Schmelzmikrostruktur in Den Inzisiven Alt· Und Neuwel Tlicher Hystricognather Nagetiere

Total Page:16

File Type:pdf, Size:1020Kb

Schmelzmikrostruktur in Den Inzisiven Alt· Und Neuwel Tlicher Hystricognather Nagetiere SCHMELZMIKROSTRUKTUR IN DEN INZISIVEN ALT· UND NEUWEL TLICHER HYSTRICOGNATHER NAGETIERE von Thomas MARTIN* INHALT Seite Kurzfassung, Abstract, Resume ............. , ................................................ , 5 Einleitung. 7 Technisches ................ , .................................................. , . 8 Untersuchungsmethoden .......................................... ,..................... 8 Anschliffe fur Auflicht- und Raster~Elektronenmikroskopie ............... , . .. 9 Spezielle Vorbereitung für die Raster-Elekronenmikroskopie .... , ................ , . 10 Auflichtmikroskopie . 11 Schmelzbeschreibung und Messungen ..................................................... 11 Abkürzungen und spezielle Begriffe .......................................... ,............ 12 Problemstellung. 15 Bemerkungen zur Systematik ................... , . , ........... , .................... , . 18 Hystricomorphie und Hystricognathie ...... , ............. , .. '. .. .. .. .. .. 19 Gliederung der untersuchten Nager ......... , . 22 Zahnschmelz ................. , ...................... ,., ... ,.............................. 22 Untersuchungsebenen für den Zahnschmelz. , ................ " .............. , ........... ' . 22 Bauelemente des Zahnschmelzes ..... , ............................. , , . 23 Prismen ........... ,., ............ , ............................................ , .. 23 Interprismatische Matrix (!PM) ....................................................... 23 Schmelztypen in den Nagerinzisiven .. , ................... , . " ......................... , . 24 Hunter-Schreger-Bänder (HSB) ........................ " .......... , ............... , . 24 Pauciseriale HSB ' , , ........ , ....... , .................................. , .. , . 25 Neudefmition pauciserialer HSB .................... , . 25 Multiseriale HSB . 26 Neudefinition multiserialer HSB ...... , ............. " ... , ...... , .......... , . 26 Uniseriale HSB . 28 Radialschmelz . 29 Radialschmelz im pauciserialen Schmelzmuster ...................................... 29 Radialschmelz im multiserialen Schmelzmuster ,..................................... 30 "Innerer radialer Schmelz" ..... , ............... ' ..... , .................. ,........ 30 Prismenlose externe Lage (PLEX) .............. , ....... , ............. , . 31 * Institut für Paläontologie der Freien Universität, Malteserstraße 74-100, D-l000 Berlin 46. Schlüssel-Wörter: Schmelzmikrostruktur, pauciserial, multiserial, Hunter-Schreger-Bänder, Inzisiven, Rodentia, Hystricognathi, Caviomorpha, Phiomorpha, Ctenodactyloidea, Ischyromyoidea, Südamerika, Afrika, Deseadense, Paläobiogeographie. Key-words: Enamel microstructure, pauciserial, multiserial, Hunter-Schreger bands, Incisors, Rodentia, Hystricognathi, Caviomorpha, Phiomorpha, Ctenodactyloidea, Ischyromyoidea, South America, Africa, Deseadan, Paleobiogeography. Mots-eles: Microstructure de l'email, pauciserie, multiserie, Bandes d'Hunter-Schreger, Incisives, Rodentia, Hystricognathi, Caviomorpha, Phiomorpha, Ctenodactyloidea, Ischyromyoidea, Amerique du Sud, Afrique, Deseadien, Paleobiogeographie. Palaeovertebrata, Montpellier, Mem. extra.: 1-168, 181 fig., 12 pI. (Re~u le 13 Novembre 1991, accepte le 16 Janvier 1992, publie le 15 Decembre 1992) Schmelzmuster in den Nagerinzisiven , , , ,. , . , , , ...... , ............................. , .. , .. , , 31 Neudefinition des pauciserialen Schmelzmusters ..... , ............................. , .. ,.. 31 Merkmalskatalog für das pauciseriale Schmelzmuster nach der neuen Defmition , .. " ..... , . 32 Neudefmition des multiserialen Schmelzmusters ........... , .. , ... , ..... , .... , ... , .... , . 32 Merkmalskatalog für das multiseriale Schmelzmuster nach der neuen Deflllition ." ... ,.,....... 33 Der Inzisivenschmelz der untersuchten Sciurognatbi ..... , , , ...... , , .. , , . , , . 34 Paramyidae M1LLER & GIDLEY 1918 . 34 Acritoporamys KORTH 1984 ........................ ' . .. .. 36 Franimys WOOD 1962 .............................................................. 36 Leptotolm" MAlTHEW 1910 ......................................................... 37 Reithroparamys MATI1-IEW 1920 ........ , .. , .......................... " ..... , .. , ... , 37 Thisbemys WOOD 1959 ............................................................. 38 Sciuravidae M1LLER & GIDLEY 1918 . .. .. .. .. 39 Knightomys GAZIN 1961 ............................................................ 39 '?Sciuravidae Prolapsus WOOD 1973 ........ , ...... , ............... , ....... ,........... 40 Ischyromyidae ALSTON 1876 . 40 Ischyromys LEIDY 1856 ............................................................. 40 Cylindrodontidae MILLER & GIDLEY 1918 .... ' . .. .. .. 41 DawsonomysGAZIN 1961 .... , ... , ... , ....... , ..... " ....... , .......... ,............ 41 Mysops LEIDY 1871 ................................................................ 41 Ardynomys MATTHEW & GRA>'IGER 1925 .............................................. 43 Protoptychidae WOOD 1937 ............ ' . .. .. .. 43 Protoptychus SCOlT 1895 ........................................................... 43 Cocomyidae DAWSON, LI & Q11984 .......... ..... .... ... .. ..... .... ...... ...... .. ..... 44 Cocomys DAWSON, LI & QI 1984 ..................................................... 44 Chapattimyidae HUSSAIN, BRUIJN & LE1NDERS 1978 ......................................... 45 Chapattimyidae gen, et sp. indet. 45 cf. Birbalomys SAHNI & KHARE 1973 . .. .. .. .. .. .. 46 Baluchimyinae FLYNN, JACOBS & CHEEMA 1986 gen. et sp. indel. .. .. .. .. 46 Ctenodactylidae ZITTEL 1893 . 46 Leptotataromys BOHLIN 1946 ........................................................ 47 Sayimys WOOD 1937 ............................................................... 49 Sardomys BRUJJN & RÜMKE 1974 ....................................... ,............ 49 Pellegrinia GREGORIO 1887 ......................................................... 50 Ctenodoctylus GRAY 1830 ........................................................... 50 Felovia LATASTE 1886 ............................................................. 51 Massoutiera LATASTE 1885 ......................................................... 51 Pedetidae OWEN 1847.. .. .. .. .. .. .. .. 52 Pedetes ILLIGER 1811 .............................................................. 53 Der Inzisivenschmelz der untersuchten Hystricognathi ...................................... ,..... 53 Tsaganomyidae MATmEW & GRANGER 1923 ............................................... 53 Tsagallomys MA TTHEW & GRAN GER 1923 ............................................. 54 Cyc/omylus MAlTHEW & GRANGER 1923 .............................................. 55 BathyergidaeWATERHOUSE 1841......................................................... 55 Bathyergus ILLIGER 1811 ........................................................... 56 Cryptomys GRAY 1864 ............................................................. 58 Georychus ILLIGER 1811 ............................................................ 59 Heliophobius PETERS 1846 .......................................................... 61 Heterocephalus RÜPPELL 1842 ....................................................... 63 Hystricidae BURNElT 1830 . .. .. .. ... .. .. .. .... .. .... .. .... .. .... .. .. .. .. .. 63 Hystrix LINNAEUS 1758 ............................................................ 64 Athen/rus F. CUVIER 1829 .......................................................... 65 Phiomyidae WOOD 1955 ................................................................ 66 Gaudeamus WOOD 1968 ............................................................ 67 Metaphiomys OSBORN 1908 ......................................................... 67 Phiomys OSBORN 1908 ............................................................. 68 Paraphiomys ANDREWS 1914 ........................................................ 68 Diamantomyidae SCHAUB 1958.. .. .. .. .. 70 Diamantomys STROMER 1922 ........................................................ 70 Thryonomyidae POCOCK 1922. .. .. ... .. .. .. .. 70 ThryoMmys FITZINGER 1867 ........................................................ 70 2 Petromuridae TULLBERG 1899 .......................................................... 71 Petr01J1US A. S~TH 1831 ...... , ........................ , ........................... 71 Erethizontidae THOMAS 1897 ........................................................... 73 Steiromys AMEGHINO 1887 ......................................................... 73 Coendou LACEPEDE 1799 .......................................................... 74 Erethizon F. CUVIER 1822 .......................................................... 74 Chinchillidae BENNEIT 1833 .................................................. " ........ 77 Scotamys LOOMIS 1914 ............................................................ 77 Perimys A..\lEGHINO 1887 .......................................................... 77 Lagostomopsis KRAGLIEVICH 1926 ....................................... '" ........ 78 Chinchilla BENNEIT 1829 .......................................................... 79 Lagidium MEYEN 1833 ............................................................ 80 Eocardiidae AMEGHINO 1891 ........................................................... 80 Eocardia AMEGHINO 1887 ......................................................... 80 Dinomyidae ALSTON 1876 .............................................................. 81 Eumegamys KRAGLIEVICH 1926 ...................................................
Recommended publications
  • Updated Aragonian Biostratigraphy: Small Mammal Distribution and Its Implications for the Miocene European Chronology
    Geologica Acta, Vol.10, Nº 2, June 2012, 159-179 DOI: 10.1344/105.000001710 Available online at www.geologica-acta.com Updated Aragonian biostratigraphy: Small Mammal distribution and its implications for the Miocene European Chronology 1 2 3 4 3 1 A.J. VAN DER MEULEN I. GARCÍA-PAREDES M.A. ÁLVAREZ-SIERRA L.W. VAN DEN HOEK OSTENDE K. HORDIJK 2 2 A. OLIVER P. PELÁEZ-CAMPOMANES * 1 Faculty of Earth Sciences, Utrecht University Budapestlaan 4, 3584 CD Utrecht, The Netherlands. Van der Meulen E-mail: [email protected] Hordijk E-mail: [email protected] 2 Departamento de Paleobiología, Museo Nacional de Ciencias Naturales MNCN-CSIC C/ José Gutiérrez Abascal 2, 28006 Madrid, Spain. García-Paredes E-mail: [email protected] Oliver E-mail: [email protected] Peláez-Campomanes E-mail: [email protected] 3 Netherlands Centre for Biodiversity-Naturalis Darwinweg 2, 2333 CR Leiden, The Netherlands. Van den Hoek Ostende E-mail: [email protected] 4 Departamento de Paleontología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid. IGEO-CSIC C/ José Antonio Novais 2, 28040 Madrid, Spain. Álvarez-Sierra E-mail: [email protected] * Corresponding author ABSTRACT This paper contains formal definitions of the Early to Middle Aragonian (Late Early–Middle Miocene) small- mammal biozones from the Aragonian type area in North Central Spain. The stratigraphical schemes of two of the best studied areas for the Lower and Middle Miocene, the Aragonian type area in Spain and the Upper Freshwater Molasse from the North Alpine Foreland Basin in Switzerland, have been compared.
    [Show full text]
  • Paleoenvironment of the Late Eocene Chadronian-Age Whitehead Creek Locality (Northwestern Nebraska)
    St. Cloud State University theRepository at St. Cloud State Culminating Projects in Cultural Resource Management Department of Anthropology 10-2019 Paleoenvironment of the Late Eocene Chadronian-Age Whitehead Creek Locality (Northwestern Nebraska) Samantha Mills Follow this and additional works at: https://repository.stcloudstate.edu/crm_etds Part of the Archaeological Anthropology Commons Recommended Citation Mills, Samantha, "Paleoenvironment of the Late Eocene Chadronian-Age Whitehead Creek Locality (Northwestern Nebraska)" (2019). Culminating Projects in Cultural Resource Management. 28. https://repository.stcloudstate.edu/crm_etds/28 This Thesis is brought to you for free and open access by the Department of Anthropology at theRepository at St. Cloud State. It has been accepted for inclusion in Culminating Projects in Cultural Resource Management by an authorized administrator of theRepository at St. Cloud State. For more information, please contact [email protected]. Paleoenvironment of the Late Eocene Chadronian-Age Whitehead Creek Locality (Northwestern Nebraska) by Samantha M. Mills A Thesis Submitted to the Graduate Faculty of St. Cloud State University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Functional Morphology October, 2019 Thesis Committee: Matthew Tornow, Chairperson Mark Muñiz Bill Cook Tafline Arbor 2 Abstract Toward the end of the Middle Eocene (40-37mya), the environment started to decline on a global scale. It was becoming more arid, the tropical forests were disappearing from the northern latitudes, and there was an increase in seasonality. Research of the Chadronian (37- 33.7mya) in the Great Plains region of North America has documented the persistence of several mammalian taxa (e.g. primates) that are extinct in other parts of North America.
    [Show full text]
  • B.Sc. II YEAR CHORDATA
    B.Sc. II YEAR CHORDATA CHORDATA 16SCCZO3 Dr. R. JENNI & Dr. R. DHANAPAL DEPARTMENT OF ZOOLOGY M. R. GOVT. ARTS COLLEGE MANNARGUDI CONTENTS CHORDATA COURSE CODE: 16SCCZO3 Block and Unit title Block I (Primitive chordates) 1 Origin of chordates: Introduction and charterers of chordates. Classification of chordates up to order level. 2 Hemichordates: General characters and classification up to order level. Study of Balanoglossus and its affinities. 3 Urochordata: General characters and classification up to order level. Study of Herdmania and its affinities. 4 Cephalochordates: General characters and classification up to order level. Study of Branchiostoma (Amphioxus) and its affinities. 5 Cyclostomata (Agnatha) General characters and classification up to order level. Study of Petromyzon and its affinities. Block II (Lower chordates) 6 Fishes: General characters and classification up to order level. Types of scales and fins of fishes, Scoliodon as type study, migration and parental care in fishes. 7 Amphibians: General characters and classification up to order level, Rana tigrina as type study, parental care, neoteny and paedogenesis. 8 Reptilia: General characters and classification up to order level, extinct reptiles. Uromastix as type study. Identification of poisonous and non-poisonous snakes and biting mechanism of snakes. 9 Aves: General characters and classification up to order level. Study of Columba (Pigeon) and Characters of Archaeopteryx. Flight adaptations & bird migration. 10 Mammalia: General characters and classification up
    [Show full text]
  • Problems of Classification As Applied to the Rodentia
    263 PROBLEMS OF CLASSIFICATION AS APPLIED TO THE RODENTIA by Albert E. WOOD* ABSTRACT A classification should be both usable and useful, not too complex either in the amount of splitting or in the number of hierarchies involved, and not so simple as to give a false assurance of knowledge of relationships. Classifi­ cations are only possible because we do not have complete knowledge of the evolution of the organisms concerned, because gaps in the record are necessary to allow the separation of the various taxa. Rodent classification is compli­ cated by the large number of organisms involved and by the great amount of parallelism that has taken place In the evolution of any and all features. If several independent features are characteristic of a certain taxon, should an effort be made to define the group on the basis of all the features, or should only one be selected as the determi­ nant ? Unless the evolution of the several features was closely linked, the former solution will sooner or later lead to insurmountable problems. A classification is a formal arrangement that expresses the author's opinion of the relationships of the organisms concerned. It should be an attempt to approximate the actual genetic relationships existing, or that formerly existed, among the pertinent organisms. During the course of organizing a classification of the mammalian Order Rodentia, I encountered a number of problems of a general nature, some of which are discussed below. Usually, there are extensive gaps in our knowledge of organisms, particularly of fossil ones. These are useful in classification, because we use the gaps to delimit the various units being classified.
    [Show full text]
  • (Early Miocene) in Lago Posadas, Southwestern Patagonia, Argentina
    Andean Geology 46 (2): 383-420. May, 2019 Andean Geology doi: 10.5027/andgeoV46n2-3128 www.andeangeology.cl Sedimentology and fossil vertebrates of the Santa Cruz Formation (early Miocene) in Lago Posadas, southwestern Patagonia, Argentina *José I. Cuitiño1, Sergio F. Vizcaíno2, 3, M. Susana Bargo2, 4, Inés Aramendía5 1 Instituto Patagónico de Geología y Paleontología (IPGP, CCT CONICET-CENPAT). Boulevard Brown 2915, Puerto Madryn (9120), Chubut, Argentina. [email protected] 2 División Paleontología de Vertebrados, Museo de La Plata, Unidades de Investigación Anexo Museo, 60 y 122, La Plata (1900), Argentina. [email protected]; [email protected] 3 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Argentina. 4 Comisión de Investigaciones Científicas (CIC), calle 526 entre 10 y 11, 1900 La Plata-Buenos Aires, Argentina. 5 Instituto Patagónico para el Estudio de Ecosistemas Continentales (IPEEC, CCT CONICET-CENPAT). Boulevard Brown 2915, Puerto Madryn (9120), Chubut, Argentina. [email protected] * Corresponding author: [email protected] ABSTRACT. Lago Posadas is located at the foot of the Southern Patagonian Andes, in southwestern Argentina, where the early Miocene Santa Cruz Formation (SCF) shows thick and laterally continuous exposures. This region has been scarcely explored for fossil vertebrates since the first efforts by J.B. Hatcher in 1898-99. In this contribution, we performed sedimentologic and paleontological studies in order to reconstruct depositional
    [Show full text]
  • Novitatesamerican MUSEUM PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET NEW YORK, N.Y
    NovitatesAMERICAN MUSEUM PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET NEW YORK, N.Y. 10024 U.S.A. NUMBER 2626 JUNE 30, 1977 JOHN H. WAHLERT Cranial Foramina and Relationships of Eutypomys (Rodentia, Eutypomyidae) AMERICAN MUSEUM Novitates PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 2626, pp. 1-8, figs. 1-3, table 1 June 30, 1977 Cranial Foramina and Relationships of Eutypomys (Rodentia, Eutypomyidae) JOHN H. WAHLERT1 ABSTRACT Derived characters of the sphenopalatine, lies had common ancestry in a stem species from interorbital, and dorsal palatine foramina are which no other rodent groups are descended. The shared by the Eutypomyidae and Castoridae. two families may be included in a monophyletic These support the hypothesis that the two fami- superfamily, Castoroidea. INTRODUCTION Eutypomys is an extinct sciuromorphous gave more characters shared with castorids; he, rodent known in North America from strata that too, found many features in common with the range in age from latest Eocene to early Miocene. ischyromyoids. Wood noted the similarity of The genus was named by Matthew (1905) based molar crown pattern to that of Paramys and ex- on the species Eutypomys thomsoni. "Progres- plained it as a parallelism that possibly indicates sive" characters of the teeth and hind feet led relationship. Wilson (1949b) pointed out that the Matthew to ally it with the beaver family, Cas- dental pattern of Eutypomys is more like that of toridae. He pointed out that it retains many sciuravids than that of paramyids.
    [Show full text]
  • DSA10 Dawson
    Mary R. Dawson Carnegie Museum of Natural History, Pittsburgh Paleogene rodents of Eurasia Dawson, M.R., 2003 - Paleogene rodents of Eurasia - in: Reumer, J.W.F. & Wessels, W. (eds.) - DISTRIBUTION AND MIGRATION OF TERTIARY MAMMALS IN EURASIA. A VOLUME IN HONOUR OF HANS DE BRUIJN - DEINSEA 10: 97-126 [ISSN 0923-9308] Published 1 December 2003 Soon after their Asian origin in the Late Paleocene, rodents began a morphological radiation and geographic expansion that extended across the entire Holarctic and at least northern Africa. Following this initial dispersal, a relatively high degree of endemism developed among Eocene rodents of both Europe and Asia. Only the family Ischyromyidae was shared by Europe and Asia, but the ischyromyid genera of the two areas were highly divergent. Eocene endemic development appears to have been complete among the glirids and theridomyids of Europe and the ctenodacty- loids of Asia. The evolution of Cylindrodontidae, Eomyidae, Zapodidae, and Cricetidae in Asian Eocene faunas occurred independently of contemporary rodent faunal developments in Europe. Following the latest Eocene or early Oligocene regression of the marine barrier between Europe and Asia, marked faunal changes occurred as a result both of the evolution of new rodent families (e.g., Aplodontidae, Castoridae, Sciuridae) that accompanied climatic changes of the later Eocene and of changes in rodent distribution across the Holarctic. Within Europe, the theridomorphs were at last negatively impacted, but the glirids appear not to have been adversely affected. In the Asian Oligocene, the ctenodactyloids continued to be a prominent part of rodent faunas, although they were diminished in morphologic diversity.
    [Show full text]
  • Chronologic Implications of New Miocene Mammals from the Cura-Mallín and Trapa Trapa Formations, Laguna Del Laja Area, South Central Chile
    Chronologic implications of new Miocene mammals from the Cura-Mallín and Trapa Trapa formations, Laguna del Laja area, south central Chile John J. Flynn a,*, Reynaldo Charrier b, Darin A. Croft c, Phillip B. Gans d, Trystan M. Herriott d, Jill A. Wertheim d, André R. Wyss d a Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA b Departamento de Geología, Universidad de Chile, Casilla 13518, Correo 21, Santiago, Chile c Department of Anatomy, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, USA d Department of Earth Science, University of California- Santa Barbara, Santa Barbara, CA 93106, USA abstract Keywords: Recent work in the central Andean Main Range of Chile near Laguna del Laja (37.5°S, 71°W) has pro- Chile duced the first mammal fossils for the region. Fossils, locally abundant and well preserved, occur patchily Fossil mammals across a wide area southeast of the lake. Mammalian remains are derived from generally strongly folded Paleontology (kilometer-scale) exposures of the locally 1.8 km thick, early to middle Miocene Cura-Mallín Formation; Miocene two identifiable specimens have been recovered from the overlying Trapa Trapa Formation as well. Both Geochronology formations consist primarily of well-stratified (1–5 m thick layers) volcaniclastic and volcanic strata, Tectonics deposited predominantly in fluviatile systems. The Cura-Mallín Formation is possibly the southern con- tinuation of (or lateral equivalent to) the richly fossiliferous Abanico Formation mapped between 32°S and 36°S. Intensive sampling in a series of localities east and south of Laguna del Laja has yielded diverse faunas, in addition to radioisotopically dateable horizons.
    [Show full text]
  • 2014BOYDANDWELSH.Pdf
    Proceedings of the 10th Conference on Fossil Resources Rapid City, SD May 2014 Dakoterra Vol. 6:124–147 ARTICLE DESCRIPTION OF AN EARLIEST ORELLAN FAUNA FROM BADLANDS NATIONAL PARK, INTERIOR, SOUTH DAKOTA AND IMPLICATIONS FOR THE STRATIGRAPHIC POSITION OF THE BLOOM BASIN LIMESTONE BED CLINT A. BOYD1 AND ED WELSH2 1Department of Geology and Geologic Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701 U.S.A., [email protected]; 2Division of Resource Management, Badlands National Park, Interior, South Dakota 57750 U.S.A., [email protected] ABSTRACT—Three new vertebrate localities are reported from within the Bloom Basin of the North Unit of Badlands National Park, Interior, South Dakota. These sites were discovered during paleontological surveys and monitoring of the park’s boundary fence construction activities. This report focuses on a new fauna recovered from one of these localities (BADL-LOC-0293) that is designated the Bloom Basin local fauna. This locality is situated approximately three meters below the Bloom Basin limestone bed, a geographically restricted strati- graphic unit only present within the Bloom Basin. Previous researchers have placed the Bloom Basin limestone bed at the contact between the Chadron and Brule formations. Given the unconformity known to occur between these formations in South Dakota, the recovery of a Chadronian (Late Eocene) fauna was expected from this locality. However, detailed collection and examination of fossils from BADL-LOC-0293 reveals an abundance of specimens referable to the characteristic Orellan taxa Hypertragulus calcaratus and Leptomeryx evansi. This fauna also includes new records for the taxa Adjidaumo lophatus and Brachygaulus, a biostratigraphic verifica- tion for the biochronologically ambiguous taxon Megaleptictis, and the possible presence of new leporid and hypertragulid taxa.
    [Show full text]
  • (Early Miocene) in Lago Posadas, Southwestern Patagonia, Argentina
    Andean Geology 46 (2): 383-420. May, 2019 Andean Geology doi: 10.5027/andgeoV46n2-3128 www.andeangeology.cl Sedimentology and fossil vertebrates of the Santa Cruz Formation (early Miocene) in Lago Posadas, southwestern Patagonia, Argentina *José I. Cuitiño1, Sergio F. Vizcaíno2, 3, M. Susana Bargo2, 4, Inés Aramendía5 1 Instituto Patagónico de Geología y Paleontología (IPGP, CCT CONICET-CENPAT). Boulevard Brown 2915, Puerto Madryn (9120), Chubut, Argentina. [email protected] 2 División Paleontología de Vertebrados, Museo de La Plata, Unidades de Investigación Anexo Museo, 60 y 122, La Plata (1900), Argentina. [email protected]; [email protected] 3 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Argentina. 4 Comisión de Investigaciones Científicas (CIC), calle 526 entre 10 y 11, 1900 La Plata-Buenos Aires, Argentina. 5 Instituto Patagónico para el Estudio de Ecosistemas Continentales (IPEEC, CCT CONICET-CENPAT). Boulevard Brown 2915, Puerto Madryn (9120), Chubut, Argentina. [email protected] * Corresponding author: [email protected] ABSTRACT. Lago Posadas is located at the foot of the Southern Patagonian Andes, in southwestern Argentina, where the early Miocene Santa Cruz Formation (SCF) shows thick and laterally continuous exposures. This region has been scarcely explored for fossil vertebrates since the first efforts by J.B. Hatcher in 1898-99. In this contribution, we performed sedimentologic and paleontological studies in order to reconstruct depositional
    [Show full text]
  • Phylogenetic Relationships and Divergence Times in Rodents Based on Both Genes and Fossils Ryan Norris University of Vermont
    University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2009 Phylogenetic Relationships and Divergence Times in Rodents Based on Both Genes and Fossils Ryan Norris University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Recommended Citation Norris, Ryan, "Phylogenetic Relationships and Divergence Times in Rodents Based on Both Genes and Fossils" (2009). Graduate College Dissertations and Theses. 164. https://scholarworks.uvm.edu/graddis/164 This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. PHYLOGENETIC RELATIONSHIPS AND DIVERGENCE TIMES IN RODENTS BASED ON BOTH GENES AND FOSSILS A Dissertation Presented by Ryan W. Norris to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Specializing in Biology February, 2009 Accepted by the Faculty of the Graduate College, The University of Vermont, in partial fulfillment of the requirements for the degree of Doctor of Philosophy, specializing in Biology. Dissertation ~xaminationCommittee: w %amB( Advisor 6.William ~il~atrickph.~. Duane A. Schlitter, Ph.D. Chairperson Vice President for Research and Dean of Graduate Studies Date: October 24, 2008 Abstract Molecular and paleontological approaches have produced extremely different estimates for divergence times among orders of placental mammals and within rodents with molecular studies suggesting a much older date than fossils. We evaluated the conflict between the fossil record and molecular data and find a significant correlation between dates estimated by fossils and relative branch lengths, suggesting that molecular data agree with the fossil record regarding divergence times in rodents.
    [Show full text]
  • Major Radiations in the Evolution of Caviid Rodents: Reconciling Fossils, Ghost Lineages, and Relaxed Molecular Clocks
    Major Radiations in the Evolution of Caviid Rodents: Reconciling Fossils, Ghost Lineages, and Relaxed Molecular Clocks Marı´a Encarnacio´ nPe´rez*, Diego Pol* CONICET, Museo Paleontolo´gico Egidio Feruglio, Trelew, Chubut Province, Argentina Abstract Background: Caviidae is a diverse group of caviomorph rodents that is broadly distributed in South America and is divided into three highly divergent extant lineages: Caviinae (cavies), Dolichotinae (maras), and Hydrochoerinae (capybaras). The fossil record of Caviidae is only abundant and diverse since the late Miocene. Caviids belongs to Cavioidea sensu stricto (Cavioidea s.s.) that also includes a diverse assemblage of extinct taxa recorded from the late Oligocene to the middle Miocene of South America (‘‘eocardiids’’). Results: A phylogenetic analysis combining morphological and molecular data is presented here, evaluating the time of diversification of selected nodes based on the calibration of phylogenetic trees with fossil taxa and the use of relaxed molecular clocks. This analysis reveals three major phases of diversification in the evolutionary history of Cavioidea s.s. The first two phases involve two successive radiations of extinct lineages that occurred during the late Oligocene and the early Miocene. The third phase consists of the diversification of Caviidae. The initial split of caviids is dated as middle Miocene by the fossil record. This date falls within the 95% higher probability distribution estimated by the relaxed Bayesian molecular clock, although the mean age estimate ages are 3.5 to 7 Myr older. The initial split of caviids is followed by an obscure period of poor fossil record (refered here as the Mayoan gap) and then by the appearance of highly differentiated modern lineages of caviids, which evidentially occurred at the late Miocene as indicated by both the fossil record and molecular clock estimates.
    [Show full text]