Grassroots Dec 2006

Total Page:16

File Type:pdf, Size:1020Kb

Grassroots Dec 2006 Grassroots: Newsletter of the Grassland Society of Southern Africa ▪ December 2006 ▪ Vol 6 ▪ No. 4 The highly invasive Glyceria maxima is threatening the Maloti- Drakensberg wetlands Donovan Kotze E-mail: [email protected] lyceria maxima (also known G as great mann grass and Poa aquatica ), occurs in several Maloti-Drakensberg wetlands. Al- though this species has high erosion control and forage production values, it is extremely invasive. Unless measures are taken soon to curb this species, it is likely to considerably increase in extent and abundance, which will be devastating for biodi- versity. This species should not be in- tentionally spread or promoted Description Synonyms Glyceria maxima is a perennial rhizo- matous grass with unbranched erect Glyceria aquatica (L.) Wahlb, Glyc- stems up to 1.0-2.5 m. Leaf sheaths eria spectabilis Mert. & Koch, Molinia have prominent midribs and visible maxima Hartman, Panicularia transverse veins and leaf blades are aquatica (L.) Kuntze, Poa aquatica L. shallowly grooved with prominent (see). midribs. Leaf margins have short, stiff hairs which are rough to the Common names touch. Leaves are bright green but Glycérie aquatique (French), great sometimes tinged with red. mann grass, reed mannagrass, reed Spikelets are 6-12 mm long and the meadow grass, reed sweet grass inflorescence is a panicle which can (English), Wasser schwaden be opened or contracted and the (German). inflorescence branches have short, stiff hairs similar to those of the leaf margins. 22 Grassroots: Newsletter of the Grassland Society of Southern Africa ▪ December 2006 ▪ Vol 6 ▪ No. 4 Invasive potential of the plant. Based on the sites ex- amined in the Maloti-Drakensberg, Glyceria maxima is known to be one impediments to flow appear to be the of the most invasive grasses world- most important contributing factor. wide. It is a native of Eurasia, and has become a threat to wetland bio- Invasion pathways diversity where introduced, including North America, New Zealand and The seeds appear to be distributed Australia. Its dense monospecific primarily by water, less so by wind, stands are capable of rapidly out- and may also be distributed on the competing native wetland vegetation. feet of birds, on livestock as well as In addition, through its expanding in mud on machinery. Locally the root mat, Glyceria maxima is particu- plant spreads through vegetative larly well adapted to growing out into expansion, and it is also conceivable areas of open water, whether in that pieces of floating mat broken off dams, lakes or in flowing streams by high flows in a river could be and rivers. Small streams and those transported great distances down- that are not very fast flowing can be- stream and then become estab- come completely overgrown. In this lished. manner, the plant works as an eco- system engineer, with the ability to Potential impacts convert sections of fast-flowing aero- Not only are the direct impacts on bic streams into partially anaerobic biodiversity considerable, but the swamps. It is of particular threat to grass also has the potential to result native vegetation in permanently in impacts to the agriculture and saturated areas as well as invading sport fishing industries. Although it aquatic environments, which is to the provides forage, mortality of valuable detriment of aquatic macro- dairy cattle in the Underberg area invertebrates and other fauna. have been directly linked to prussic Glyceria maxima is strongly fa- acid poisoning from G. maxima . voured by human impacts on wet- Fish would be negatively impacted land and aquatic systems. Newly upon by G. maxima through its im- created shallow standing water re- pact on the habitat and food supply sulting from impediments to flow, of the fish. e.g. from road crossings, weirs and dams, provides ideal habitat. Physi- Reasons for its introduction cal disturbance of wetland vegetation also creates “space” into which the The plant is introduced both as a grass can more easily invade. In- forage for livestock and as an orna- creased nutrients (e.g. through mental plant. In South Africa it leaching from fertilized fields) further would appear to have been intro- favours the rapid vegetative spread duced as a forage species, as will be explained in the following section. 23 Grassroots: Newsletter of the Grassland Society of Southern Africa ▪ December 2006 ▪ Vol 6 ▪ No. 4 However, in contrast to the situation ago. Some farmers have had it on in New Zealand, the planting of this their farm for over 60 years. It was species was confined to a relatively not found in any of the wetlands re- localized area, and no record could cently surveyed in the western por- be found of it having been introduced tions of the Mzimvubu, namely the through government channels, i.e. Mooi River and Wildebeest sub- through Department of Agriculture. catchments nor has it been located in any catchments north of the Mko- Extent in the Maloti-Drakensberg mazi. While it is likely to be present planning area in more sites than During the course of the eight already a Maloti-Drakensberg identified, its distri- Project survey of 104 Not only are the di- bution appears to be wetlands in the rect impacts on restricted to a radius of approximately 150 Maloti-Drakensberg biodiversity consid- planning area, Glyc- km. eria maxima was dis- erable, but the Presently it appears to be confined covered in one of the grass also has the wetlands in the Mko- mainly to the general mazi catchment near potential to result area extending from where it was intro- Mpendle, and was in impacts to the particularly abundant duced over 60 years around the margin of agriculture and ago as a wetland pasture for livestock. a dam in the wetland. sport fishing indus- Based on further in- If it had been more vestigation in the field tries. widespread than this and contacting farm- then it was bound to ers telephonically, it have been discov- was located at sev- ered sooner or later. eral other sites, one site also in the It is a conspicuous Mkomazi catchment on the Luhane plant in several respects that is not River, three in the Underberg/ easily confused with any existing Himeville/Pevensey area in the Mko- species present in the Maloti- mazi and Mzimkulu catchments and Drakensberg planning area. three sites in the Kokstad/Franklin It flowers widely and is morpho- area in the eastern portion of the logically quite distinct from any other Mzimvubu catchment. Although grass species. Vegetatively it some- further investigation is required, it what resembles Echinochloa spp. appears that it was introduced as a but its inflorescence is distinctly dif- planted pasture grass by a farmer in ferent from species in this genus. the Underberg area over 70 years It is tall-growing and forms large, dense stands. 24 Grassroots: Newsletter of the Grassland Society of Southern Africa ▪ December 2006 ▪ Vol 6 ▪ No. 4 A floating mat that has ex- tended several metres into the permanent wa- ters of the river Invasion of seasonally wet banks of the river Invasion of a river situation Its commonly occurs as a float- cently. Furthermore, Milton (2004) ing mat growing out into open water does not list it as one of the invasive areas, with this unusual ability being grasses present in South Africa. It is unmatched by any other grass in the argued that had this species been Maloti-Drakensberg area. present more widely, it would have Furthermore, the KwaZulu-Natal been recognized as something differ- portion of the Maloti-Drakensberg, ent from known hydric grass species, where all the known sites are lo- and it would eventually have been cated, has been botanically relatively collected and identified. But no such intensively sampled. Yet despite this records existed until its recent dis- and the conspicuous nature of the covery. species, no records of its occurrence in South Africa existed until very re- 25 Grassroots: Newsletter of the Grassland Society of Southern Africa ▪ December 2006 ▪ Vol 6 ▪ No. 4 Its potential to invade in the future that a well planned and swiftly imple- mented strategy be developed to It would appear that much of the dis- eradicate this species. A major tribution of G. maxima can be ex- awareness campaign targeted par- plained through the passing on of ticularly at farmers is also required. vegetative material amongst farmers, but evidence suggests strongly that Control methods dispersal has also taken place natu- rally from some of the sites of intro- Roundup Biactive or Weedmaster duction. Based on what is reported 360 are listed as the permitted herbi- in the literature, further natural dis- cide to use against G. maxima in persal would appear likely. Given New Zealand, and the recommended that G. maxima is already present in technique is Foliar spray without sur- three major catchments, its potential factants. Dense revegetation with to expand is considerable. local native species is also sug- Based on the evidence at the gested to limit re-invasion. invaded sites as well as that reported in the literature, it is not being melo- dramatic to say that across a large part of the low to mid altitudes of the M a l o t i - Drakensberg, Glyc- eria maxima has the potential to radically change the habitat of both palustrine (marsh) wetlands as well as stream/river sys- tems, particularly mid to low order streams that are slow flowing. Thus, it is considered a very high priority Invasion of a palustrine (marsh) situation 26 .
Recommended publications
  • FLORA from FĂRĂGĂU AREA (MUREŞ COUNTY) AS POTENTIAL SOURCE of MEDICINAL PLANTS Silvia OROIAN1*, Mihaela SĂMĂRGHIŢAN2
    ISSN: 2601 – 6141, ISSN-L: 2601 – 6141 Acta Biologica Marisiensis 2018, 1(1): 60-70 ORIGINAL PAPER FLORA FROM FĂRĂGĂU AREA (MUREŞ COUNTY) AS POTENTIAL SOURCE OF MEDICINAL PLANTS Silvia OROIAN1*, Mihaela SĂMĂRGHIŢAN2 1Department of Pharmaceutical Botany, University of Medicine and Pharmacy of Tîrgu Mureş, Romania 2Mureş County Museum, Department of Natural Sciences, Tîrgu Mureş, Romania *Correspondence: Silvia OROIAN [email protected] Received: 2 July 2018; Accepted: 9 July 2018; Published: 15 July 2018 Abstract The aim of this study was to identify a potential source of medicinal plant from Transylvanian Plain. Also, the paper provides information about the hayfields floral richness, a great scientific value for Romania and Europe. The study of the flora was carried out in several stages: 2005-2008, 2013, 2017-2018. In the studied area, 397 taxa were identified, distributed in 82 families with therapeutic potential, represented by 164 medical taxa, 37 of them being in the European Pharmacopoeia 8.5. The study reveals that most plants contain: volatile oils (13.41%), tannins (12.19%), flavonoids (9.75%), mucilages (8.53%) etc. This plants can be used in the treatment of various human disorders: disorders of the digestive system, respiratory system, skin disorders, muscular and skeletal systems, genitourinary system, in gynaecological disorders, cardiovascular, and central nervous sistem disorders. In the study plants protected by law at European and national level were identified: Echium maculatum, Cephalaria radiata, Crambe tataria, Narcissus poeticus ssp. radiiflorus, Salvia nutans, Iris aphylla, Orchis morio, Orchis tridentata, Adonis vernalis, Dictamnus albus, Hammarbya paludosa etc. Keywords: Fărăgău, medicinal plants, human disease, Mureş County 1.
    [Show full text]
  • State of Nature in the Peak District What We Know About the Key Habitats and Species of the Peak District
    Nature Peak District State of Nature in the Peak District What we know about the key habitats and species of the Peak District Penny Anderson 2016 On behalf of the Local Nature Partnership Contents 1.1 The background .............................................................................................................................. 4 1.2 The need for a State of Nature Report in the Peak District ............................................................ 6 1.3 Data used ........................................................................................................................................ 6 1.4 The knowledge gaps ....................................................................................................................... 7 1.5 Background to nature in the Peak District....................................................................................... 8 1.6 Habitats in the Peak District .......................................................................................................... 12 1.7 Outline of the report ...................................................................................................................... 12 2 Moorlands .............................................................................................................................................. 14 2.1 Key points ..................................................................................................................................... 14 2.2 Nature and value ..........................................................................................................................
    [Show full text]
  • Grasses of Oklahoma
    osu p.llaotten Technical Bulletin No. 3 October, 1938 OKLABOJIA AGRICULTURAL AND MECHANICAL COLLEGE AGRICULTURAL ExPERIMENT STATION Lippert S. Ellis, Acting Director GRASSES OF OKLAHOMA By B. I. FEATHERLY Professor of Botany and Plant Pathology Stillwater, Oklahoma Technical Bulletin No. 3 October, 1938 OKLAHOMA AGRICULTURAL AND MECHANICAL COLLEGE AGRICULTURAL EXPERIMENT STATION Lippert S. Ellis. Acting Director GRASSES OF OI(LAHO~lA By H. I. FEATHERLY Professor of Botany and Plant Pathology Stillwater, Oklahoma ERRATA Page 6, No. 6: For "Leptochlea" read "Leptochloa." Page 10, No. 3 (second line): For "E. colona" read "E. colonum." Page 11, in "Distribution" of Phalaris caroliniana (Walt.): For "Ste-.vens" read "Stevens." Page 23, No. 2b: J:o"'or "Elymus canadensis ar. brachystachys" read "Elymus canadensis var. brachystachys." Page 28: For "Cynodon Dactylon ... etc." read "Cynodon dactylon (I,.) Pers. (Capriola dactylon Kuntz.) Bermuda G1·ass." Page 41, No. 13: For "Aristida divaricata Humb. and Bonnl." read "Aristida divaricata Humb. and Bonpl." Page 65, No. 3: For "Triodia clongata" read "Triodia elongata." Page 67. No. 11 (thud linel: For "ekels" read "keels." Page 71, No. 9 and Fig 81: For "Eragrostis sessilispicata" read "EragTostis sessilispica." Page 84, first line at top of page: For Melica nitens (Nutt.)'' re~d '?tE:cH~·a nH:ens CSc-;:itn.) !-Iutt." Page 106, No. 12, third line of description: For "within white margins" read "with white margins." Page 117. No. 2: l',or "Erianthus ... etc." read "Erianthus alopecuroides (L.) Ell. (E. divaricatus (L.) Hitchc.) Silver Plume-grass." Fage 123, No. 8: For "(A. torreanus Steud.)" read "A. tor­ rey:Jnus Steuc1.)" PREFACE The grass family needs no introduction.
    [Show full text]
  • Latvijas Universitātes Zinātniskie Raksti Acta Universitatis Latviensis
    ISSN 1407-2157 Latvijas Universitātes Zinātniskie Raksti Acta Universitatis Latviensis 613 LATVIJAS PURVU VEĢETĀCIJAS KLASIFIKĀCIJA UN DINAMIKA Latvijas Universitāte Latvijas purvu veģetācijas klasifikācija un dinamika Zinātniskie raksti 613. sējums Rīga 1998 -) / Latvijas punu veģetācijas klasifikācija un dinamika: Zinātniskie raksti/Redkolēģija: V.Kreile, M.Laiviņš, A.Namatēva. Rīga: LU, 1998. 92 Ipp. Rakstu krājumā apkopoti pēdējo gadu Latvijas purvu un ezeru krastu veģetācijas pētījumu rezultāti. Analizēti Teicu purva veidošanās apstākļi pēc putekšņu diagrammām. Publicētas purvu augu sabiedrību sintaksonomijas shēmas un sinoptiskās tabulas. Pētījumu rezultātus var izmantot bioloģijas un ģeogrāfijas studenti un citi interesenti. Redakcijas kolēģija: Vija Kreile, Māris Laiviņš, Anita Namatēva © Teicu valsts rezervāts, 1998 PRIEKŠVĀRDS 1997.gada 20.-21.oktobri Teicu rezervātā notika seminārs "Purvu veģetācijas klasifikācija, kartēšana un aizsardzība Latvijā", kurā piedalījās Latvijas Universitātes Bioloģijas un Ģeogrāfijas un Zemes zinātņu fakultāšu, Valsts Ģeoloģijas dienesta, Latvijas Valsts Mežzinātnes institūta "Silava" un Teicu valsts rezervāta speciālisti. Latvijas lielākajā purvu masīvā Teicos notika ekspedīcijas semināra dalībnieku iepazīstināšanai ar sūnu purvu ciņu un lāmu, pārejas un zāļu purvu, ezeru aizaugšanas joslu un palienes pļavu veģetāciju 2 maršrutos: Stiebriņi Kurtavas ezers Šūmāna ezers un Silagals Tolkajas ezers Siksala Islienas ezers. Seminārā tika nolasīti 8 ziņojumi par purvu veģetācijas un floras pētījumiem dažādos Latvijas reģionos, demonstrētas kartes un sintaksonomijas shēmas. Šajā rakstu krājumā publicēti semināra materiāli. Semināra norisi un rakstu krājuma sagatavošanu atbalstīja LR Vides aizsardzības fonds un Teicu valsts rezervāts. SATURS M.Laiviņš. Latvijas ziedaugu un paparžaugu sabiedrību augstākie sintaksoni 7 M.Pakalne. Latvijas purvu veģetācijas raksturojums 23 A. Lācis, L.Kalniņa. Purvu uzbūve un attīstība Teicu valsts rezervātā 39 B.Bambe. Purvu veģetācijas dinamika Teicu rezervātā 56 S.Jermacāne.
    [Show full text]
  • Biodiversity: the UK Overseas Territories. Peterborough, Joint Nature Conservation Committee
    Biodiversity: the UK Overseas Territories Compiled by S. Oldfield Edited by D. Procter and L.V. Fleming ISBN: 1 86107 502 2 © Copyright Joint Nature Conservation Committee 1999 Illustrations and layout by Barry Larking Cover design Tracey Weeks Printed by CLE Citation. Procter, D., & Fleming, L.V., eds. 1999. Biodiversity: the UK Overseas Territories. Peterborough, Joint Nature Conservation Committee. Disclaimer: reference to legislation and convention texts in this document are correct to the best of our knowledge but must not be taken to infer definitive legal obligation. Cover photographs Front cover: Top right: Southern rockhopper penguin Eudyptes chrysocome chrysocome (Richard White/JNCC). The world’s largest concentrations of southern rockhopper penguin are found on the Falkland Islands. Centre left: Down Rope, Pitcairn Island, South Pacific (Deborah Procter/JNCC). The introduced rat population of Pitcairn Island has successfully been eradicated in a programme funded by the UK Government. Centre right: Male Anegada rock iguana Cyclura pinguis (Glen Gerber/FFI). The Anegada rock iguana has been the subject of a successful breeding and re-introduction programme funded by FCO and FFI in collaboration with the National Parks Trust of the British Virgin Islands. Back cover: Black-browed albatross Diomedea melanophris (Richard White/JNCC). Of the global breeding population of black-browed albatross, 80 % is found on the Falkland Islands and 10% on South Georgia. Background image on front and back cover: Shoal of fish (Charles Sheppard/Warwick
    [Show full text]
  • Managing Molinia? Proceedings of a 3-Day Conference 14-16 September 2015 in Huddersfield, West Yorkshire, UK
    Managing Molinia? Proceedings of a 3-day conference 14-16 September 2015 in Huddersfield, West Yorkshire, UK. Edited by Roger Meade National Trust Molinia Conference organising committee at Marsden Moor Estate office. L-R: Alan Stopher, Craig Best, Roger Meade, Nick Pollett and Andrew Underdown. With assistance from Rob Henry, Alyssa Young and Frances DeGiorgio (not in picture). Cover image © Alan Stopher View towards Pule Hill north-eastwards from the route of the old turnpike. Redbrook reservoir is in the middle distance. This is one of the original canal reservoirs which is maintained by Canal & River Trust with the water supplying Yorkshire Water’s customers. A sailing club also uses the amenity. Molinia tussocks dominate the foreground. 2 ‘Managing Molinia’ Conference, 14-16 September 2015, Huddersfield, UK; National Trust, ed. R Meade To cut, or not to cut. A very straightforward question, but so much Foreword more succinct than the answer. This is the dilemma often faced by managers of land for nature conservation where the easiest solution is to just follow what others are doing. As a former habitat specialist for a statutory nature conservation body, I am familiar with the pressures to provide clear guidance and one I remember well is the popular belief that any trees on lowland raised bogs should be cut down and prevented from regrowth. While there is a case for adopting this principle in many situations there are those in which it is not necessary, and is even undesirable from other perspectives such as the trees’ contribution to the landscape. It means that the conservation land manager must not only be aware of the bare bones of the received wisdom, but also of the caveats that make it possible for him or her to arrive at a reasoned judgement for their specific situation.
    [Show full text]
  • Habitat Indicator Species
    1 Handout 6 – Habitat Indicator Species Habitat Indicator Species The species lists below are laid out by habitats and help you to find out which habitats you are surveying – you will see that some species occur in several different habitats. Key: * Plants that are especially good indicators of that specific habitat Plants found in Norfolk’s woodland Common Name Scientific Name Alder Buckthorn Frangula alnus Aspen Populus tremula Barren Strawberry Potentilla sterilis Bird Cherry Prunus padus Black Bryony Tamus communis Bush Vetch Vicia sepium Climbing Corydalis Ceratocapnos claviculata Common Cow-wheat Melampyrum pratense Early dog violet Viola reichenbachiana Early Purple Orchid Orchis mascula * English bluebell Hyacinthoides non-scripta* * Field Maple Acer campestre* Giant Fescue Festuca gigantea * Goldilocks buttercup Ranunculus auricomus* Great Wood-rush Luzula sylvatica Greater Burnet-saxifrage Pimpinella major Greater Butterfly-orchid Platanthera chlorantha Guelder Rose Viburnum opulus Hairy Wood-rush Luzula pilosa Hairy-brome Bromopsis ramosa Hard Fern Blechnum spicant Hard Shield-fern Polystichum aculeatum * Hart's-tongue Phyllitis scolopendrium* Holly Ilex aquifolium * Hornbeam Carpinus betulus* * Midland Hawthorn Crataegus laevigata* Moschatel Adoxa moschatellina Narrow Buckler-fern Dryopteris carthusiana Opposite-leaved Golden-saxifrage Chrysosplenium oppositifolium * Pendulous Sedge Carex Pendula* Pignut Conopodium majus Polypody (all species) Polypodium vulgare (sensulato) * Primrose Primula vulgaris* 2 Handout 6 – Habitat
    [Show full text]
  • Appendix C. Plant Species Observed at the Yolo Grasslands Regional Park (2009-2010)
    Appendix C. Plant Species Observed at the Yolo Grasslands Regional Park (2009-2010) Plant Species Observed at the Yolo Grassland Regional Park (2009-2010) Wetland Growth Indicator Scientific Name Common Name Habitat Occurrence Habit Status Family Achyrachaena mollis Blow wives AG, VP, VS AH FAC* Asteraceae Aegilops cylinricia* Jointed goatgrass AG AG NL Poaceae Aegilops triuncialis* Barbed goat grass AG AG NL Poaceae Aesculus californica California buckeye D T NL Hippocastanaceae Aira caryophyllea * [Aspris c.] Silver hairgrass AG AG NL Poaceae Alchemilla arvensis Lady's mantle AG AH NL Rosaceae Alopecurus saccatus Pacific foxtail VP, SW AG OBL Poaceae Amaranthus albus * Pigweed amaranth AG, D AH FACU Amaranthaceae Amsinckia menziesii var. intermedia [A. i.] Rancher's fire AG AH NL Boraginaceae Amsinckia menziesii var. menziesii Common fiddleneck AG AH NL Boraginaceae Amsinckia sp. Fiddleneck AG, D AH NL Boraginaceae Anagallis arvensis * Scarlet pimpernel SW, D, SS AH FAC Primulaceae Anthemis cotula * Mayweed AG AH FACU Asteraceae Anthoxanthum odoratum ssp. odoratum * Sweet vernal grass AG PG FACU Poaceae Aphanes occidentalis [Alchemilla occidentalis] Dew-cup AG, F AH NL Rosaceae Asclepias fascicularis Narrow-leaved milkweed AG PH FAC Ascepiadaceae Atriplex sp. Saltbush VP, SW AH ? Chenopodiaceae Avena barbata * Slender wild oat AG AG NL Poaceae Avena fatua * [A. f. var. glabrata, A. f. var. vilis] Wild oat AG AG NL Poaceae Brassica nigra * Black mustard AG, D AH NL Brassicaceae Brassica rapa field mustard AG, D AH NL Brassicaceae Briza minor * Little quakinggrass AG, SW, SS, VP AG FACW Poaceae Brodiaea californica California brodiaea AG PH NL Amaryllidaceae Brodiaea coronaria ssp. coronaria [B.
    [Show full text]
  • Wildflower Catalogue Native Wildflower & Grasses Welcome
    Wildflower Catalogue Native Wildflower & Grasses Welcome LandscapeGreen Farm Seeds is a seed Seeds merchant registered with Food and We have established our reputation and continueGrass to expand Seeds on Environment Research Agency (Fera). We supply certified seed the basis of; according to the Department for Environment and Rural Affairs • Sound sensible advice (DEFRA) regulations and the UK Seed Certification Scheme, • Quality products fit for purposeBS Land DEFRA number 7193. BS Bird Strike • Customer service second to none Reclamation (with ryegrass) Wildflower seeds, wild grass seeds and some other environmental Our products are tried and tested using• Land our reclamation own Research mixture suitable and for seeds are not subject to certification; to minimise therefore bird populations we adopt a Development Centre and continual product assessment. Call us • Produces an unfavourable habitat • Perennial ryegrass will establish quickly and combination of quality assurance procedures to ensure known for sales advice. act as a nurse crop whilst the broad range of provenance, authenticity, purity and for germination.nestling birds due Green to upright Farm and stiff stalks species provides excellent tolerance to Seeds supports and subscribes• toHighly the peFlorarsist ent,Locale frost Code and d rofought • Next Day Delivery to UK Mainland eonnvi rohundredsnmental str eofss itemses • Contains: perennial ryegrass (tetraploid), Conduct. resistant • Delivery throughout the UK and Europe, from 100g to 1000kg+ slender red fescue, sheeps and hard fescue, Research and Development – Tried• Contains: and Tested tall fescue, Mixtures cocks foot, • Supplying general public, landscapers, farmers, local All Green Farm Seeds Wildflower timandot hyGrass and cre mixturessted dog shavetail been authorities, contractors, golf and sportswhite clo clubsver and birdsfoot trefoil trialled to evaluate and improve our mixtures to ensure that what • Professional quality, certified grass seed and UK native we supply performs exactly the way we want it to.
    [Show full text]
  • The Vascular Flora of Rarău Massif (Eastern Carpathians, Romania). Note Ii
    Memoirs of the Scientific Sections of the Romanian Academy Tome XXXVI, 2013 BIOLOGY THE VASCULAR FLORA OF RARĂU MASSIF (EASTERN CARPATHIANS, ROMANIA). NOTE II ADRIAN OPREA1 and CULIŢĂ SÎRBU2 1 “Anastasie Fătu” Botanical Garden, Str. Dumbrava Roşie, nr. 7-9, 700522–Iaşi, Romania 2 University of Agricultural Sciences and Veterinary Medicine Iaşi, Faculty of Agriculture, Str. Mihail Sadoveanu, nr. 3, 700490–Iaşi, Romania Corresponding author: [email protected] This second part of the paper about the vascular flora of Rarău Massif listed approximately half of the whole number of the species registered by the authors in their field trips or already included in literature on the same area. Other taxa have been added to the initial list of plants, so that, the total number of taxa registered by the authors in Rarău Massif amount to 1443 taxa (1133 species and 310 subspecies, varieties and forms). There was signaled out the alien taxa on the surveyed area (18 species) and those dubious presence of some taxa for the same area (17 species). Also, there were listed all the vascular plants, protected by various laws or regulations, both internal or international, existing in Rarău (i.e. 189 taxa). Finally, there has been assessed the degree of wild flora conservation, using several indicators introduced in literature by Nowak, as they are: conservation indicator (C), threat conservation indicator) (CK), sozophytisation indicator (W), and conservation effectiveness indicator (E). Key words: Vascular flora, Rarău Massif, Romania, conservation indicators. 1. INTRODUCTION A comprehensive analysis of Rarău flora, in terms of plant diversity, taxonomic structure, biological, ecological and phytogeographic characteristics, as well as in terms of the richness in endemics, relict or threatened plant species was published in our previous note (see Oprea & Sîrbu 2012).
    [Show full text]
  • Some Effects of Grazing on the Vegetation of Streamside Lawns in the New Forest
    Proc. Hampsh. Field Club Archaeol. Soc. 41, 1985, 45-50. SOME EFFECTS OF GRAZING ON THE VEGETATION OF STREAMSIDE LAWNS IN THE NEW FOREST By PJ EDWARDS ABSTRACT cially in low lying areas close to the stream. Small grassy mounds are abundant on many These mounds are about the size of large mole streamside lawns in the New Forest. The vegetation hills (30-70 cm in diameter and 10-20 cm and soil of these mounds is described and evidence high) and in some places are closely packed is presented to show that they have developed from and very abundant, eg Balmer Lawn SU tussocks of purple moor grass (Molinia caerulea) in305035) , Alum Green (SU 278074), response to increased grazing. Warwickslade (SU 272066). Their origin has been something of a mystery; the aim of this INTRODUCTION article is to present evidence that they have Among the most diverse and interesting developed from tussocks of purple moor grass plant communities in the New Forest are those (Molinia caerulea), a common plant of wet places of low lying ground beside streams and rivers. which often grows in pure stands. The Many of these areas are flooded in winter when significance of their formation- in relation to swollen streams burst their banks. As the changes in grazing pressure is discussed. waters spread out over the flood plain they deposit a layer of fine silt which is rich in plant nutrients and adds to the fertility of the heavy METHODS alluvial soils. Many factors affect the kind of The main study area was the broad flood vegetation which develops on flood plains, plain of Oberwater at Markway Bridge (SU including the nutrient quality of the flood 255038) which has a rich flora and exhibits a waters, speed of drainage, and the intensity of wide range of wetland plant communities.
    [Show full text]
  • Pondnet RECORDING FORM (PAGE 1 of 5)
    WETLAND PLANTS PondNet RECORDING FORM (PAGE 1 of 5) Your Name Date Pond name (if known) Square: 4 fig grid reference Pond: 8 fig grid ref e.g. SP1243 e.g. SP 1235 4325 Determiner name (optional) Voucher material (optional) METHOD (complete one survey form per pond) Aim: To assess pond quality and conservation value, by recording wetland plants. How: Identify the outer boundary of the pond. This is the ‘line’ marking the pond’s highest yearly water levels (usually in early spring). It will probably not be the current water level of the pond, but should be evident from wetland vegetation like rushes at the pond’s outer edge, or other clues such as water-line marks on tree trunks or stones. Within the outer boundary, search all the dry and shallow areas of the pond that are accessible. Survey deeper areas with a net or grapnel hook. Record wetland plants found by crossing through the names on this sheet. You don’t need to record terrestrial species. For each species record its approximate abundance as a percentage of the pond’s surface area. Where few plants are present, record as ‘<1%’. If you are not completely confident in your species identification put ’?’ by the species name. If you are really unsure put ‘??’. Enter the results online: www.freshwaterhabitats.org.uk/projects/waternet/ or send your results to Freshwater Habitats Trust. Aquatic plants (submerged-leaved species) Nitella hyalina (Many-branched Stonewort) Floating-leaved species Apium inundatum (Lesser Marshwort) Nitella mucronata (Pointed Stonewort) Azolla filiculoides (Water Fern) Aponogeton distachyos (Cape-pondweed) Nitella opaca (Dark Stonewort) Hydrocharis morsus-ranae (Frogbit) Cabomba caroliniana (Fanwort) Nitella spanioclema (Few-branched Stonewort) Hydrocotyle ranunculoides (Floating Pennywort) Callitriche sp.
    [Show full text]