Eyed Elators

Total Page:16

File Type:pdf, Size:1020Kb

Eyed Elators Colorado Insect of Interest Eyed Elators Scientific Name: Alaus oculatus (Linneaus) (eyed click beetle), Alaus lusciosus (Hope), Alaus melanops LeConte Order: Coleoptera (Beetles) Family: Elateridae (Click Beetles) Identification and Descriptive Features: The eyed elators are fairly large beetles, 2.5- 3.5 cm in length, with an elongate body form. Prominent eyespot markings on the large prothorax behind the head lend the name “eyed” to these insects, which are generally dark gray-black. Light markings occur with the Alaus oculatus and A. lusciosus; Alaus melanops is generally slate gray. The eyed elators are the largest click beetles found in North America. Similar to most other species of this large insect family they are capable of flipping when placed on their back, sometimes with an audible clicking noise. Distribution in Colorado: All records of Alaus spp. in Colorado are from east of the Figures 1. The eyed click beetle, Alaus oculatus, from Continental Divide, from forested areas and Rocky Ford, CO. eastern grasslands. The most frequently encountered species, Alaus oculatus, is most commonly encountered in the Arkansas Valley. However, none of the eyed elators are not common anywhere in Colorado and, despite their large size, are rarely collected. Life History and Habits: Larvae of the eyed elators develop as predators of wood boring insects found in dead and rotting wood, notably roundheaded borers. The immature eyed elators are generally wormlike in body form, with functional legs. The general body color is brown and the end segments of the body are somewhat darker on Alaus oculatus. (Larvae of all click beetles are known as “wireworms”.) Adults likely feed on some nectar, but do not appear to feed on solid foods. They can fly and are attracted to lights. Figure 2. The three Alaus species that can be found in eastern Colorado, left-right: Alaus oculata, Alaus melanops, Alaus lusciosus. .
Recommended publications
  • Effects of Prescribed Fire and Fire Surrogates on Pollinators and Saproxylic Beetles in North Carolina and Alabama
    EFFECTS OF PRESCRIBED FIRE AND FIRE SURROGATES ON POLLINATORS AND SAPROXYLIC BEETLES IN NORTH CAROLINA AND ALABAMA by JOSHUA W. CAMPBELL (Under the Direction of James L. Hanula) ABSTRACT Pollinating and saproxylic insects are two groups of forest insects that are considered to be extremely vital for forest health. These insects maintain and enhance plant diversity, but also help recycle nutrients back into the soil. Forest management practices (prescribed burns, thinnings, herbicide use) are commonly used methods to limit fuel build up within forests. However, their effects on pollinating and saproxylic insects are poorly understood. We collected pollinating and saproxylic insect from North Carolina and Alabama from 2002-2004 among different treatment plots. In North Carolina, we captured 7921 floral visitors from four orders and 21 families. Hymenoptera was the most abundant and diverse order, with Halictidae being the most abundant family. The majority of floral visitors were captured in the mechanical plus burn treatments, while lower numbers were caught on the mechanical only treatments, burn only treatments and control treatments. Overall species richness was also higher on mechanical plus burn treatments compared to other treatments. Total pollinator abundance was correlated with decreased tree basal area (r2=0.58) and increased percent herbaceous plant cover (r2=0.71). We captured 37,191 saproxylic Coleoptera in North Carolina, comprising 20 families and 122 species. Overall, species richness and total abundance of Coleoptera were not significantly different among treatments. However, total numbers of many key families, such as Scolytidae, Curculionidae, Cerambycidae, and Buprestidae, have higher total numbers in treated plots compared to untreated controls and several families (Elateridae, Cleridae, Trogositidae, Scolytidae) showed significant differences (p≤0.05) in abundance.
    [Show full text]
  • Proceedings, 23Rd U.S. Department of Agriculture Interagency Research
    United States Department of Proceedings Agriculture 23rd U.S. Department of Agriculture Forest Service Northern Interagency Research Forum on Research Station Invasive Species 2012 General Technical Report NRS-P-114 The findings and conclusions of each article in this publication are those of the individual author(s) and do not necessarily represent the views of the U.S. Department of Agriculture or the Forest Service. All articles were received in digital format and were edited for uniform type and style. Each author is responsible for the accuracy and content of his or her paper. The use of trade, firm, or corporation names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the U.S. Department of Agriculture or the Forest Service of any product or service to the exclusion of others that may be suitable. This publication reports research involving pesticides. It does not contain recommendations for their use, nor does it imply that the uses discussed here have been registered. All uses of pesticides must be registered by appropriate State and/or Federal, agencies before they can be recommended. CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fi sh or other wildlife—if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and pesticide containers. Cover graphic by Vincent D’Amico, U.S. Forest Service, Northern Research Station. Manuscript received for publication August 2012 Published by: For additional copies: U.S.
    [Show full text]
  • A Faunal Survey of the Elateroidea of Montana by Catherine Elaine
    A faunal survey of the elateroidea of Montana by Catherine Elaine Seibert A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Entomology Montana State University © Copyright by Catherine Elaine Seibert (1993) Abstract: The beetle family Elateridae is a large and taxonomically difficult group of insects that includes many economically important species of cultivated crops. Elaterid larvae, or wireworms, have a history of damaging small grains in Montana. Although chemical seed treatments have controlled wireworm damage since the early 1950's, it is- highly probable that their availability will become limited, if not completely unavailable, in the near future. In that event, information about Montana's elaterid fauna, particularity which species are present and where, will be necessary for renewed research efforts directed at wireworm management. A faunal survey of the superfamily Elateroidea, including the Elateridae and three closely related families, was undertaken to determine the species composition and distribution in Montana. Because elateroid larvae are difficult to collect and identify, the survey concentrated exclusively on adult beetles. This effort involved both the collection of Montana elateroids from the field and extensive borrowing of the same from museum sources. Results from the survey identified one artematopid, 152 elaterid, six throscid, and seven eucnemid species from Montana. County distributions for each species were mapped. In addition, dichotomous keys, and taxonomic and biological information, were compiled for various taxa. Species of potential economic importance were also noted, along with their host plants. Although the knowledge of the superfamily' has been improved significantly, it is not complete.
    [Show full text]
  • Arthropods of Elm Fork Preserve
    Arthropods of Elm Fork Preserve Arthropods are characterized by having jointed limbs and exoskeletons. They include a diverse assortment of creatures: Insects, spiders, crustaceans (crayfish, crabs, pill bugs), centipedes and millipedes among others. Column Headings Scientific Name: The phenomenal diversity of arthropods, creates numerous difficulties in the determination of species. Positive identification is often achieved only by specialists using obscure monographs to ‘key out’ a species by examining microscopic differences in anatomy. For our purposes in this survey of the fauna, classification at a lower level of resolution still yields valuable information. For instance, knowing that ant lions belong to the Family, Myrmeleontidae, allows us to quickly look them up on the Internet and be confident we are not being fooled by a common name that may also apply to some other, unrelated something. With the Family name firmly in hand, we may explore the natural history of ant lions without needing to know exactly which species we are viewing. In some instances identification is only readily available at an even higher ranking such as Class. Millipedes are in the Class Diplopoda. There are many Orders (O) of millipedes and they are not easily differentiated so this entry is best left at the rank of Class. A great deal of taxonomic reorganization has been occurring lately with advances in DNA analysis pointing out underlying connections and differences that were previously unrealized. For this reason, all other rankings aside from Family, Genus and Species have been omitted from the interior of the tables since many of these ranks are in a state of flux.
    [Show full text]
  • BOLMIN-THESIS-2017.Pdf
    ©Copyright 2017 Ophélia Bolmin OBSERVING AND MODELLING THE LEGLESS JUMPING MECHANISM OF CLICK BEETLES FOR BIO-INSPIRED ROBOTIC DESIGN BY OPHELIA BOLMIN THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Aerospace Engineering in the Graduate College of the University of Illinois at Urbana-Champaign, 2017 Urbana, Illinois Adviser: Assistant Professor Aimy Wissa Abstract Click beetles (Coleoptera: Elateridae) have evolved a unique jumping mechanism to right themselves when on their dorsal side without using their legs or any other appendages. This work describes and analyzes the stages of the click beetle jump using high-speed video recordings and scanning electron micrographs of six beetle species, namely Alaus oculatus, Ampedus linteus, Hemicrepidius sp., Melanactes sp., Melanotus spp. and Parallelosthetus attenuatus. The jump of the click beetle is divided into three consecutive stages: the pre-jump stage (energy storage), and the take-off and airborne stages (energy release). Morphological measurements of the previously mentioned species as well as three additional species, namely Agriotes sp., Athous sp. and Lacon discoideus are taken, and isometric scaling across the species is observed. The body of the click beetle is considered as two masses linked by a hinge. Dynamic and kinematic models of the jump stages are developed. Non-dimensional analysis of the airborne stage is used to analyze the jump and identify the contribution of kinematic and morphological governing parameters. An energetics model is developed to describe the energy exchanges between the three stages of the jump. Kinematic and dynamic models are used to calculate the hinge stiffness and the elastic energy stored in the body during the jump.
    [Show full text]
  • Wireworms' Management
    Insects 2013, 4, 117-152; doi:10.3390/insects4010117 OPEN ACCESS insects ISSN 2075-4450 www.mdpi.com/journal/insects Review :LUHZRUPV¶Management: An Overview of the Existing Methods, with Particular Regards to Agriotes spp. (Coleoptera: Elateridae) Fanny Barsics *, Eric Haubruge and François J. Verheggen Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege. 2, Passage des Déportés, 5030 Gembloux, Belgium; E-Mails: [email protected] (E.H.); [email protected] (F.J.V.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +3281-62-26-63; Fax: +3281-62-23-12. Received: 19 October 2012; in revised form: 13 December 2012 / Accepted: 26 December 2012 / Published: 25 January 2013 Abstract: Wireworms (Coleoptera: Elateridae) are important soil dwelling pests worldwide causing yield losses in many crops. The progressive restrictions in the matter of efficient synthetic chemicals for health and environmental care brought out the need for alternative management techniques. This paper summarizes the main potential tools that have been studied up to now and that could be applied together in integrated pest management systems and suggests guidelines for future research. Keywords: wireworms; click beetles; Agriotes; integrated pest management 1. Introduction Wireworms are the larvae of click beetles (Coleoptera: Elateridae). They consist of more than 9,000 species distributed worldwide, [1] and some are important pests of a wide variety of crops, such as potato, cereals, carrot, sugar beet, sugarcane and soft fruits (e.g., [2±6]). In Europe, damages due to wireworm infestation are mainly attributed to the genus Agriotes Eschscholtz, as witnessed by the numerous studies aiming at their management.
    [Show full text]
  • Insects of Larose Forest (Excluding Lepidoptera and Odonates)
    Insects of Larose Forest (Excluding Lepidoptera and Odonates) • Non-native species indicated by an asterisk* • Species in red are new for the region EPHEMEROPTERA Mayflies Baetidae Small Minnow Mayflies Baetidae sp. Small minnow mayfly Caenidae Small Squaregills Caenidae sp. Small squaregill Ephemerellidae Spiny Crawlers Ephemerellidae sp. Spiny crawler Heptageniiidae Flatheaded Mayflies Heptageniidae sp. Flatheaded mayfly Leptophlebiidae Pronggills Leptophlebiidae sp. Pronggill PLECOPTERA Stoneflies Perlodidae Perlodid Stoneflies Perlodid sp. Perlodid stonefly ORTHOPTERA Grasshoppers, Crickets and Katydids Gryllidae Crickets Gryllus pennsylvanicus Field cricket Oecanthus sp. Tree cricket Tettigoniidae Katydids Amblycorypha oblongifolia Angular-winged katydid Conocephalus nigropleurum Black-sided meadow katydid Microcentrum sp. Leaf katydid Scudderia sp. Bush katydid HEMIPTERA True Bugs Acanthosomatidae Parent Bugs Elasmostethus cruciatus Red-crossed stink bug Elasmucha lateralis Parent bug Alydidae Broad-headed Bugs Alydus sp. Broad-headed bug Protenor sp. Broad-headed bug Aphididae Aphids Aphis nerii Oleander aphid* Paraprociphilus tesselatus Woolly alder aphid Cicadidae Cicadas Tibicen sp. Cicada Cicadellidae Leafhoppers Cicadellidae sp. Leafhopper Coelidia olitoria Leafhopper Cuernia striata Leahopper Draeculacephala zeae Leafhopper Graphocephala coccinea Leafhopper Idiodonus kelmcottii Leafhopper Neokolla hieroglyphica Leafhopper 1 Penthimia americana Leafhopper Tylozygus bifidus Leafhopper Cercopidae Spittlebugs Aphrophora cribrata
    [Show full text]
  • Scrub Oak Preserve Animal Checklist Volusia County, Florida
    Scrub Oak Preserve Animal Checklist Volusia County, Florida Accipitridae Cervidae Cooper's Hawk Accipiter cooperii White-tailed Deer Odocoileus virginianus Red-tailed Hawk Buteo jamaicensis Red-shouldered Hawk Buteo lineatus Charadriidae Bald Eagle Haliaeetus leucocephalus Killdeer Charadrius vociferus Acrididae Corvidae American Bird Grasshopper Schistocerca americana Scrub Jay Aphelocoma coerulescens American Crow Corvus brachyrhynchos Agelenidae Fish Crow Corvus ossifragus Grass Spider Agelenopsis sp. Blue Jay Cyanocitta cristata Anatidae Dactyloidae Wood Duck Aix sponsa Cuban Brown Anole Anolis sagrei Blattidae Elateridae Florida woods cockroach Eurycotis floridana Eyed Click Beetle Alaus oculatus Bombycillidae Emberizidae Cedar Waxwing Bombycilla cedrorum Eastern Towhee Pipilo erythrophthalmus Cardinalidae Eumenidae Northern Cardinal Cardinalis cardinalis Paper wasp Polistes sp. Cathartidae Formicidae Turkey Vulture Cathartes aura Carpenter ants Camponotus sp. Black Vulture Coragyps atratus Fire Ant Solenopsis invicta Certhiidae Fringillidae Blue-gray Gnatcatcher Polioptila caerulea American Goldfinch Carduelis tristis Geomyidae Phalacrocoracidae Southeastern Pocket Gopher Geomys pinetis Double-crested Cormorant Phalacrocorax auritus Gruidae Picidae Sandhill Crane Grus canadensis Northern Flicker Colaptes auratus Pileated Woodpecker Dryocopus pileatus Hesperiidae Red-bellied Woodpecker Melanerpes carolinus Duskywing Erynnis sp. Downy Woodpecker Picoides pubescens Hirundinidae Polychrotidae Tree Swallow Tachycineta bicolor Green Anole
    [Show full text]
  • Laboratory Methods for Rearing Soil Beetles (Coleoptera)
    ZOOLOGICA Bolesław Burakowski Laboratory methods for rearing soil beetles (Coleoptera) Polska Akademia Nauk Muzeum i Instytut Zoologii Warszawa 1993 http://rcin.org.pl POLSKA AKADEMIA NAUK MUZEUM I INSTYTUT ZOOLOGII MEMORABILIA ZOOLOGICA 46 Bolesław Burakowski Laboratory methods for rearing soil beetles (Coleopter a) WARSZAWA 1993 http://rcin.org.pl MEMORABILIA ZOOLOGICA, 46, 1993 World-list abbreviation: Memorabilia Zool. EDITORIAL STAFF Editor — in — chief — Bohdan Pisarski Asistant editor — Wojciech Czechowski Secretary — Katarzyna Cholewicka-Wiśniewska Editor of the volume — Wojciech Czechowski Publisher Muzeum i Instytut Zoologii PAN ul. Wilcza 64, 00-679 Warszawa PL ISSN 0076-6372 ISBN 83-85192-12-3 © Copyright by Muzeum i Instytut Zoologii PAN Warszawa 1993 Nakład 1000 egz. Ark. wyd. 5,5. Ark. druk 4 Druk: Zakład Poligraficzno-Wydawniczy „StangraF’ http://rcin.org.pl Bolesław Bu r a k o w sk i Laboratory methods for rearing soil beetles ( Coleoptera) INTRODUCTION Beetles are the most numerous group of insects; nearly 300,000 species have been described up till now, and about 6,000 of these occur in Poland. The morphological variability and different modes of life result from beetle ability to adapt to all kinds of habitats. Terrestrial and soil living forms dominate. Beetles undergo a complete metamorphosis and most species live in soil during at least one of the stages. They include predators, herbivores, parasites and sapro- phagans, playing a fairly significant role in nature and in man’s economy. Our knowledge of beetles, even of the common species, is insufficient. In spite of the fact that the beetle fauna of Central Europe has been studied relatively well, the knowledge accumulated is generally limited to the adults, while the immature stages have not been adequately studied.
    [Show full text]
  • Coleoptera: Eucnemidae)
    Zootaxa 3878 (2): 179–184 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3878.2.4 http://zoobank.org/urn:lsid:zoobank.org:pub:A8D497DD-1030-4168-BF0B-D30819410BB4 Description of Dirrhagofarsus ernae n. sp. with a key to the known Dirrhagofarsus species (Coleoptera: Eucnemidae) ROBERT L. OTTO1, JYRKI MUONA2 & JIM MCCLARIN3 114323 Hwy M, West Suring, WI 54174. E-mail: [email protected] 2Finnish Museum of Natural History, FIN 00014—University of Helsinki. E-mail: [email protected] 3Nashua, NH. E-mail: [email protected] Abstract The adult and the larva of Dirrhagofarsus ernae n. sp. are described from the Eastern United States. The genus Dirrhag- ofarsus is diagnosed and a key to all known species of the genus is provided. Key words: Coleoptera, Eucnemidae, Dirrhagofarsus ernae Introduction Dirrhagofarsus lewisi (Fleutiaux 1900) was found in the United States for the first time in the early 1970s (Ford & Spilman, 1979; Muona, 2000). Originally described from Japan, this species has since spread from Georgia to SE Wisconsin. Unexpectedly, another species of this genus has appeared in the region, first in Richmond, Virginia, then Pennsylvania and Ohio and most recently in New Hampshire, Missouri, Wisconsin and Alabama. Dirrhagofarsus is one of the many eucnemid genera described as monotypic, but it actually includes many species hiding under other generic assemblages. Muona (1993) placed three species in the then Palaearctic genus Dirrhagofarsus Fleutiaux. In addition to the type species, Microrhagus lewisi Fleutaux, both Microrhagus modestus Fleutiaux 1923 and Hypocaelus attenuatus Mäklin 1845 were included.
    [Show full text]
  • Insects Carolina Mantis Mayfly
    I l l i n o i s Insects Carolina mantis mayfly elephant stag beetle widow skimmer ichneumon wasp click beetle black locust borer birdwing grasshopper large milkweed bug (adults and nymphs) mantisfly walking stick lady beetle stink bug crane fly stonefly (nymph) horse fly wheel bug bot fly prairie cicada leafhopper robber fly katydid alderfly syrphid fly Order Ephemeroptera mayfly Species List Order Coleoptera black locust borer click beetle This poster was made possible by: nsects and their relatives (arthropods) make up nearly 80 percent of the known animal species. Scientists elephant stag beetle lady beetle Illinois Department of Natural Resources Order Plecoptera stonefly currently estimate that 5 to 15 million species of insects exist. In contrast, 5,000 species of mammals are Order Orthoptera birdwing grasshopper Carolina mantis Division of Education found on our planet. In Illinois, we have more than 20,000 species of insects, and many more likely katydid Illinois Natural History Survey I Order Hemiptera large milkweed bug Illinois State Museum occur, as yet undetected in our state! The scientific study of insects is known as entomology. Entomologists stink bug wheel bug Order Diptera bot fly study insects for many reasons, including their incredible number of species and their wide variety of sizes, crane fly horse fly colors, shapes, and lifestyles. The 24 species depicted on this poster were selected by Michael R. Jeffords of robber fly syrphid fly Order Homoptera leafhopper the Illinois Department of Natural Resources, Illinois Natural History Survey, to represent the variety of prairie cicada Order Phasmida walking stick insects occurring in our state.
    [Show full text]
  • New Fossils of Elateridae
    RESEARCH ARTICLE New fossils of Elateridae (Insecta, Coleoptera) from Early Cretaceous Jinju Formation (South Korea) with their implications to evolutionary diversity of extinct Protagrypninae 1 1 2 3 Jae-Cheon SohnID *, Gi Soo Nam , Sei-Woong Choi , Dong Ren 1 Department of Science Education, Gongju National University of Education, Gongju, Chungnam, Republic of Korea, 2 Department of Environmental Education, Mokpo National University, Muan, Jeonnam, Republic of Korea, 3 Capital Normal University, Beijing, PR China a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract Two new genera and species of Elateridae, Megalithomerus magohalmii gen. et sp. nov. and Koreagrypnus jinju gen. et sp. nov., are described based on two pairs of fossils from the OPEN ACCESS late Early Cretaceous Jinju Formation in Jinju City, South Korea. Both Megalithomerus and Citation: Sohn J-C, Nam GS, Choi S-W, Ren D Koreagrypnus represent the youngest occurrences of an extinct elaterid subfamily, Prota- (2019) New fossils of Elateridae (Insecta, grypninae. Megalithomerus magohalmii is the largest known fossil elaterid. These newly Coleoptera) from Early Cretaceous Jinju Formation described elaterids provide a better understanding of the morphological diversity and occur- (South Korea) with their implications to rence of Protagrypninae through geologic time. evolutionary diversity of extinct Protagrypninae. PLoS ONE 14(12): e0225502. https://doi.org/ 10.1371/journal.pone.0225502 Editor: Tony Robillard, Museum National d'Histoire Naturelle, FRANCE Received: January 26, 2019 Introduction Accepted: November 3, 2019 Elateridae, commonly known as click beetles, are the most speciose family in the superfamily Published: December 11, 2019 Elaterioidea, which includes nearly 10,000 species worldwide [1].
    [Show full text]