The Underexplored Potential of Green Macroalgae in Aquaculture

Total Page:16

File Type:pdf, Size:1020Kb

The Underexplored Potential of Green Macroalgae in Aquaculture Received: 15 October 2020 | Revised: 3 April 2021 | Accepted: 10 May 2021 DOI: 10.1111/raq.12580 REVIEW The underexplored potential of green macroalgae in aquaculture Anthony Moreira | Sónia Cruz | Rúben Marques | Paulo Cartaxana Centre for Environmental and Marine Studies (CESAM) & Department of Abstract Biology, University of Aveiro, Portugal Green macroalgae (Chlorophyta) currently represent a residual fraction (<1%) of Correspondence global seaweed biomass production landings. In turn, red (Rhodophyta) and brown Paulo Cartaxana, Department of Biology, University of Aveiro, Campus Universitário (Ochrophyta) macroalgae dominate the remaining percentage of aquaculture produc- de Santiago, 3810- 193 Aveiro, Portugal. tion, exceeding 32 million tonnes per annum. However, the industry relies on a rela- Email: [email protected] tively low number of species, in which as few as seven macroalgal genera collectively Funding information represent the bulk of global production metrics. At present, innovation and increased Fundação para a Ciência e a Tecnologia, Grant/Award Number: sustainability of the industry calls for diversification of macroalgal species/strains in CEECIND/01434/2018, PTDC/ aquaculture to counteract potential adverse effects ensuing from genetic impoverish- BIA- FBT/30979/2017 and UIDP/50017/2020+UIDB/50017/2020; ment, decreased resilience to disease and climate change. Despite the dominance of European Regional Development Fund, red and brown seaweed regarding production figures, aquaculture of green macroal- Grant/Award Number: PTDC/BIA- FBT/30979/2017 gae has witnessed an increasing trend in productivity and diversification over the last decades, particularly in Asia, where green seaweed taxa often occupy specific market niches in the food sector. Furthermore, growing interest in green seaweeds in aquaculture has been highlighted for different applications in emerging western markets (eg IMTA, biorefineries, food delicacies), owing to a unique diversity of cy- tomorphologies, ecophysiological traits, propagation capacities and bioactive com- pounds featured by this group of macroalgae. Cultivation technologies are relatively well developed, but sustainability assessments are scarce and required to unlock the potential of green seaweeds. Although it is likely that green macroalgae will remain occupying specialised market niches, in which high- value products are favoured, we argue that aquaculture of chlorophytan taxa presents itself as a compelling option under the current quest for commercial diversification of products and expansion of the sector. KEYWORDS bioactive compounds, cultivation techniques, integrated multitrophic aquaculture, life- cycle assessment, seaweeds, Ulvophyceae All named authors contributed significantly to this work and agree with the content of the manuscript. Financial support is fully acknowledged, and the authors declare no conflict of interest. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2021 The Authors. Reviews in Aquaculture published by John Wiley & Sons Australia, Ltd Rev Aquac. 2021;00:1–22. wileyonlinelibrary.com/journal/raq | 1 2 | MOREIRA ET AL. 1 | INTRODUCTION traction given the increasing perception of algae as healthy and sus- tainable foodstuffs, particularly in developing markets of western Macroalgae (or seaweeds) comprise a diverse group of photo- cultures.2 1 – 2 3 synthetic, multicellular, eukaryotic organisms assigned to either The bulk of macroalgae aquaculture takes place in South- the Plantae or Chromista kingdoms. Most are marine, where they East Asian and Pacific countries, of which China, the Philippines, play predominant roles as primary producers in coastal waters of Indonesia, Republic of Korea and Japan contribute a staggering the planet.1 Despite being avascular and lacking true roots, stems, ~98% of global seaweed biomass production, while the same indus- leaves and complex reproductive structures, some macroalgae dis- try is sustained by as few as seven macroalgal genera, all of which play plant- like appearances, in that they present differentiated thalli assigned to either Rhodophyta or Ochrophyta.19 Some of these mac- with attachment organs (holdfasts), stem- like structures (stipes) roalgae are destined for the hydrocolloid industry, such as Eucheuma and photosynthetic blades (fronds).2 Marine macroalgae can be di- spp., Kappaphycus alvarezii and Gracilaria spp., whereas other taxa vided into three phyla: Chlorophyta (green), Rhodophyta (red) and are used directly as human food, namely Saccharina japonica, Undaria Ochrophyta (brown), classified according to photosynthetic pigment pinnatifida, Sargassum fusiform and Pyropia spp.19,24 In turn, the out- content, carbohydrate reserves, cell wall components and flagella put of green macroalgae (Chlorophyta) aquaculture currently rep- construction and orientation.1 Collectively, the diversity of these resents only a fraction of global landings (<1%), lagging well behind groups exceeds 10,000 species, while new taxa are described every the most relevant taxa in terms of production metrics. Despite pre- year. Currently, more than 1500 macroalgal species are assigned senting comparably lower production figures, the aquaculture of to Chlorophyta; approx. 2000 to Ochrophyta; and about 7300 to green seaweeds has witnessed an increasing trend in productivity Rhodophyta.3 Together, macroalgae constitute an important biolog- and commercial diversification over the last decades (Figure 1).19 ical resource, providing a variety of ecosystem services and socio- Nevertheless, asymmetries deriving from the dominance of few taxa economic value.4,5 in macroalgal aquaculture intensify the need for increased innova- Since prehistoric times, ca. 160 thousand years ago, early homi- tion and sustainability of the industry. Particularly, the commoditisa- nids have relied on intertidal habitats as foraging grounds for marine tion of the industry is thought to be inconsistent with future demand resources.6,7 Eventually, the inclusion of macroalgae in human diet of high- value seaweed products, by failing to provide standardised, is thought to have prompted profound impacts upon the evolution high quality, traceable products.25 Advances are therefore required of human civilisation.8,9 The earliest evidence of the relationship to meet the challenges of an evolving industry, through species between humans and marine macroalgae dates to the Neolithic and/or cultivar diversification, standardisation of cultivation tech- (ca. 14,000 years ago) according to archaeological findings, when niques and increased awareness of local genetic and environmental humans seemingly collected and transported a variety of seaweed variability.18,20,25,26 species to be used as foodstuffs, trade items and ancient pharmaco- In this context, expanding green macroalgae aquaculture peia.10 In addition, written records support that seaweed harvesting emerges as a compelling solution towards the diversification and has been going on for centuries in virtually all shoreline areas where improvement of the sector, by providing a diverse pool of largely coastal communities have established, namely in Asia,11 Europe,12 untapped biological resources, with intrinsic potential to unlock an Americas,10 Oceania13,14 and Africa.15 Such communities relied on array of different biotechnological applications. Indeed, due to the marine macroalgae for a variety of different purposes including evolutionary divergence between the major macroalgae phyla, the human and animal feed, soil fertilisation, medicinal, cultural activi- Chlorophyta, Rhodophyta and Ochrophyta differ in their elemental ties and raw material for different applications.14,16 composition,27 metabolomic28,29 and fatty acid profiles,3 0 – 3 3 nutri- Like other organisms included in human diet and well- being, some tional properties,34,35 polysaccharide types36 and organoleptic prop- macroalgal species were domesticated and cultivated, once growing erties.37 Ultimately, distinctive features among macroalgal phyla will demand exceeded natural beds’ holding capacities.17,18 Modern cul- allow different applications, and therefore innovation in the indus- tivation technologies first emerged in the 20th century in China and try. Accordingly, green macroalgae have been recently promoted in Japan, after the description of the reproductive cycle of bladed for different applications, including biorefinery operations,38 land- Bangiales (Pyropia sp., Rhodophyta).11 Soon after, the aquaculture based integrated multitrophic aquaculture (IMTA) systems39,40 and of macroalgae rapidly expanded into what currently represents ap- high- value food products in modern cuisine.41 Examples of devel- proximately half of global marine aquaculture production landings oping industrial applications using green macroalgae as raw material (51%), comparing to molluscs (27%), fish (13%) and crustaceans (9%); include the extraction of cellulose42 or sulphated polysaccharides43 while exploitation of natural stocks represents a fraction (~2.8%) of and the production of biochar,44 bioethanol45 and bioplastics,46 total production of seaweeds.19 Macroalgal production is nowadays while an indefinite number of bioactive molecules will keep emerg- the fastest growing sector in global marine aquaculture generating ing from green macroalgae metabolite screening studies.47,48 an excess of US$
Recommended publications
  • Asexual Life History by Biflagellate Zoids In
    Aquatic Botany 91 (2009) 213–218 Contents lists available at ScienceDirect Aquatic Botany journal homepage: www.elsevier.com/locate/aquabot Asexual life history by biflagellate zoids in Monostroma latissimum (Ulotrichales) Felix Bast a,*, Satoshi Shimada b, Masanori Hiraoka a, Kazuo Okuda a a Graduate School of Kuroshio Science, Kochi University, 2-5-1 Akebono, Kochi 780-8520, Japan b Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan ARTICLE INFO ABSTRACT Article history: Monostroma latissimum (Kuetzing) Wittrock is a monostromatic green alga of commercial importance in Received 16 December 2008 Japan. Here we report the serendipitous discovery of asexually reproducing specimens collected from Received in revised form 26 May 2009 Usa, on the Pacific coast of Kochi Prefecture, south-western Japan. Zoids were found to be biflagellate and Accepted 24 June 2009 negatively phototactic. Germination of settled zoids was observed to follow erect-filamentous ontogeny Available online 1 July 2009 similar to that of the previously reported sexual strain. Moreover, the newly discovered asexual strain had identical sequences of nuclear encoded ITS (Internal Transcribed Spacer) region to that of the sexual Keywords: strain. On the basis of this finding, we postulate that the ITS sequences may have been maintained in Internal Transcribed Spacer these conspecific strains despite the evolution in sexuality. Relationships were investigated among M. Life history Phylogeny latissimum and other monostromatic taxa within the
    [Show full text]
  • Exhaustive Reanalysis of Barcode Sequences from Public
    Exhaustive reanalysis of barcode sequences from public repositories highlights ongoing misidentifications and impacts taxa diversity and distribution: a case study of the Sea Lettuce. Antoine Fort1, Marcus McHale1, Kevin Cascella2, Philippe Potin2, Marie-Mathilde Perrineau3, Philip Kerrison3, Elisabete da Costa4, Ricardo Calado4, Maria Domingues5, Isabel Costa Azevedo6, Isabel Sousa-Pinto6, Claire Gachon3, Adrie van der Werf7, Willem de Visser7, Johanna Beniers7, Henrice Jansen7, Michael Guiry1, and Ronan Sulpice1 1NUI Galway 2Station Biologique de Roscoff 3Scottish Association for Marine Science 4University of Aveiro 5Universidade de Aveiro 6University of Porto Interdisciplinary Centre of Marine and Environmental Research 7Wageningen University & Research November 24, 2020 Abstract Sea Lettuce (Ulva spp.; Ulvophyceae, Ulvales, Ulvaceae) is an important ecological and economical entity, with a worldwide distribution and is a well-known source of near-shore blooms blighting many coastlines. Species of Ulva are frequently misiden- tified in public repositories, including herbaria and gene banks, making species identification based on traditional barcoding hazardous. We investigated the species distribution of 295 individual distromatic foliose strains from the North East Atlantic by traditional barcoding or next generation sequencing. We found seven distinct species, and compared our results with all worldwide Ulva spp sequences present in the NCBI database for the three barcodes rbcL, tuf A and the ITS1. Our results demonstrate a large degree of species misidentification in the NCBI database. We estimate that 21% of the entries pertaining to foliose species are misannotated. In the extreme case of U. lactuca, 65% of the entries are erroneously labelled specimens of another Ulva species, typically U. fenestrata. In addition, 30% of U.
    [Show full text]
  • Successions of Phytobenthos Species in a Mediterranean Transitional Water System: the Importance of Long Term Observations
    A peer-reviewed open-access journal Nature ConservationSuccessions 34: 217–246 of phytobenthos (2019) species in a Mediterranean transitional water system... 217 doi: 10.3897/natureconservation.34.30055 RESEARCH ARTICLE http://natureconservation.pensoft.net Launched to accelerate biodiversity conservation Successions of phytobenthos species in a Mediterranean transitional water system: the importance of long term observations Antonella Petrocelli1, Ester Cecere1, Fernando Rubino1 1 Water Research Institute (IRSA) – CNR, via Roma 3, 74123 Taranto, Italy Corresponding author: Antonella Petrocelli ([email protected]) Academic editor: A. Lugliè | Received 25 September 2018 | Accepted 28 February 2019 | Published 3 May 2019 http://zoobank.org/5D4206FB-8C06-49C8-9549-F08497EAA296 Citation: Petrocelli A, Cecere E, Rubino F (2019) Successions of phytobenthos species in a Mediterranean transitional water system: the importance of long term observations. In: Mazzocchi MG, Capotondi L, Freppaz M, Lugliè A, Campanaro A (Eds) Italian Long-Term Ecological Research for understanding ecosystem diversity and functioning. Case studies from aquatic, terrestrial and transitional domains. Nature Conservation 34: 217–246. https://doi.org/10.3897/ natureconservation.34.30055 Abstract The availability of quantitative long term datasets on the phytobenthic assemblages of the Mar Piccolo of Taranto (southern Italy, Mediterranean Sea), a lagoon like semi-enclosed coastal basin included in the Italian LTER network, enabled careful analysis of changes occurring in the structure of the community over about thirty years. The total number of taxa differed over the years. Thirteen non-indigenous species in total were found, their number varied over the years, reaching its highest value in 2017. The dominant taxa differed over the years.
    [Show full text]
  • New Records of Benthic Marine Algae and Cyanobacteria for Costa Rica, and a Comparison with Other Central American Countries
    Helgol Mar Res (2009) 63:219–229 DOI 10.1007/s10152-009-0151-1 ORIGINAL ARTICLE New records of benthic marine algae and Cyanobacteria for Costa Rica, and a comparison with other Central American countries Andrea Bernecker Æ Ingo S. Wehrtmann Received: 27 August 2008 / Revised: 19 February 2009 / Accepted: 20 February 2009 / Published online: 11 March 2009 Ó Springer-Verlag and AWI 2009 Abstract We present the results of an intensive sampling Rica; we discuss this result in relation to the emergence of program carried out from 2000 to 2007 along both coasts of the Central American Isthmus. Costa Rica, Central America. The presence of 44 species of benthic marine algae is reported for the first time for Costa Keywords Marine macroalgae Á Cyanobacteria Á Rica. Most of the new records are Rhodophyta (27 spp.), Costa Rica Á Central America followed by Chlorophyta (15 spp.), and Heterokontophyta, Phaeophycea (2 spp.). Overall, the currently known marine flora of Costa Rica is comprised of 446 benthic marine Introduction algae and 24 Cyanobacteria. This species number is an under estimation, and will increase when species of benthic The marine benthic flora plays an important role in the marine algae from taxonomic groups where only limited marine environment. It forms the basis of many marine information is available (e.g., microfilamentous benthic food chains and harbors an impressive variety of organ- marine algae, Cyanobacteria) are included. The Caribbean isms. Fish, decapods and mollusks are among the most coast harbors considerably more benthic marine algae (318 prominent species associated with the marine flora, which spp.) than the Pacific coast (190 spp.); such a trend has serves these animals as a refuge and for alimentation (Hay been observed in all neighboring countries.
    [Show full text]
  • Kimberley Marine Biota. Historical Data: Marine Plants
    RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 84 045–067 (2014) DOI: 10.18195/issn.0313-122x.84.2014.045-067 SUPPLEMENT Kimberley marine biota. Historical data: marine plants John M. Huisman1,2* and Alison Sampey3 1 Western Australian Herbarium, Science Division, Department of Parks and Wildlife, Locked Bag 104, Bentley DC, Western Australian 6983, Australia. 2 School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australian 6150, Australia. 3 Department of Aquatic Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australian 6986, Australia. * Email: [email protected] ABSTRACT – Here, we document 308 species of marine flora from the Kimberley region of Western Australia based on collections held in the Western Australian Herbarium and on reports on marine biodiversity surveys to the region. Included are 12 species of seagrasses, 18 species of mangrove and 278 species of marine algae. Seagrasses and mangroves in the region have been comparatively well surveyed and their taxonomy is stable, so it is unlikely that further species will be recorded. However, the marine algae have been collected and documented only more recently and it is estimated that further surveys will increase the number of recorded species to over 400. The bulk of the marine flora comprised widespread Indo-West Pacific species, but there were also many endemic species with more endemics reported from the inshore areas than the offshore atolls. This number also will increase with the description of new species from the region. Collecting across the region has been highly variable due to the remote location, logistical difficulties and resource limitations.
    [Show full text]
  • Uncovering Unique Green Algae and Cyanobacteria Isolated from Biocrusts in Highly Saline Potash Tailing Pile Habitats, Using an Integrative Approach
    microorganisms Article Uncovering Unique Green Algae and Cyanobacteria Isolated from Biocrusts in Highly Saline Potash Tailing Pile Habitats, Using an Integrative Approach Veronika Sommer 1,2, Tatiana Mikhailyuk 3, Karin Glaser 1 and Ulf Karsten 1,* 1 Institute for Biological Sciences, Applied Ecology and Phycology, University of Rostock, 18059 Rostock, Germany; [email protected] (V.S.); [email protected] (K.G.) 2 upi UmweltProjekt Ingenieursgesellschaft mbH, 39576 Stendal, Germany 3 National Academy of Sciences of Ukraine, M.G. Kholodny Institute of Botany, 01601 Kyiv, Ukraine; [email protected] * Correspondence: [email protected] Received: 4 September 2020; Accepted: 22 October 2020; Published: 27 October 2020 Abstract: Potash tailing piles caused by fertilizer production shape their surroundings because of the associated salt impact. A previous study in these environments addressed the functional community “biocrust” comprising various micro- and macro-organisms inhabiting the soil surface. In that previous study, biocrust microalgae and cyanobacteria were isolated and morphologically identified amongst an ecological discussion. However, morphological species identification maybe is difficult because of phenotypic plasticity, which might lead to misidentifications. The present study revisited the earlier species list using an integrative approach, including molecular methods. Seventy-six strains were sequenced using the markers small subunit (SSU) rRNA gene and internal transcribed spacer (ITS). Phylogenetic analyses confirmed some morphologically identified species. However, several other strains could only be identified at the genus level. This indicates a high proportion of possibly unknown taxa, underlined by the low congruence of the previous morphological identifications to our results. In general, the integrative approach resulted in more precise species identifications and should be considered as an extension of the previous morphological species list.
    [Show full text]
  • 2004 University of Connecticut Storrs, CT
    Welcome Note and Information from the Co-Conveners We hope you will enjoy the NEAS 2004 meeting at the scenic Avery Point Campus of the University of Connecticut in Groton, CT. The last time that we assembled at The University of Connecticut was during the formative years of NEAS (12th Northeast Algal Symposium in 1973). Both NEAS and The University have come along way. These meetings will offer oral and poster presentations by students and faculty on a wide variety of phycological topics, as well as student poster and paper awards. We extend a warm welcome to all of our student members. The Executive Committee of NEAS has extended dormitory lodging at Project Oceanology gratis to all student members of the Society. We believe this shows NEAS members’ pride in and our commitment to our student members. This year we will be honoring Professor Arthur C. Mathieson as the Honorary Chair of the 43rd Northeast Algal Symposium. Art arrived with his wife, Myla, at the University of New Hampshire in 1965 from California. Art is a Professor of Botany and a Faculty in Residence at the Jackson Estuarine Laboratory of the University of New Hampshire. He received his Bachelor of Science and Master’s Degrees at the University of California, Los Angeles. In 1965 he received his doctoral degree from the University of British Columbia, Vancouver, Canada. Over a 43-year career Art has supervised many undergraduate and graduate students studying the ecology, systematics and mariculture of benthic marine algae. He has been an aquanaut-scientist for the Tektite II and also for the FLARE submersible programs.
    [Show full text]
  • A Review on the Economic Potential of Seaweeds in India
    Int. J. Adv. Res. Biol. Sci. (2020). 7(12): 15-28 International Journal of Advanced Research in Biological Sciences ISSN: 2348-8069 www.ijarbs.com DOI: 10.22192/ijarbs Coden: IJARQG (USA) Volume 7, Issue 12 -2020 Review Article DOI: http://dx.doi.org/10.22192/ijarbs.2020.07.12.003 A review on the economic potential of seaweeds in India Sudhir Kumar Yadav Botanical Survey of India, Salt Lake City, Kolkata 700 064, West Bengal E-mail: [email protected] Abstract ‘Seaweeds’ are the marine macro algae, adapted to survive exclusively in the marine ecosystems. They are among the most potential marine living resources and play significant role in sustainability of the marine ecosystems. India, endowed with a coastline of c .7500 km, exhibits unique marine habitats and support good diversity of seaweeds. Globally, c.11,000 taxa of seaweeds are reported. Among them, c. 221 taxa have been recognized as economically important in various forms. Presently, the Indian coastline harbours c. 865 taxa of marine macro algae, comprising of 442 taxa of Rhodophyceae, 212 taxa of Chlorophyceae and 211 taxa of Phaeophyceae. Among these, c. 94 taxa (42 Rhodophyceae, 35 Chlorophyceae and 17 Phaeophyceae) are recognized as economically important and used in various forms. Among these, 43 seaweeds are edible, while 19 are used as fodder, 41 as industrially important, 37 as medicinal and 13 as manure (SLF). The paper highlights the economic potential of these promising resources for the welfare of the mankind. Keywords: Chlorophyceae, Economical potential, Indian coast, Phaeophycea, Rhodophyceae, Seaweeds. Introduction Seaweeds are not the weeds, rather they are the marine India (8°-37° N & 68°-97° E), being a peninsular macro algae and constitute important components of country, is endowed with c.
    [Show full text]
  • The Cytology of Zoosporogenesis in the Filamentous Green Algal Genus Klebsormidium Author(S): J
    The Cytology of Zoosporogenesis in the Filamentous Green Algal Genus Klebsormidium Author(s): J. R. Cain, K. R. Mattox and K. D. Stewart Source: Transactions of the American Microscopical Society, Vol. 92, No. 3 (Jul., 1973), pp. 398-404 Published by: Wiley on behalf of American Microscopical Society Stable URL: https://www.jstor.org/stable/3225243 Accessed: 13-02-2019 17:57 UTC REFERENCES Linked references are available on JSTOR for this article: https://www.jstor.org/stable/3225243?seq=1&cid=pdf-reference#references_tab_contents You may need to log in to JSTOR to access the linked references. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at https://about.jstor.org/terms American Microscopical Society, Wiley are collaborating with JSTOR to digitize, preserve and extend access to Transactions of the American Microscopical Society This content downloaded from 132.248.28.28 on Wed, 13 Feb 2019 17:57:04 UTC All use subject to https://about.jstor.org/terms 398 TRANS. AMER. MICROS. SOC., VOL. 92, NO. 3, JULY 1973 U. S. GEOL. SURVEYSURVEY BULL.BULL. NO.NO. 1248,1248, WASHINGTON,WASHINGTON, D.D. C.C. WAKIL, S. J.,J., MCLAIN,MCLAIN, L.L. W.,W., JR.JR. && WARSHAW,WARSHAW, J.J.
    [Show full text]
  • Seaweeds of California Green Algae
    PDF version Remove references Seaweeds of California (draft: Sun Nov 24 15:32:39 2019) This page provides current names for California seaweed species, including those whose names have changed since the publication of Marine Algae of California (Abbott & Hollenberg 1976). Both former names (1976) and current names are provided. This list is organized by group (green, brown, red algae); within each group are genera and species in alphabetical order. California seaweeds discovered or described since 1976 are indicated by an asterisk. This is a draft of an on-going project. If you have questions or comments, please contact Kathy Ann Miller, University Herbarium, University of California at Berkeley. [email protected] Green Algae Blidingia minima (Nägeli ex Kützing) Kylin Blidingia minima var. vexata (Setchell & N.L. Gardner) J.N. Norris Former name: Blidingia minima var. subsalsa (Kjellman) R.F. Scagel Current name: Blidingia subsalsa (Kjellman) R.F. Scagel et al. Kornmann, P. & Sahling, P.H. 1978. Die Blidingia-Arten von Helgoland (Ulvales, Chlorophyta). Helgoländer Wissenschaftliche Meeresuntersuchungen 31: 391-413. Scagel, R.F., Gabrielson, P.W., Garbary, D.J., Golden, L., Hawkes, M.W., Lindstrom, S.C., Oliveira, J.C. & Widdowson, T.B. 1989. A synopsis of the benthic marine algae of British Columbia, southeast Alaska, Washington and Oregon. Phycological Contributions, University of British Columbia 3: vi + 532. Bolbocoleon piliferum Pringsheim Bryopsis corticulans Setchell Bryopsis hypnoides Lamouroux Former name: Bryopsis pennatula J. Agardh Current name: Bryopsis pennata var. minor J. Agardh Silva, P.C., Basson, P.W. & Moe, R.L. 1996. Catalogue of the benthic marine algae of the Indian Ocean.
    [Show full text]
  • The Marine Vegetation of the Kerguelen Islands: History of Scientific Campaigns, Inventory of the Flora and First Analysis of Its Biogeographical Affinities
    cryptogamie Algologie 2021 ● 42 ● 12 DIRECTEUR DE LA PUBLICATION / PUBLICATION DIRECTOR : Bruno DAVID Président du Muséum national d’Histoire naturelle RÉDACTRICE EN CHEF / EDITOR-IN-CHIEF : Line LE GALL Muséum national d’Histoire naturelle ASSISTANTE DE RÉDACTION / ASSISTANT EDITOR : Marianne SALAÜN ([email protected]) MISE EN PAGE / PAGE LAYOUT : Marianne SALAÜN RÉDACTEURS ASSOCIÉS / ASSOCIATE EDITORS Ecoevolutionary dynamics of algae in a changing world Stacy KRUEGER-HADFIELD Department of Biology, University of Alabama, 1300 University Blvd, Birmingham, AL 35294 (United States) Jana KULICHOVA Department of Botany, Charles University, Prague (Czech Republic) Cecilia TOTTI Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy) Phylogenetic systematics, species delimitation & genetics of speciation Sylvain FAUGERON UMI3614 Evolutionary Biology and Ecology of Algae, Departamento de Ecología, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Av. Bernardo O’Higgins 340, Santiago (Chile) Marie-Laure GUILLEMIN Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia (Chile) Diana SARNO Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli (Italy) Comparative evolutionary genomics of algae Nicolas BLOUIN Department of Molecular Biology, University of Wyoming, Dept. 3944, 1000 E University Ave, Laramie, WY 82071 (United States) Heroen VERBRUGGEN School of BioSciences,
    [Show full text]
  • Freshwater Algae in Britain and Ireland - Bibliography
    Freshwater algae in Britain and Ireland - Bibliography Floras, monographs, articles with records and environmental information, together with papers dealing with taxonomic/nomenclatural changes since 2003 (previous update of ‘Coded List’) as well as those helpful for identification purposes. Theses are listed only where available online and include unpublished information. Useful websites are listed at the end of the bibliography. Further links to relevant information (catalogues, websites, photocatalogues) can be found on the site managed by the British Phycological Society (http://www.brphycsoc.org/links.lasso). Abbas A, Godward MBE (1964) Cytology in relation to taxonomy in Chaetophorales. Journal of the Linnean Society, Botany 58: 499–597. Abbott J, Emsley F, Hick T, Stubbins J, Turner WB, West W (1886) Contributions to a fauna and flora of West Yorkshire: algae (exclusive of Diatomaceae). Transactions of the Leeds Naturalists' Club and Scientific Association 1: 69–78, pl.1. Acton E (1909) Coccomyxa subellipsoidea, a new member of the Palmellaceae. Annals of Botany 23: 537–573. Acton E (1916a) On the structure and origin of Cladophora-balls. New Phytologist 15: 1–10. Acton E (1916b) On a new penetrating alga. New Phytologist 15: 97–102. Acton E (1916c) Studies on the nuclear division in desmids. 1. Hyalotheca dissiliens (Smith) Bréb. Annals of Botany 30: 379–382. Adams J (1908) A synopsis of Irish algae, freshwater and marine. Proceedings of the Royal Irish Academy 27B: 11–60. Ahmadjian V (1967) A guide to the algae occurring as lichen symbionts: isolation, culture, cultural physiology and identification. Phycologia 6: 127–166 Allanson BR (1973) The fine structure of the periphyton of Chara sp.
    [Show full text]