PDF (Chapter 5. Thermodynamics and Equations of State)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On Entropy, Information, and Conservation of Information
entropy Article On Entropy, Information, and Conservation of Information Yunus A. Çengel Department of Mechanical Engineering, University of Nevada, Reno, NV 89557, USA; [email protected] Abstract: The term entropy is used in different meanings in different contexts, sometimes in contradic- tory ways, resulting in misunderstandings and confusion. The root cause of the problem is the close resemblance of the defining mathematical expressions of entropy in statistical thermodynamics and information in the communications field, also called entropy, differing only by a constant factor with the unit ‘J/K’ in thermodynamics and ‘bits’ in the information theory. The thermodynamic property entropy is closely associated with the physical quantities of thermal energy and temperature, while the entropy used in the communications field is a mathematical abstraction based on probabilities of messages. The terms information and entropy are often used interchangeably in several branches of sciences. This practice gives rise to the phrase conservation of entropy in the sense of conservation of information, which is in contradiction to the fundamental increase of entropy principle in thermody- namics as an expression of the second law. The aim of this paper is to clarify matters and eliminate confusion by putting things into their rightful places within their domains. The notion of conservation of information is also put into a proper perspective. Keywords: entropy; information; conservation of information; creation of information; destruction of information; Boltzmann relation Citation: Çengel, Y.A. On Entropy, 1. Introduction Information, and Conservation of One needs to be cautious when dealing with information since it is defined differently Information. Entropy 2021, 23, 779. -
Thermodynamic Potentials and Natural Variables
Revista Brasileira de Ensino de Física, vol. 42, e20190127 (2020) Articles www.scielo.br/rbef cb DOI: http://dx.doi.org/10.1590/1806-9126-RBEF-2019-0127 Licença Creative Commons Thermodynamic Potentials and Natural Variables M. Amaku1,2, F. A. B. Coutinho*1, L. N. Oliveira3 1Universidade de São Paulo, Faculdade de Medicina, São Paulo, SP, Brasil 2Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, São Paulo, SP, Brasil 3Universidade de São Paulo, Instituto de Física de São Carlos, São Carlos, SP, Brasil Received on May 30, 2019. Revised on September 13, 2018. Accepted on October 4, 2019. Most books on Thermodynamics explain what thermodynamic potentials are and how conveniently they describe the properties of physical systems. Certain books add that, to be useful, the thermodynamic potentials must be expressed in their “natural variables”. Here we show that, given a set of physical variables, an appropriate thermodynamic potential can always be defined, which contains all the thermodynamic information about the system. We adopt various perspectives to discuss this point, which to the best of our knowledge has not been clearly presented in the literature. Keywords: Thermodynamic Potentials, natural variables, Legendre transforms. 1. Introduction same statement cannot be applied to the temperature. In real fluids, even in simple ones, the proportionality Basic concepts are most easily understood when we dis- to T is washed out, and the Internal Energy is more cuss simple systems. Consider an ideal gas in a cylinder. conveniently expressed as a function of the entropy and The cylinder is closed, its walls are conducting, and a volume: U = U(S, V ). -
Thermodynamics Notes
Thermodynamics Notes Steven K. Krueger Department of Atmospheric Sciences, University of Utah August 2020 Contents 1 Introduction 1 1.1 What is thermodynamics? . .1 1.2 The atmosphere . .1 2 The Equation of State 1 2.1 State variables . .1 2.2 Charles' Law and absolute temperature . .2 2.3 Boyle's Law . .3 2.4 Equation of state of an ideal gas . .3 2.5 Mixtures of gases . .4 2.6 Ideal gas law: molecular viewpoint . .6 3 Conservation of Energy 8 3.1 Conservation of energy in mechanics . .8 3.2 Conservation of energy: A system of point masses . .8 3.3 Kinetic energy exchange in molecular collisions . .9 3.4 Working and Heating . .9 4 The Principles of Thermodynamics 11 4.1 Conservation of energy and the first law of thermodynamics . 11 4.1.1 Conservation of energy . 11 4.1.2 The first law of thermodynamics . 11 4.1.3 Work . 12 4.1.4 Energy transferred by heating . 13 4.2 Quantity of energy transferred by heating . 14 4.3 The first law of thermodynamics for an ideal gas . 15 4.4 Applications of the first law . 16 4.4.1 Isothermal process . 16 4.4.2 Isobaric process . 17 4.4.3 Isosteric process . 18 4.5 Adiabatic processes . 18 5 The Thermodynamics of Water Vapor and Moist Air 21 5.1 Thermal properties of water substance . 21 5.2 Equation of state of moist air . 21 5.3 Mixing ratio . 22 5.4 Moisture variables . 22 5.5 Changes of phase and latent heats . -
ENERGY, ENTROPY, and INFORMATION Jean Thoma June
ENERGY, ENTROPY, AND INFORMATION Jean Thoma June 1977 Research Memoranda are interim reports on research being conducted by the International Institute for Applied Systems Analysis, and as such receive only limited scientific review. Views or opinions contained herein do not necessarily represent those of the Institute or of the National Member Organizations supporting the Institute. PREFACE This Research Memorandum contains the work done during the stay of Professor Dr.Sc. Jean Thoma, Zug, Switzerland, at IIASA in November 1976. It is based on extensive discussions with Professor HAfele and other members of the Energy Program. Al- though the content of this report is not yet very uniform because of the different starting points on the subject under consideration, its publication is considered a necessary step in fostering the related discussion at IIASA evolving around th.e problem of energy demand. ABSTRACT Thermodynamical considerations of energy and entropy are being pursued in order to arrive at a general starting point for relating entropy, negentropy, and information. Thus one hopes to ultimately arrive at a common denominator for quanti- ties of a more general nature, including economic parameters. The report closes with the description of various heating appli- cation.~and related efficiencies. Such considerations are important in order to understand in greater depth the nature and composition of energy demand. This may be highlighted by the observation that it is, of course, not the energy that is consumed or demanded for but the informa- tion that goes along with it. TABLE 'OF 'CONTENTS Introduction ..................................... 1 2 . Various Aspects of Entropy ........................2 2.1 i he no me no logical Entropy ........................ -
Practice Problems from Chapter 1-3 Problem 1 One Mole of a Monatomic Ideal Gas Goes Through a Quasistatic Three-Stage Cycle (1-2, 2-3, 3-1) Shown in V 3 the Figure
Practice Problems from Chapter 1-3 Problem 1 One mole of a monatomic ideal gas goes through a quasistatic three-stage cycle (1-2, 2-3, 3-1) shown in V 3 the Figure. T1 and T2 are given. V 2 2 (a) (10) Calculate the work done by the gas. Is it positive or negative? V 1 1 (b) (20) Using two methods (Sackur-Tetrode eq. and dQ/T), calculate the entropy change for each stage and ∆ for the whole cycle, Stotal. Did you get the expected ∆ result for Stotal? Explain. T1 T2 T (c) (5) What is the heat capacity (in units R) for each stage? Problem 1 (cont.) ∝ → (a) 1 – 2 V T P = const (isobaric process) δW 12=P ( V 2−V 1 )=R (T 2−T 1)>0 V = const (isochoric process) 2 – 3 δW 23 =0 V 1 V 1 dV V 1 T1 3 – 1 T = const (isothermal process) δW 31=∫ PdV =R T1 ∫ =R T 1 ln =R T1 ln ¿ 0 V V V 2 T 2 V 2 2 T1 T 2 T 2 δW total=δW 12+δW 31=R (T 2−T 1)+R T 1 ln =R T 1 −1−ln >0 T 2 [ T 1 T 1 ] Problem 1 (cont.) Sackur-Tetrode equation: V (b) 3 V 3 U S ( U ,V ,N )=R ln + R ln +kB ln f ( N ,m ) V2 2 N 2 N V f 3 T f V f 3 T f ΔS =R ln + R ln =R ln + ln V V 2 T V 2 T 1 1 i i ( i i ) 1 – 2 V ∝ T → P = const (isobaric process) T1 T2 T 5 T 2 ΔS12 = R ln 2 T 1 T T V = const (isochoric process) 3 1 3 2 2 – 3 ΔS 23 = R ln =− R ln 2 T 2 2 T 1 V 1 T 2 3 – 1 T = const (isothermal process) ΔS 31 =R ln =−R ln V 2 T 1 5 T 2 T 2 3 T 2 as it should be for a quasistatic cyclic process ΔS = R ln −R ln − R ln =0 cycle 2 T T 2 T (quasistatic – reversible), 1 1 1 because S is a state function. -
Chapter 4 Calculation of Standard Thermodynamic Properties of Aqueous Electrolytes and Non-Electrolytes
Chapter 4 Calculation of Standard Thermodynamic Properties of Aqueous Electrolytes and Non-Electrolytes Vladimir Majer Laboratoire de Thermodynamique des Solutions et des Polymères Université Blaise Pascal Clermont II / CNRS 63177 Aubière, France Josef Sedlbauer Department of Chemistry Technical University Liberec 46117 Liberec, Czech Republic Robert H. Wood Department of Chemistry and Biochemistry University of Delaware Newark, DE 19716, USA 4.1 Introduction Thermodynamic modeling is important for understanding and predicting phase and chemical equilibria in industrial and natural aqueous systems at elevated temperatures and pressures. Such systems contain a variety of organic and inorganic solutes ranging from apolar nonelectrolytes to strong electrolytes; temperature and pressure strongly affect speciation of solutes that are encountered in molecular or ionic forms, or as ion pairs or complexes. Properties related to the Gibbs energy, such as thermodynamic equilibrium constants of hydrothermal reactions and activity coefficients of aqueous species, are required for practical use by geologists, power-cycle chemists and process engineers. Derivative properties (enthalpy, heat capacity and volume), which can be obtained from calorimetric and volumetric experiments, are useful in extrapolations when calculating the Gibbs energy at conditions remote from ambient. They also sensitively indicate evolution in molecular interactions with changing temperature and pressure. In this context, models with a sound theoretical basis are indispensable, describing with a limited number of adjustable parameters all thermodynamic functions of an aqueous system over a wide range of temperature and pressure. In thermodynamics of hydrothermal solutions, the unsymmetric standard-state convention is generally used; in this case, the standard thermodynamic properties (STP) of a solute reflect its interaction with the solvent (water), and the excess properties, related to activity coefficients, correspond to solute-solute interactions. -
Equations of State and Thermodynamics of Solids Using Empirical Corrections in the Quasiharmonic Approximation
PHYSICAL REVIEW B 84, 184103 (2011) Equations of state and thermodynamics of solids using empirical corrections in the quasiharmonic approximation A. Otero-de-la-Roza* and V´ıctor Luana˜ † Departamento de Qu´ımica F´ısica y Anal´ıtica, Facultad de Qu´ımica, Universidad de Oviedo, ES-33006 Oviedo, Spain (Received 24 May 2011; revised manuscript received 8 October 2011; published 11 November 2011) Current state-of-the-art thermodynamic calculations using approximate density functionals in the quasi- harmonic approximation (QHA) suffer from systematic errors in the prediction of the equation of state and thermodynamic properties of a solid. In this paper, we propose three simple and theoretically sound empirical corrections to the static energy that use one, or at most two, easily accessible experimental parameters: the room-temperature volume and bulk modulus. Coupled with an appropriate numerical fitting technique, we show that experimental results for three model systems (MgO, fcc Al, and diamond) can be reproduced to a very high accuracy in wide ranges of pressure and temperature. In the best available combination of functional and empirical correction, the predictive power of the DFT + QHA approach is restored. The calculation of the volume-dependent phonon density of states required by QHA can be too expensive, and we have explored simplified thermal models in several phases of Fe. The empirical correction works as expected, but the approximate nature of the simplified thermal model limits significantly the range of validity of the results. DOI: 10.1103/PhysRevB.84.184103 PACS number(s): 64.10.+h, 65.40.−b, 63.20.−e, 71.15.Nc I. -
Notation for States and Processes, Significance of the Word Standard in Chemical Thermodynamics, and Remarks on Commonly Tabulated Forms of Thermodynamic Functions
Pure &Appl.Chem.., Vol.54, No.6, pp.1239—1250,1982. 0033—4545/82/061239—12$03.00/0 Printed in Great Britain. Pergamon Press Ltd. ©1982IUPAC INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY PHYSICAL CHEMISTRY DIVISION COMMISSION ON THERMODYNAMICS* NOTATION FOR STATES AND PROCESSES, SIGNIFICANCE OF THE WORD STANDARD IN CHEMICAL THERMODYNAMICS, AND REMARKS ON COMMONLY TABULATED FORMS OF THERMODYNAMIC FUNCTIONS (Recommendations 1981) (Appendix No. IV to Manual of Symbols and Terminology for Physicochemical Quantities and Units) Prepared for publication by J. D. COX, National Physical Laboratory, Teddington, UK with the assistance of a Task Group consisting of S. ANGUS, London; G. T. ARMSTRONG, Washington, DC; R. D. FREEMAN, Stiliwater, OK; M. LAFFITTE, Marseille; G. M. SCHNEIDER (Chairman), Bochum; G. SOMSEN, Amsterdam, (from Commission 1.2); and C. B. ALCOCK, Toronto; and P. W. GILLES, Lawrence, KS, (from Commission 11.3) *Membership of the Commission for 1979-81 was as follows: Chairman: M. LAFFITTE (France); Secretary: G. M. SCHNEIDER (FRG); Titular Members: S. ANGUS (UK); G. T. ARMSTRONG (USA); V. A. MEDVEDEV (USSR); Y. TAKAHASHI (Japan); I. WADSO (Sweden); W. ZIELENKIEWICZ (Poland); Associate Members: H. CHIHARA (Japan); J. F. COUNSELL (UK); M. DIAZ-PENA (Spain); P. FRANZOSINI (Italy); R. D. FREEMAN (USA); V. A. LEVITSKII (USSR); 0.SOMSEN (Netherlands); C. E. VANDERZEE (USA); National Representatives: J. PICK (Czechoslovakia); M. T. RATZSCH (GDR). NOTATION FOR STATES AND PROCESSES, SIGNIFICANCE OF THE WORD STANDARD IN CHEMICAL THERMODYNAMICS, AND REMARKS ON COMMONLY TABULATED FORMS OF THERMODYNAMIC FUNCTIONS SECTION 1. INTRODUCTION The main IUPAC Manual of symbols and terminology for physicochemical quantities and units (Ref. -
PDF Version of Helmholtz Free Energy
Free energy Free Energy at Constant T and V Starting with the First Law dU = δw + δq At constant temperature and volume we have δw = 0 and dU = δq Free Energy at Constant T and V Starting with the First Law dU = δw + δq At constant temperature and volume we have δw = 0 and dU = δq Recall that dS ≥ δq/T so we have dU ≤ TdS Free Energy at Constant T and V Starting with the First Law dU = δw + δq At constant temperature and volume we have δw = 0 and dU = δq Recall that dS ≥ δq/T so we have dU ≤ TdS which leads to dU - TdS ≤ 0 Since T and V are constant we can write this as d(U - TS) ≤ 0 The quantity in parentheses is a measure of the spontaneity of the system that depends on known state functions. Definition of Helmholtz Free Energy We define a new state function: A = U -TS such that dA ≤ 0. We call A the Helmholtz free energy. At constant T and V the Helmholtz free energy will decrease until all possible spontaneous processes have occurred. At that point the system will be in equilibrium. The condition for equilibrium is dA = 0. A time Definition of Helmholtz Free Energy Expressing the change in the Helmholtz free energy we have ∆A = ∆U – T∆S for an isothermal change from one state to another. The condition for spontaneous change is that ∆A is less than zero and the condition for equilibrium is that ∆A = 0. We write ∆A = ∆U – T∆S ≤ 0 (at constant T and V) Definition of Helmholtz Free Energy Expressing the change in the Helmholtz free energy we have ∆A = ∆U – T∆S for an isothermal change from one state to another. -
Lecture 4: 09.16.05 Temperature, Heat, and Entropy
3.012 Fundamentals of Materials Science Fall 2005 Lecture 4: 09.16.05 Temperature, heat, and entropy Today: LAST TIME .........................................................................................................................................................................................2� State functions ..............................................................................................................................................................................2� Path dependent variables: heat and work..................................................................................................................................2� DEFINING TEMPERATURE ...................................................................................................................................................................4� The zeroth law of thermodynamics .............................................................................................................................................4� The absolute temperature scale ..................................................................................................................................................5� CONSEQUENCES OF THE RELATION BETWEEN TEMPERATURE, HEAT, AND ENTROPY: HEAT CAPACITY .......................................6� The difference between heat and temperature ...........................................................................................................................6� Defining heat capacity.................................................................................................................................................................6� -
Chapter 3. Second and Third Law of Thermodynamics
Chapter 3. Second and third law of thermodynamics Important Concepts Review Entropy; Gibbs Free Energy • Entropy (S) – definitions Law of Corresponding States (ch 1 notes) • Entropy changes in reversible and Reduced pressure, temperatures, volumes irreversible processes • Entropy of mixing of ideal gases • 2nd law of thermodynamics • 3rd law of thermodynamics Math • Free energy Numerical integration by computer • Maxwell relations (Trapezoidal integration • Dependence of free energy on P, V, T https://en.wikipedia.org/wiki/Trapezoidal_rule) • Thermodynamic functions of mixtures Properties of partial differential equations • Partial molar quantities and chemical Rules for inequalities potential Major Concept Review • Adiabats vs. isotherms p1V1 p2V2 • Sign convention for work and heat w done on c=C /R vm system, q supplied to system : + p1V1 p2V2 =Cp/CV w done by system, q removed from system : c c V1T1 V2T2 - • Joule-Thomson expansion (DH=0); • State variables depend on final & initial state; not Joule-Thomson coefficient, inversion path. temperature • Reversible change occurs in series of equilibrium V states T TT V P p • Adiabatic q = 0; Isothermal DT = 0 H CP • Equations of state for enthalpy, H and internal • Formation reaction; enthalpies of energy, U reaction, Hess’s Law; other changes D rxn H iD f Hi i T D rxn H Drxn Href DrxnCpdT Tref • Calorimetry Spontaneous and Nonspontaneous Changes First Law: when one form of energy is converted to another, the total energy in universe is conserved. • Does not give any other restriction on a process • But many processes have a natural direction Examples • gas expands into a vacuum; not the reverse • can burn paper; can't unburn paper • heat never flows spontaneously from cold to hot These changes are called nonspontaneous changes. -
Thermodynamics, Flame Temperature and Equilibrium
Thermodynamics, Flame Temperature and Equilibrium Combustion Summer School 2018 Prof. Dr.-Ing. Heinz Pitsch Course Overview Part I: Fundamentals and Laminar Flames • Introduction • Fundamentals and mass balances of combustion systems • Thermodynamic quantities • Thermodynamics, flame • Flame temperature at complete temperature, and equilibrium conversion • Governing equations • Chemical equilibrium • Laminar premixed flames: Kinematics and burning velocity • Laminar premixed flames: Flame structure • Laminar diffusion flames • FlameMaster flame calculator 2 Thermodynamic Quantities First law of thermodynamics - balance between different forms of energy • Change of specific internal energy: du specific work due to volumetric changes: δw = -pdv , v=1/ρ specific heat transfer from the surroundings: δq • Related quantities specific enthalpy (general definition): specific enthalpy for an ideal gas: • Energy balance for a closed system: 3 Multicomponent system • Specific internal energy and specific enthalpy of mixtures • Relation between internal energy and enthalpy of single species 4 Multicomponent system • Ideal gas u and h only function of temperature • If cpi is specific heat at constant pressure and hi,ref is reference enthalpy at reference temperature Tref , temperature dependence of partial specific enthalpy is given by • Reference temperature may be arbitrarily chosen, most frequently used: Tref = 0 K or Tref = 298.15 K 5 Multicomponent system • Partial molar enthalpy hi,m is and its temperature dependence is where the molar specific