Zorapterans, Angel Insects ZORAPTERA - Zorapterans, Angel Insects SYNAPOMORPHIES

Total Page:16

File Type:pdf, Size:1020Kb

Zorapterans, Angel Insects ZORAPTERA - Zorapterans, Angel Insects SYNAPOMORPHIES The Plecopteridan Orders Plecoptera Embioptera Zoraptera PLECOPTERA - Stoneflies PLECOPTERA - Stoneflies SYNAPOMORPHIES “Looped” gonads - anterior apices of left and right ovaries and testes fused in middle Tarsomeres reduced to 3 PLECOPTERA - Stoneflies SYNAPOMORPHIES Nymphs aquatic PLECOPTERA - Stoneflies Other characteristics: • Soft bodied, flattened, drab in color • Wings folded flat over dorsum; forewing long, narrow, hindwing shorter, with broad basal area which is folded fanwise at rest • Three tarsal segments with two tarsal claws Hind wing folded (when at rest) Hind wing expanded (as in flight) PLECOPTERA - Stoneflies Other characteristics: • Long, slender antennae • 2 cerci at tip of abdomen - generally long and slender • Nymphs very similar to adults, but with branched thoracic gills cercus PLECOPTERA - Stoneflies Other characteristics: • Adults mouthparts complete, but with reduced mandibles Antarctoperlaria - 4 families Southern Hemisphere = Gondwanaland Euholognatha - 6 families Arctoperlaria Northern Hemisphere Systellognatha - 6 families = Laurasia Habitat & Habits: • Incomplete metamorphosis (hemimetabolous) • Univoltine (as short as 3 months), some semivoltine (2-3 years) • 12-22 instars • Larvae of Antarctoperlaria and Euholognatha are primarily leaf detritivores (bacteria and fungi), those of Systellognatha primarily carnivorous • Larvae crawl out of water to emerge • Males emerge before females; males attract females by beating abdomen on substrate ==> drumming behavior; only virgin females answer; mating takes place on ground. Species specific signals. John Sandberg’s StoneflyHome http://www.ias.unt.edu/~StoneflyHome/Home/ Habitat & Habits: • Female carries eggs on tip of abdomen prior to oviposition • Oviposition: 1. run or fly over water and dip abdomen on surface releasing eggs 2. drop eggs from air 3. deposit along banks 4. crawl under water • Adults are short lived (days-month), do not feed (some species feed on pollen, buds, moss, etc.) Habitat & Habits: • Winter stoneflies - Euholognatha - emerge in winter and spring. Most cold season adapted of all insects. Insulate within ice or snow or under rocks and debris. • One species, Utacapnia tahoensis, spends its entire life history under water in lake Tahoe, at depths of 70 m. • Nymphs found in streams, among stones, gravel, detritus, etc., occasionally along shores of cold northern lakes. Rapid crawlers, but nymphs capable of swimming by lateral undulations of body Habitat & Habits: • Very sensitive to pollution, especially organic enrichment that reduces dissolved oxygen. • Young instars especially are found in hyporheic habitats. • Some species ventilate gills by doing "push ups" Collecting & Preserving: • Collect adults at lights or by sweeping, beating, and netting, also turn over shoreline rocks and debris. • Also collect in late winter and early spring. • Preserve adults and nymphs in 80% EtOH Diversity and distribution: • ca. 2,000 species worldwide • ca. 750 spp., 9 families North America EMBIOPTERA - Webspinners What is the correct name of the order? Embioptera Embiodea Embiidina from embios, Greek, for life, in life, long lived, or embodied with life EMBIOPTERA - Webspinners SYNAPOMORPHIES • Basal segment of fore tarsus greatly swollen, containing numerous silk glands. Silk used for spinning tubular galleries • Cerci short, one- or two- segmented • Asymmetrical male genitalia • Females always apterous • Male wings, when retained, with distinctive simplified venation; wing veins lie in blood sinuses that inflate EMBIOPTERA - Webspinners SYNAPOMORPHIES • Paraglossa with additional, dorsal flexor muscle • Head prognathous, with true gula (between submentum and foramen) • Ocelli absent Other characteristics: • Soft bodied; males superficially resemble small stoneflies • Longitudinal wing veins are not sclerotized and form hollow - “blood sinuses.” Hemolymph is pumped through to inflate wings, as during flight. When hemolymph is withdrawn, wings deflate. Wing can even flip backwards when males are running through galleries. Wings dehiscent. Habitat & Habits: • Incomplete metamorphosis (hemimetabolous) • Gregarious, live in colonies in soil or debris among mosses and lichens, usually at base of trees. • Spin silk to line galleries. Both adults and nymphs produce silk. • Silk from ectodermal glands in fore basitarsus, emitted from hollow setae. • Active, run rapidly, often backwards. • Feed on dead plant material. • Eggs laid in galleries, often covered with debris or chewed food; females brood their own eggs and attend nymphs, but this behavior is facultative. Collecting & Preserving: • Collect by searching out galleries. Males attracted to lights. • Preserve adults and nymphs in 80% EtOH, although males may be pinned. Diversity and distribution: • ca. 360 species in 9 families worldwide, mostly in the tropics • 11 spp., 3 families North America, from the south and southwest ZORAPTERA - zorapterans, angel insects ZORAPTERA - zorapterans, angel insects SYNAPOMORPHIES • Minute, < 3 mm • Wings (when present) with peculiar, but simple venation • Hind wings distinctly smaller than forewings • 2 tarsal segments • Stout spines on metafemur ZORAPTERA - zorapterans, angel insects SYNAPOMORPHIES • 9-segmented, moniliform antennae • Unsegmented cerci • Female postabdomen with subgenital plate on venter 8 • Only 6 Malpighian tubules • Only 2 abdominal ganglia Other characteristics: • Each species has 2 adult morphs: 1. Winged morph or “alate” with dark sclerotization, eyes, and ocelli 2. Wingless morph (neotenic), pale in color, lacking eyes and ocelli Habitat & Habits: • Incomplete metamorphosis (hemimetabolous) • Occur in gregarious colonies under slabs of wood buried in sawdust, under bark, in rotting logs, in termite nests; in northern part of range found only in sawdust piles which remain warm in winter. • Feed on mites, other small arthropods, nematodes; fungal spores and hyphae. • Habitat requirements similar to ants and termites => warmth, moisture, fungus infected rotting wood. • During most of season, only neotenic forms found, but as resources become limited, alates form and disperse to new sites; females mate prior to dispersal resulting in low numbers of alate males. • After forming new colony, wings are shed. Collecting & Preserving: • Search through habitat with aspirator or use Berlese/Tullgren funnel or Winkler/Moczarski eclector, preserve in 80% EtOH • Mount on slides Diversity and distribution: • Only 32 species in one genus, Zorotypus (Zorotypidae) around the world, except Australia • 2 species in continental U.S. 1. Zorotypus hubbardi, eastern deciduous forests from Florida to Pennsylvania, west to Iowa and Texas 2. Zorotypus synderi, Florida and Jamaica Evolution of the Plecopterida Plecoptera Embioptera Zoraptera The enigmatic position of Zoraptera Various workers over the last 90 years have considered it the living sister group to: • Isoptera • Isoptera + Blattodea • Paraneoptera • Embioptera • Holometabola • Dermaptera • Dermaptera + Dictyoptera • basal within Thysanoptera • basal within Psocoptera • unresolved among Orthoptera, Phasmatodea, & Embioptera Best current evidence places it within Polyneoptera as the sister order to Embioptera Plecoptera PLECOPTERIDA Embioptera Zoraptera Dermaptera Grylloblattodea Mantophasmatodea Phasmatodea POLYNEOPTERA ORTHOPTERIDA Orthoptera Blattodea DICTYOPTERA Isoptera Mantodea Plecoptera PLECOPTERIDA Embioptera • Ovipositor lost • Suppression of male styli Zoraptera • Anal lobe of hind wing lost • Cerci reduced to 1 or 2 segments • Wings dehiscent • Hind femora enlarged, with distinctive musculature • Communal behavior • Others (see Grimaldi & Engel).
Recommended publications
  • The Mitochondrial Genomes of Palaeopteran Insects and Insights
    www.nature.com/scientificreports OPEN The mitochondrial genomes of palaeopteran insects and insights into the early insect relationships Nan Song1*, Xinxin Li1, Xinming Yin1, Xinghao Li1, Jian Yin2 & Pengliang Pan2 Phylogenetic relationships of basal insects remain a matter of discussion. In particular, the relationships among Ephemeroptera, Odonata and Neoptera are the focus of debate. In this study, we used a next-generation sequencing approach to reconstruct new mitochondrial genomes (mitogenomes) from 18 species of basal insects, including six representatives of Ephemeroptera and 11 of Odonata, plus one species belonging to Zygentoma. We then compared the structures of the newly sequenced mitogenomes. A tRNA gene cluster of IMQM was found in three ephemeropteran species, which may serve as a potential synapomorphy for the family Heptageniidae. Combined with published insect mitogenome sequences, we constructed a data matrix with all 37 mitochondrial genes of 85 taxa, which had a sampling concentrating on the palaeopteran lineages. Phylogenetic analyses were performed based on various data coding schemes, using maximum likelihood and Bayesian inferences under diferent models of sequence evolution. Our results generally recovered Zygentoma as a monophyletic group, which formed a sister group to Pterygota. This confrmed the relatively primitive position of Zygentoma to Ephemeroptera, Odonata and Neoptera. Analyses using site-heterogeneous CAT-GTR model strongly supported the Palaeoptera clade, with the monophyletic Ephemeroptera being sister to the monophyletic Odonata. In addition, a sister group relationship between Palaeoptera and Neoptera was supported by the current mitogenomic data. Te acquisition of wings and of ability of fight contribute to the success of insects in the planet.
    [Show full text]
  • Aquatic Insects Are Dramatically Underrepresented in Genomic Research
    insects Communication Aquatic Insects Are Dramatically Underrepresented in Genomic Research Scott Hotaling 1,* , Joanna L. Kelley 1 and Paul B. Frandsen 2,3,* 1 School of Biological Sciences, Washington State University, Pullman, WA 99164, USA; [email protected] 2 Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84062, USA 3 Data Science Lab, Smithsonian Institution, Washington, DC 20002, USA * Correspondence: [email protected] (S.H.); [email protected] (P.B.F.); Tel.: +1-(828)-507-9950 (S.H.); +1-(801)-422-2283 (P.B.F.) Received: 20 August 2020; Accepted: 3 September 2020; Published: 5 September 2020 Simple Summary: The genome is the basic evolutionary unit underpinning life on Earth. Knowing its sequence, including the many thousands of genes coding for proteins in an organism, empowers scientific discovery for both the focal organism and related species. Aquatic insects represent 10% of all insect diversity, can be found on every continent except Antarctica, and are key components of freshwater ecosystems. However, aquatic insect genome biology lags dramatically behind that of terrestrial insects. If genomic effort was spread evenly, one aquatic insect genome would be sequenced for every ~9 terrestrial insect genomes. Instead, ~24 terrestrial insect genomes have been sequenced for every aquatic insect genome. A lack of aquatic genomes is limiting research progress in the field at both fundamental and applied scales. We argue that the limited availability of aquatic insect genomes is not due to practical limitations—small body sizes or overly complex genomes—but instead reflects a lack of research interest. We call for targeted efforts to expand the availability of aquatic insect genomic resources to empower future research.
    [Show full text]
  • A New Genus and Species of Asiocoleidae (Coleoptera) From
    ISRAEL JOURNAL OF ENTOMOLOGY, Vol. 50 (2), pp. 1–9 (21 July 2020) This contribution is published to honor Prof. Vladimir Chikatunov, a scientist, a colleague and a friend, on the occasion of his 80th birthday. The first finding of an asiocoleid beetle (Coleoptera: Asiocoleidae) in the Upper Permian Belmont Insect Beds, Australia, with descriptions of a new genus and species Aleksandr G. Ponomarenko1, Evgeny V. Yan1, Olesya D. Strelnikova1 & Robert G. Beattie2 1A.A. Borissiak Palaeontological Institute, Russian Academy of Sciences, Profsoyuznaya ul. 123, Moscow, 117997 Russia. E-mail: [email protected], [email protected], [email protected] 2The Australian Museum, 1 William Street, Sydney, New South Wales, 2010 Australia. E-mail: [email protected], [email protected] ABSTRACT A new genus and species of Archostematan beetles, Gondvanocoleus chikatunovi n. gen. & sp., is described from an isolated elytron from the Upper Permian Belmont locality in Australia. Gondvanocoleus n. gen. differs from other members of the family Asiocoleidae in having only one row of cells in the middle part of the elytral field 3 and in having unorganized cells not forming rows near the elytral apex. Further relationships of the new genus with other asiocoleids are discussed. The fossil record of the Asiocoleidae is briefly overviewed. KEYWORDS: Coleoptera, Archostemata, Asiocoleidae, beetles, new genus, new species, Permian, Lopingian, Australia, Gondwana, fossil record. РЕЗЮМЕ Новый род и вид жуков-архостемат, Gondvanocoleus chikatunovi n. gen. & sp., описаны по изолированному надкрылью из верхнепермского мес то­ нахождения Бельмонт в Австралии. Gondvanocoleus n. gen. отличается от остальных родов семейства Asiocoleidae присутствием только одного ряда ячей в средней части предшовного поля и не организованных в ряды ячей в апикальной части надкрылья.
    [Show full text]
  • Insecta: Phasmatodea) and Their Phylogeny
    insects Article Three Complete Mitochondrial Genomes of Orestes guangxiensis, Peruphasma schultei, and Phryganistria guangxiensis (Insecta: Phasmatodea) and Their Phylogeny Ke-Ke Xu 1, Qing-Ping Chen 1, Sam Pedro Galilee Ayivi 1 , Jia-Yin Guan 1, Kenneth B. Storey 2, Dan-Na Yu 1,3 and Jia-Yong Zhang 1,3,* 1 College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; [email protected] (K.-K.X.); [email protected] (Q.-P.C.); [email protected] (S.P.G.A.); [email protected] (J.-Y.G.); [email protected] (D.-N.Y.) 2 Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; [email protected] 3 Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China * Correspondence: [email protected] or [email protected] Simple Summary: Twenty-seven complete mitochondrial genomes of Phasmatodea have been published in the NCBI. To shed light on the intra-ordinal and inter-ordinal relationships among Phas- matodea, more mitochondrial genomes of stick insects are used to explore mitogenome structures and clarify the disputes regarding the phylogenetic relationships among Phasmatodea. We sequence and annotate the first acquired complete mitochondrial genome from the family Pseudophasmati- dae (Peruphasma schultei), the first reported mitochondrial genome from the genus Phryganistria Citation: Xu, K.-K.; Chen, Q.-P.; Ayivi, of Phasmatidae (P. guangxiensis), and the complete mitochondrial genome of Orestes guangxiensis S.P.G.; Guan, J.-Y.; Storey, K.B.; Yu, belonging to the family Heteropterygidae. We analyze the gene composition and the structure D.-N.; Zhang, J.-Y.
    [Show full text]
  • The Evolution of Zoraptera
    Systematic Entomology (2020), 45, 349–364 DOI: 10.1111/.12400 The evolution of Zoraptera YOKOMATSUMURA 1,2,ROLFG.BEUTEL 1*,JOSÉA.RAFAEL 3*, IZUMIYAO 4*,JOSENIRT.CÂMARA 5*,SHEILAP.LIMA 3 KAZUNORIYOSHIZAWA 4 1E G,I ü Z Evh,Fh Sh Uv J,J,G, 2D F Mh Bh,Z I,K Uv,K,G, 3I N P Az,M,Bz, 4S E,Sh A,Hkk Uv,S,J 5Uv F Pí, B J,Pí, Bz Abstract. Z h .B w x wh h kw, w h h DNA -v h. Th h hw h Z v h , h w . Th h h h v h . Th v h P. P h h h Z w h v, h h . Th h h P , v h k Gw L . Th x v f v h , hv, k hh v h.W v v h h v.O v / h , hk . Introduction B et al., 2014; Mh et al., 2014; Ch, 2018). I h h v (vw Z h h I Mh- Mh et al., 2014;K et al., 2016; B et al., 2017), G. Th wh h wh Z (G &E, 2005; h P - v (Yhzw, 2011; M et al., 2014; C:Yk M,E G,I ü Z Evh,Fh Sh Uv W &P, 2014; Mh et al., 2014, 2015; M J,E. 1, 07743 J,G &D F- et al., 2015; W et al., 2019). R,W et al. Mh Bh,Z I,K (2019) h h h - Uv, Bh G 1–9, 24118, K,G. P v v, E-: k..h@.;R G.
    [Show full text]
  • Late Carboniferous Paleoichnology Reveals the Oldest Full-Body Impression of a flying Insect
    Late Carboniferous paleoichnology reveals the oldest full-body impression of a flying insect Richard J. Knechta,1, Michael S. Engelb,c, and Jacob S. Bennera aDepartment of Geology, Tufts University, Medford, MA 02155; bDivision of Entomology (Paleoentomology), Natural History Museum, and cDepartment of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66049 Edited by May R. Berenbaum, University of Illinois at Urbana–Champaign, Urbana, IL, and approved March 8, 2011 (received for review October 23, 2010) Insects were the first animals to evolve powered flight and did earliest mayflies and their relatives that wing fossils do not. More so perhaps 90 million years before the first flight among verte- significantly, the FBI somewhat blurs the usual distinctions brates. However, the earliest fossil record of flying insect lineages between trace and body fossils and the traditional dichotomy (Pterygota) is poor, with scant indirect evidence from the Devonian between paleoichnological and paleontological systematics and and a nearly complete dearth of material from the Early Carbonif- taxonomy. erous. By the Late Carboniferous a diversity of flying lineages is known, mostly from isolated wings but without true insights into Geological Context the paleoethology of these taxa. Here, we report evidence of a full- The geological context of the fossil locality is described in SI body impression of a flying insect from the Late Carboniferous Geological Context. Wamsutta Formation of Massachusetts, representing the oldest trace fossil of Pterygota. Through ethological and morphological Systematic Paleoichnology analysis, the trace fossil provides evidence that its maker was The following discussion is a systematic description of the trace a flying insect and probably was representative of a stem-group fossil morphology and its relation to the morphology of the in- lineage of mayflies.
    [Show full text]
  • Life History and Production of Mayflies, Stoneflies, and Caddisflies (Ephemeroptera, Plecoptera, and Trichoptera) in a Spring-Fe
    Color profile: Generic CMYK printer profile Composite Default screen 1083 Life history and production of mayflies, stoneflies, and caddisflies (Ephemeroptera, Plecoptera, and Trichoptera) in a spring-fed stream in Prince Edward Island, Canada: evidence for population asynchrony in spring habitats? Michelle Dobrin and Donna J. Giberson Abstract: We examined the life history and production of the Ephemeroptera, Plecoptera, and Trichoptera (EPT) commu- nity along a 500-m stretch of a hydrologically stable cold springbrook in Prince Edward Island during 1997 and 1998. Six mayfly species (Ephemeroptera), 6 stonefly species (Plecoptera), and 11 caddisfly species (Trichoptera) were collected from benthic and emergence samples from five sites in Balsam Hollow Brook. Eleven species were abundant enough for life-history and production analysis: Baetis tricaudatus, Cinygmula subaequalis, Epeorus (Iron) fragilis,andEpeorus (Iron) pleuralis (Ephemeroptera), Paracapnia angulata, Sweltsa naica, Leuctra ferruginea, Amphinemura nigritta,and Nemoura trispinosa (Plecoptera), and Parapsyche apicalis and Rhyacophila brunnea (Trichoptera). Life-cycle timing of EPT taxa in Balsam Hollow Brook was generally similar to other literature reports, but several species showed extended emergence periods when compared with other studies, suggesting a reduction in synchronization of life-cycle timing, pos- sibly as a result of the thermal patterns in the stream. Total EPT secondary production (June 1997 to May 1998) was 2.74–2.80 g·m–2·year–1 dry mass (size-frequency method). Mayflies were dominant, with a production rate of 2.2 g·m–2·year–1 dry mass, followed by caddisflies at 0.41 g·m–2·year–1 dry mass, and stoneflies at 0.19 g·m–2·year–1 dry mass.
    [Show full text]
  • The Morphology of the Pterothorax of Ephemeroptera, Odonata
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Stuttgarter Beiträge Naturkunde Serie A [Biologie] Jahr/Year: 2008 Band/Volume: NS_1_A Autor(en)/Author(s): Willkommen Jana Artikel/Article: The morphology of the pterothorax of Ephemeroptera, Odonata and Plecoptera (Insecta) and the homology of wing base sclerites and flight muscles 203-300 Stuttgarter Beiträge zur Naturkunde A, Neue Serie 1: 203–300; Stuttgart, 30.IV.2008. 203 The morphology of the pterothorax of Ephemeroptera, Odonata and Plecoptera (Insecta) and the homology of wing base sclerites and flight muscles1 JANA WILLKOMMEN Abstract The ability to fly was the decisive factor for the evolutionary success of the most diverse group of insects, the Pterygota. Nevertheless, the ground plan of the functionally important wing base has not been sufficiently clari- fied. The aim of this study is to homologise the wing base sclerites of Ephemeroptera, usually regarded as sister group of the remaining Pterygota, with that of other basal pterygote lineages and to reconstruct the ground plan of the wing base of Pterygota. The pterothoracic musculature of representatives of the three basal lineages of Ptery- gota (Ephemeroptera, Odonata and Neoptera) is also described and discussed. Contrary to previous hypotheses, it is shown that most elements of the neopteran wing base are also present in Ephemeroptera and Odonata. The wing base in the ground plan of Pterygota is presumably composed of three axil- lary sclerites. The proximal median plate is probably also present in the ground plan of Pterygota. The first axillary is provided with two muscles.
    [Show full text]
  • Survey Manual
    ATLANTIC SALMON TRUST SMALL STREAMS CHARACTERISATION SYSTEM – Survey Manual Prepared for The Atlantic Salmon Trust, The River Annan Trust & District Salmon Fishery Board and the Strangford Lough & Lecale Partnership by Martin McGarrigle, Limnos Consultancy Ballynew, Castlebar, Co. Mayo, Ireland. Version: AST-SSCS-1.3 Date: July 2015 © Atlantic Salmon Trust, 2015 Atlantic Salmon Trust – Small Streams Characterisation System Survey Manual – AST-SSCS-1.2 Contents Background ................................................................................................................................ 3 Introduction ............................................................................................................................... 5 Health and Safety When Sampling Small Streams or Rivers ..................................................... 6 Biosecurity.................................................................................................................................. 7 The Survey .................................................................................................................................. 8 Field Equipment ..................................................................................................................... 8 Taking a Sample ..................................................................................................................... 9 1. Where Are You Sampling? ................................................................................................... 10 2. Describe
    [Show full text]
  • Zoraptera: Zorotypidae), with Discussion on Relationships of and Within the Order
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Revistes Catalanes amb Accés Obert ACTA GEOLOGICA HISPANICA, v. 35 (2000), nº 1,p. 149-164 AWinged Zorotypusin Miocene Amber from the Dominican Republic (Zoraptera: Zorotypidae), with Discussion on Relationships of and within the Order M.S. ENGEL(1) and D.A. GRIMALDI(2) (1) Division of Entomology, Natural History Museum and Biodiversity Research Center, and Department of Ecology and Evolutionary Biology, 1460 Jayhawk Boulevard, Snow Hall, University of Kansas, Lawrence, Kansas 66045-7523, U.S.A. E-mail: [email protected] (2) Department of Entomology, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024-5192, U.S.A. E-mail: [email protected] ABSTRACT A new fossil zorapteran is described and figured in Miocene Dominican amber. The specimen is the first winged Zo ro t y p u s fo s s i l , and is described as Zo r otypus goe l e t i n.sp. The species is distinguished from the only other fossil zorapteran, Z. palaeus also in Do- minican amber, as well as an extant species to which it appears most similar, Z. snyd e r i . The new fossil is significant in the possession of segmented cerci, a plesiomorphic character unique for the order. The classification of the order is briefly summarized and genera pro- posed by Kuk a l ov á - P eck and Peck (1993) and Chao and Chen (2000) are newl y synonymized under Zo ro t y p u s .
    [Show full text]
  • Biometric Studies of Some Stoneflies and a Mayfly (Plecoptera and Ephemeroptera)
    Hydrobiologia 299 : 169-178, 1995 . 169 © 1995 Kluwer Academic Publishers . Printed in Belgium . Biometric studies of some stoneflies and a mayfly (Plecoptera and Ephemeroptera) Angelika Beer-Stiller & Peter Zwick* Limnologische Fluf3station des Max-Planck-Instituts fur Limnologie, PO .B. 260, D-36105 Schlitz, Germany (*author for correspondence) Received 4 August 1993 ; in revised form 1 February 1994 ; accepted 2 March 1994 Key words: Plecoptera, Ephemeroptera, exuvial losses, metamorphosis, sexual size differences, reproductive investment Abstract Aspects of the nymphal/adult developmental change were investigated in biometric studies of several species of Plecoptera : Nemouridae near Schlitz, Hesse, Germany. Preliminary information on the mayfly, Baetis vernus Curtis, is also provided . Nemourid nymphs pass through 3 wing bearing stages before reaching adulthood . Instars can be identified by their characteristic shapes, as expressed by the wing length/head width (WL/HW) ratio . Size does not allow instar discrimination, mainly due to sexual size differences . HW is ca 10% larger in last instar female than in male nemourid nymphs ; exuviae shed at the moult to adult represent about 14% of nymphal ash free dry weight (AFDW) . Biomass lost with exuviae during the many larval moults should be accounted for in estimates of production . Freshly emerged nemourid females are about 6% larger and 30% heavier than males . The HW/AFDW relationship is the same in both sexes . Through terrestrial feeding during adult life, males double their weight on average. Mature females are up to three times heavier than freshly emerged ones . They invest about 30% of their final AFDW in reproduction . Shape of last instar nymphal Baetis was expressed as the ratio wing length/mesonotum length .
    [Show full text]
  • Embioptera (PDF)
    Embioptera EMBIOPTERA Webspinners / Embiids The name Embioptera, derived from the Greek "embio" meaning lively and "ptera" meaning wings refers to the fluttery movement of wings that was observed in the first male Embioptera described. Classification Life History & Ecology Distribution Physical Features Economic Importance Major Families Fact File Hot Links Life History & Ecology: The order Embioptera (webspinners or embiids) is another group within the Orthopteroid complex that probably appeared early in the Carboniferous period. Many insect taxonomists believe webspinners represent another evolutionary "dead end" that diverged about the same time as Plecoptera. Determining phylogenetic relationships for this group is unusually difficult because the Embioptera have a number of adaptations not found in any other insects. The tarsi of the front legs, for example, are enlarged and contain glands that produce silk. No other group of insects, fossil or modern, have silk-producing glands in http://www.cals.ncsu.edu/course/ent425/compendium/webspi~1.html (1 of 5) [10/24/2007 12:08:15 PM] Embioptera the legs. The silk is used to construct elaborate nests and tunnels under leaves or bark. Webspinners live gregariously within these silken nests, feeding on grass, dead leaves, moss, lichens, or bark. Nymphs and adults are similar in appearance. Embiids rarely leave their silken tunnels; a colony grows by expanding its tunnel system to new food resources. Well-developed muscles in the hind legs allow these insects to run backward through their tunnels as easily as they run forward. Only adult males have wings. Front and hind wings are similar in shape and unusually flexible; they fold over the head when the insect runs backward through its tunnels.
    [Show full text]