap mass spectrometer (HPLC–Q-Orbitrap MS) was used as an approach for identifcation and quantifcation of 113 drugs simultaneously in biological samples (whole blood/plasma/ serum). Samples were prepared using liquid–liquid extraction conducted using a trizma/isopropanol/butyl chloride bufer system. Reversed-phase separation employing a column (50 × 2.1 mm) packed with 2.6-μm C18 particles was then performed under gradient elution with mobile phase composition consisting of acetic acid and aqueous-acetonitrile mixtures with the acetonitrile content ranging from 10 to 100% v/v. Compounds were detected with high-resolution MS operated in full scan mode having a mass accuracy < 5 ppm. In this study, isobaric compounds (same nominal mass) were easily distinguished and identifed by their diferent retention times. Extracted ion chromatograms (XICs) with narrow mass tolerance window (5 ppm) 2 provided analysis with acceptable linearity (r ) ranged from 0.9530 to 1, low limits of detection (LOD) (0.02–39 ng mL−1) and low limit of quantifcation (LOQ) (0.1–130 ng mL−1). The developed method was applied to successfully analyse drugs in 26 blood samples from positive forensic cases and proved that this technique was able to detect analytes at trace level.
    [Show full text]
  • Mass Spectrometer Business Presentation Materials
    Mass Spectrometer Business Presentation Materials Hiroto Itoi, Corporate Officer Deputy General Manager of the Analytical & Measuring Instruments Division Shimadzu Corporation Jul. 3, 2018 Contents I. Introduction • Expansion of Mass Spectrometry ………………………………………………………………… p.3 • History of Shimadzu's Growth in Mass Spectrometry …………………………………………… p.5 II. Overview of Mass Spectrometers • Operating Principle, Demand Trends, and Vendors ……………………………………………… p.9 • Mass Spectra ………………………………………………………………………………………… p.10 • Configuration of Mass Spectrometers …………………………………………………………… p.11 • Ionization …………………………………………………………………………………………… p.12 • Mass Separation …………………………………………………………………………………… p.14 III. Shimadzu's Mass Spectrometer Business • Product Type ………………………………………………………………………………………… p.17 • Application Software ………………………………………………………………………………… p.18 • Growth Strategy for Mass Spectrometer Business ……………………………………………… p.19 • Expand/Improve Product Lines …………………………………………………………………… p.20 • Measures to Expand Application Fields …………………………………………………………… p.24 • Measures to Automate Data Processing Using AI ……………………………………………… p.25 IV. Summary • Future Direction ……………………………………………………………………………………… p.26 July 2018 Mass Spectrometer Business Presentation Materials 2 I. Introduction Expansion of Mass Spectrometry (1) Why Mass Spectrometry? Mass spectrometry is able to analyze a wide variety of compounds with high accuracy and high efficiency (simultaneous multicomponent analysis). It offers superior characteristics that are especially beneficial in the following fields,
    [Show full text]
  • Advantages of the LTQ Orbitrap for Protein Identification in Complex Digests
    Application Note: 386 Advantages of the LTQ Orbitrap for Protein Identification in Complex Digests Rosa Viner, Terry Zhang, Scott Peterman, and Vlad Zabrouskov, Thermo Fisher Scientific, San Jose, CA, USA Introduction Materials and Methods Key Words Comprehensive, accurate identification of proteins in Sample Preparation • LTQ Orbitrap complex sample mixtures is an important fundamental capability for any proteomics research laboratory. Technology Ten µL of E. coli cell lysate diluted 20-fold with 6 M • Peptide advancements in both hardware and software continue to guanidine HCl in 50 mM ammonium bicarbonate (pH 8.0) Sequencing expand and refine our view of any proteomic system in was reduced with 5 mM DTT, alkylated with 25 mM iodoacetic acid and digested at 37 °C for 16 hours. • Protein terms of protein identities and their post-translational Identification modifications (PTMs). It has been suggested that the very HPLC recent ability to routinely obtain accurate mass measurements Column: C18 Packed tip, 75 µm x 75 mm (QSTAR Elite); • PTMs (< 5 ppm RMS) on precursor and MS/MS fragment ions C18 column, 75 µm x 100 mm (LTQ Orbitrap XL) in proteomic experiments should lead to unprecedented Mobile phase A: 0.1% Formic Acid in Water with accuracy in the ability to identify and characterize proteins.1 2% Acetonitrile This paper compares alternative approaches to this Mobile phase B: 0.1% Formic Acid in Acetonitrile challenging application using two high performance Flow Rate: 300 nL/min platforms for proteomics: a QqTOF instrument (QSTAR® Gradient: 5% B to 35% B in 90 min Elite from Applied Biosystems) and a hybrid linear ion trap- orbitrap instrument (Thermo Scientific LTQ Orbitrap XL).
    [Show full text]
  • Orbitrap Fusion Tribrid Mass Spectrometer
    MASS SPECTROMETRY Product Specifications Thermo Scientific Orbitrap Fusion Tribrid Mass Spectrometer Unmatched analytical performance, revolutionary MS architecture The Thermo Scientific™ Orbitrap Fusion™ mass spectrometer combines the best of quadrupole, Orbitrap, and linear ion trap mass analysis in a revolutionary Thermo Scientific™ Tribrid™ architecture that delivers unprecedented depth of analysis. It enables life scientists working with even the most challenging samples—samples of low abundance, high complexity, or difficult-to-analyze chemical structure—to identify more compounds faster, quantify them more accurately, and elucidate molecular composition more thoroughly. • Tribrid architecture combines quadrupole, followed by ETD or EThCD for glycopeptide linear ion trap, and Orbitrap mass analyzers characterization or HCD followed by CID • Multiple fragmentation techniques—CID, for small-molecule structural analysis. HCD, and optional ETD and EThCD—are available at any stage of MSn, with The ultrahigh resolution of the Orbitrap mass subsequent mass analysis in either the ion analyzer increases certainty of analytical trap or Orbitrap mass analyzer results, enabling molecular-weight • Parallelization of MS and MSn acquisition determination for intact proteins and confident to maximize the amount of high-quality resolution of isobaric species. The unsurpassed data acquired scan rate and resolution of the system are • Next-generation ion sources and ion especially useful when dealing with complex optics increase system ease of operation and robustness and low-abundance samples in proteomics, • Innovative instrument control software metabolomics, glycomics, lipidomics, and makes setup easier, methods more similar applications. powerful, and operation more intuitive The intuitive user interface of the tune editor The Orbitrap Fusion Tribrid MS can perform and method editor makes instrument calibration a wide variety of analyses, from in-depth and method development easier.
    [Show full text]
  • High Resolution LC-MS for Screening and Quantitative
    High Resolution LC-MS for Screening and Quantitative Analysis of Antibiotics in Drinking Water Using an Orbitrap and Online Sample Preparation Jonathan Beck, Charles Yang, Dipankar Ghosh, Kristi Akervik; Thermo Fisher Scientific, San Jose, CA, USA Mass Spectrometry TABLE 2. List of antibiotics analyzed with their theoretical masses, LOQs and FIGURE 4. Spectral comparision of the MS2 spectrum of the antibiotic Overview Results reproducibility trimethoprim obtained at a concentration of 80 pg/mL. The library reference The Exactive™ Plus Orbitrap mass spectrometer was used in this experiment. The spectrum is the top spectrum, the lower spectrum is from the sample. The Purpose: To demonstrate online sample pre-concentration and extraction of water Exactive Plus was operated in alternating full scan and all ion fragmentation (AIF) Quantitation Compound Theoretical Mass (m/z) LOQ (pg/mL) % RSD at LOQ samples and analysis with high-resolution, accurate mass (HR/AM) detection, comparison was performed with ExactFinder software. mode with positive electrospray ionization. One scan of full scan MS data was Acquisition and quantitation was carried out using TraceFinder™ software. The Carbamazepine 332.14050 0.2 8.90 quantitation and confirmation. collected, and subsequently, all of the ions entering the MS were fragmented in the theoretical mass of each protonated antibiotic compound was used as the mass for Erythromycin 734.46852 40.0 14.30 Methods: Inject 1 mL water samples directly onto a trapping column. The trapped higher-energy C-trap dissociation (HCD) collision cell at a collision energy (CE) of quantitation in this analysis. Calibration lines were created for each compound, and fit Ketoprofen 255.10157 1.0 9.90 compounds are then backflushed onto an analytical HPLC column and detected using 30 eV with a 20% stepped CE, and analyzed in the Orbitrap mass analyzer.
    [Show full text]
  • A Novel High Resolution Accurate Mass Orbitrap-Based GC-MS
    ROUTINE OR RESEARCH GC-Orbitrap for Environmental Analysis a collaboration between ROUTINE OR RESEARCH GC-Orbitrap for Environmental Analysis Foreword A Novel High Resolution Accurate Mass Orbitrap-based GC-MS Platform for Routine Analysis of Short Chained Chlorinated Paraffins In this study, the performance of a novel bench top, high resolution accurate mass Orbitrap™-based GC-MS was tested for the analysis of SCCPs. System performance was tested using full-scan acquisition and simple instrumental setup. Pyrolysis-GC-Orbitrap MS - A Powerful Analytical Tool for Identification and Quantification of Microplastics in a Biological Matrix The purpose of the experiments described in this work was to assess the applicability of pyrolysis-gas chromatography-Orbitrap™ mass spectrometry for the qualitative and quantitative analysis of plastic polymers in complex biological matrices. Low Level Quantification of NDMA and Non-targeted Contaminants Screening in Drinking Water using GC Orbitrap Mass Spectrometry In this work, a sensitive and selective method for NDMA detection and quantification using high resolution accurate mass GC Orbitrap™ technology is described. Overcoming Analytical Challenges for Polybrominated Diphenyl Ethers (PBDEs) Analysis in Environmental Samples using Gas Chromatography – Orbitrap Mass Spectrometry The note demonstrates the quantitative performance of the Thermo Scientific™ Exactive™ GC Orbitrap™ GC-MS mass spectrometer for the analysis of polybrominated diphenyl ethers (PBDEs) in environmental samples. Versatility of GC-Orbitrap Mass Spectrometry for the Ultra-trace Detection of Persistent Organic Pollutants in Penguin Blood from Antarctica In this study, the performance of the Thermo Scientific™ Q Exactive™ GC Orbitrap™ mass spectrometer was evaluated for routine analysis of POPs within King penguin blood from Antarctica.
    [Show full text]
  • Peptide and Protein Quantification Using Itraq with Electron Transfer Dissociation
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Peptide and Protein Quantification Using iTRAQ with Electron Transfer Dissociation Doug Phanstiel,a Yi Zhang,c Jarrod A. Marto,c,d and Joshua J. a,bCoon a Department of Chemistry, University of Wisconsin, Madison, Wisconsin, USA b Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, USA c Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, Massachusetts, USA d Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA Electron transfer dissociation (ETD) has become increasingly used in proteomic analyses due to its complementarity to collision-activated dissociation (CAD) and its ability to sequence peptides with post-translation modifications (PTMs). It was previously unknown, however, whether ETD would be compatible with a commonly employed quantification technique, isobaric tags for relative and absolute quantification (iTRAQ), since the fragmentation mechanisms and pathways of ETD differ significantly from CAD. We demonstrate here that ETD of iTRAQ labeled peptides producesc- and z˙ -type fragment ions as well as reporter ions that are unique from those produced by CAD. Exact molecular formulas of product ions were determined by ETD fragmentation of iTRAQ-labeled synthetic peptides followed by high mass accuracy orbitrap mass analysis. These experiments revealed that ETD cleavage␣ of the N–C bond of the iTRAQ tag results in fragment ions that could be used for quantification. Synthetic peptide work demonstrates that these fragment ions provide up to three channels of quantification and that the quality is similar to that provided by beam-type CAD.
    [Show full text]
  • Proteomics in Forensic Analysis: Applications for Human Samples
    applied sciences Review Proteomics in Forensic Analysis: Applications for Human Samples Van-An Duong 1,† , Jong-Moon Park 1,† , Hee-Joung Lim 2,* and Hookeun Lee 1,* 1 College of Pharmacy, Gachon University, Incheon 21936, Korea; [email protected] (V.-A.D.); [email protected] (J.-M.P.) 2 Forensic Science Center for Odor Fingerprint Analysis, Police Science Institute, Korean National Police University, Asan 31539, Korea * Correspondence: [email protected] (H.-J.L.); [email protected] (H.L.); Tel.: +82-41-968-2893 (H.-J.L.); +82-32-820-4927 (H.L.) † These authors contributed equally. Abstract: Proteomics, the large-scale study of all proteins of an organism or system, is a powerful tool for studying biological systems. It can provide a holistic view of the physiological and biochemical states of given samples through identification and quantification of large numbers of peptides and proteins. In forensic science, proteomics can be used as a confirmatory and orthogonal technique for well-built genomic analyses. Proteomics is highly valuable in cases where nucleic acids are absent or degraded, such as hair and bone samples. It can be used to identify body fluids, ethnic group, gender, individual, and estimate post-mortem interval using bone, muscle, and decomposition fluid samples. Compared to genomic analysis, proteomics can provide a better global picture of a sample. It has been used in forensic science for a wide range of sample types and applications. In this review, we briefly introduce proteomic methods, including sample preparation techniques, data acquisition using liquid chromatography-tandem mass spectrometry, and data analysis using database search, Citation: Duong, V.-A.; Park, J.-M.; spectral library search, and de novo sequencing.
    [Show full text]
  • A Researcher's Guide to Mass Spectrometry‐Based Proteomics
    Proteomics 2016, 16, 2435–2443 DOI 10.1002/pmic.201600113 2435 TUTORIAL A researcher’s guide to mass spectrometry-based proteomics John P. Savaryn1,2∗, Timothy K. Toby3∗ and Neil L. Kelleher1,3,4 1 Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA 2 Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA 3 Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA 4 Department of Chemistry, Northwestern University, Evanston, Illinois, USA Mass spectrometry (MS) is widely recognized as a powerful analytical tool for molecular re- Received: February 24, 2016 search. MS is used by researchers around the globe to identify, quantify, and characterize Revised: May 18, 2016 biomolecules like proteins from any number of biological conditions or sample types. As Accepted: July 8, 2016 instrumentation has advanced, and with the coupling of liquid chromatography (LC) for high- throughput LC-MS/MS, a proteomics experiment measuring hundreds to thousands of pro- teins/protein groups is now commonplace. While expert practitioners who best understand the operation of LC-MS systems tend to have strong backgrounds in physics and engineering, consumers of proteomics data and technology are not exposed to the physio-chemical principles underlying the information they seek. Since articles and reviews tend not to focus on bridging this divide, our goal here is to span this gap and translate MS ion physics into language intuitive to the general reader active in basic or applied biomedical research. Here, we visually describe what happens to ions as they enter and move around inside a mass spectrometer. We describe basic MS principles, including electric current, ion optics, ion traps, quadrupole mass filters, and Orbitrap FT-analyzers.
    [Show full text]
  • Implementation of Electron-Transfer Dissociation on a Hybrid Linear Ion Trap-Orbitrap Mass Spectrometer
    Anal. Chem. 2007, 79, 3525-3534 Accelerated Articles Implementation of Electron-Transfer Dissociation on a Hybrid Linear Ion Trap-Orbitrap Mass Spectrometer Graeme C. McAlister,† Doug Phanstiel,† David M. Good,† W. Travis Berggren,‡ and Joshua J. Coon*,†,§ Departments of Chemistry and Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53706, and WiCell Research Institute, Madison, Wisconsin 53706 We describe the adaptation of a hybrid quadrupole linear electron-transfer dissociation (ETD) has generated considerable ion trap-orbitrap mass spectrometer to accommodate interest in the field of proteomic research.1-3 The utility of the electron-transfer ion/ion reactions (ETD) for peptide and technique to localize post-translational modifications (PTMs), its protein characterization. The method utilizes pulsed, dual relative indifference to amino acid composition or order, and electrospray ion sources and requires minimal instrument capacity to randomly dissociate large peptide and even whole modification. Switching between cation and reagent anion protein cations on a chromatographic time scale make it the injection schemes is automated and accomplished within perfect complement to conventional collision-activated methodol- a few hundred milliseconds. Ion/ion reactions are con- ogy (CAD).4-8 Still, because they are generated within the context ducted within the linear ion trap, after which the c- and of a radio frequency (rf) ion trap, ETD-type product ions are almost z-type product ions are passed to the orbitrap for high- exclusively mass analyzed with low m/z resolution and accuracy resolution m/z analysis. With this arrangement, mass (i.e., that typically achieved with ion trap devices). Doubtless ion accuracies are typically measured to within 2 ppm at a trap MS systems offer a splendid format for conducting ion/ion resolving power of 60 000.
    [Show full text]