Carboxylate-Assisted Ruthenium-Catalyzed C–H Bond Meta-Alkylations and Oxidative Annulations
Total Page:16
File Type:pdf, Size:1020Kb
Carboxylate-Assisted Ruthenium-Catalyzed C–H Bond meta-Alkylations and Oxidative Annulations Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades "Doctor rerum naturalium" der Georg-August-Universität Göttingen im Promotionsprogramm Catalysis for Sustainable Synthesis der Georg-August University School of Science (GAUSS) vorgelegt von Nora Hofmann aus Berlin Göttingen, 2013 Betreuungsausschuss Prof. Dr. L. Ackermann, Institut für Organische und Biomolekulare Chemie Prof. Dr. D. Stalke, Institut für Anorganische Chemie Prof. Dr. M. Buback, Institut für Physikalische Chemie Mitglieder der Prüfungskommission Referent: Prof. Dr. L. Ackermann, Institut für Organische und Biomolekulare Chemie Korreferent: Prof. Dr. D. Stalke, Institut für Anorganische Chemie Weitere Mitglieder der Prüfungskommission: Prof. Dr. M. Buback, Institut für Physikalische Chemie Prof. Dr. H. Laatsch, Institut für Organische und Biomolekulare Chemie Prof. Dr. U. Diederichsen, Institut für Organische und Biomolekulare Chemie Prof. Dr. C. Steinem, Institut für Organische und Biomolekulare Chemie Tag der mündlichen Prüfung: 07.03.2013 Für meine Eltern Der Mensch hat dreierlei Wege klug zu handeln: Erstens durch Nachdenken, das ist der edelste, zweitens durch Nachahmen, das ist der leichteste, und drittens durch Erfahrung, das ist der bitterste. Konfuzius -i- Contents 1 Introduction ................................................................................................................................ 1 1.1 Transition Metal-Catalyzed C–H Bond Functionalization ........................................................... 1 1.2 Site-Selectivity in C–C Bond Formations ..................................................................................... 8 1.3 Transition Metal-Catalyzed Alkylation Reactions ..................................................................... 13 1.4 Transition Metal-Catalyzed Oxidative Couplings ...................................................................... 25 2 Objectives ................................................................................................................................. 31 3 Results and Discussion – Ruthenium-Catalyzed Direct Alkylation Reactions ........................... 33 3.1 Ruthenium-Catalyzed Direct ortho-Alkylation ......................................................................... 33 3.1.1 Synthesis of Starting Materials ................................................................................................. 34 3.1.2 Direct ortho-Alkylation: Scope and Limitations ........................................................................ 37 3.1.2.1 Ruthenium-Catalyzed Direct Allylation .................................................................................... 47 3.1.3 Mechanistic Studies .................................................................................................................. 48 3.1.3.1 Intramolecular Competition Experiments ................................................................................ 49 3.1.3.2 Intermolecular Competition Experiments ................................................................................ 50 3.1.3.3 Experiments with Deuterium-Labeled Substrates .................................................................... 54 3.1.3.4 Experiments with Ruthenacycle 14a ........................................................................................ 54 3.1.3.5 Proposed Catalytic Cycle .......................................................................................................... 55 3.2 Ruthenium-Catalyzed Direct meta-Alkylation .......................................................................... 57 3.2.1 Preliminary Observations ......................................................................................................... 57 3.2.2 Optimization Studies for the Direct meta-Alkylation ............................................................... 58 3.2.3 Direct meta-Alkylation: Scope & Limitations............................................................................ 61 3.2.4 Experiments towards Enantioselective Direct meta-Alkylation ............................................... 76 3.2.4.1 Chiral Amino Acid-derived Additives ........................................................................................ 77 3.2.4.2 Phosphoric Acid Esters as Chiral Additives ............................................................................... 83 3.2.5 Direct Ruthenium-Catalyzed meta-Benzylation ....................................................................... 84 3.2.6 Ruthenium-Catalyzed Direct Norbornylation ........................................................................... 87 -ii- 3.2.7 Mechanistic Studies .................................................................................................................. 89 3.2.7.1 Competition Experiments ......................................................................................................... 90 3.2.7.2 Experiments with Isotopically Labeled Substrates ................................................................... 91 3.2.7.3 Well-Defined Ruthenium (II) Complexes as the Catalysts ........................................................ 93 3.2.7.4 Proposed Catalytic Cycle .......................................................................................................... 95 4 Ruthenium-Catalyzed Oxidative Transformations via C–H/N–H bond Cleavage ..................... 97 4.1 Ruthenium-Catalyzed Oxidative Annulations ........................................................................... 97 4.1.1 Synthesis of starting materials ................................................................................................. 98 4.1.2 Ruthenium-Catalyzed Synthesis of Isoquinolin-2-ones: Scope and Limitations ...................... 98 4.1.3 Ruthenium-Catalyzed Synthesis of 2-Pyridones ..................................................................... 101 4.1.4 Mechanistic Studies ................................................................................................................ 109 5 Summary and Outlook ............................................................................................................ 113 6 Experimental Section .............................................................................................................. 118 6.1 General Remarks .................................................................................................................... 118 6.2 General Procedures ................................................................................................................ 123 7 Experimental Procedures and Analytical Data ....................................................................... 126 7.1 The Analytical Data for Starting Materials ............................................................................. 126 7.2 The Analytical Data for the Products of the Ruthenium-Catalyzed ortho-Alkylation ............ 142 7.3 Analytical Data for the Ruthenium-Catalyzed meta-Alkylation ............................................. 167 7.4 The Analytical Data for the Ruthenium-Catalyzed Oxidative Annulations ............................. 223 7.5 Crystallographic Details .......................................................................................................... 250 7.6 Selected HMBC-Spectra .......................................................................................................... 269 8 List of Abbreviations ............................................................................................................... 300 9 Danksagung ............................................................................................................................ 302 10 Curriculum Vitae ..................................................................................................................... 304 Introduction 1 1 Introduction 1.1 Transition Metal-Catalyzed C–H Bond Functionalization Sustainability was declared as one of the major goals within synthetic chemistry.1 The design of environmentally benign synthetic methods is guided by the ‘12 Principles of Green Chemistry’.2 Besides safe and non-toxic processes, waste-prevention, as well as atom- and step-economy in combination with catalysis, are all essential requirements for sustainable organic synthesis. From this point of view, transition metal catalysis is an essential step into the desired direction. Thereby, the efficiency of carbon–carbon (C–C) or carbon–heteroatom (C–Het) bond formation can be considerably improved. For almost half a century, selective transition metal-catalyzed C–C bond formation reactions have attracted significant attention among various research groups around the world. Even in the field of industrial synthesis of pharmaceuticals, these transformations gain more and more attention over classical reaction routes.3 Certainly, one of the most famous transformations in this research area is the transition metal-catalyzed cross-coupling reaction.4 Today, traditional cross-coupling chemistry is a powerful synthetic tool in preparative organic chemistry. This is, for instance, illustrated by the fact that Heck, Negishi and Suzuki have been awarded the Nobel Prize of Chemistry in 2010 for the palladium-catalyzed formation of C–C single bonds via cross-coupling chemistry. The major features of these reactions are presented in Scheme 1.1. In general (for the cross-coupling),