Neutron-Gamma Competition for $\Beta $-Delayed Neutron Emission

Total Page:16

File Type:pdf, Size:1020Kb

Neutron-Gamma Competition for $\Beta $-Delayed Neutron Emission LA-UR-16-25845 Neutron-gamma competition for β-delayed neutron emission M. R. Mumpower,∗ T. Kawano, and P. M¨oller Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA (Dated: August 8, 2016) We present a coupled Quasi-particle Random Phase Approximation and Hauser-Feshbach (QRPA+HF) model for calculating delayed particle emission. This approach uses microscopic nu- clear structure information which starts with Gamow-Teller strength distributions in the daughter nucleus, and then follows the statistical decay until the initial available excitation energy is ex- hausted. Explicitly included at each particle emission stage is γ-ray competition. We explore this model in the context of neutron emission of neutron-rich nuclei and find that neutron-gamma com- petition can lead to both increases and decreases in neutron emission probabilities, depending on the system considered. A second consequence of this formalism is a prediction of more neutrons on average being emitted after β-decay for nuclei near the neutron dripline compared to models that do not consider the statistical decay. PACS numbers: 23.40.-s, 24.60.Dr I. INTRODUCTION ∼ 250 measurements exist on neutron emitters in the literature [4]. Delayed neutron emission is a common decay channel Very few measurements exist for the branching ra- found in neutron-rich nuclei. It was first discovered in tios or Pn values of multi-neutron emission. The largest 1939 during an investigation of the splitting of uranium known two-neutron emitter (86Ga) was observed at the and thorium when these elements were bombarded with Holifield Radioactive Ion Beam Facility with a P2n = neutrons [1]. This phenomenon is energetically possi- 20(10)% [7]. Future studies at radioactive beam facilities ble when a precursor nucleus with β−-decay energy win- will extend the reach of measureable nuclei well into the dow (Qβ) populates excited states in the daughter nu- regime of multi-neutron emission predicted by theory [8{ cleus above the one neutron separation energy (Sn). The 10]. However, it will still be many years before there is excited states may decay by particle or γ-ray emission. sufficient data to fully benchmark theoretical models. Accurately accounting for β-delayed neutron emission is Delayed neutron emission is challenging to describe necessary in, for example, nuclear reactor operation, to theoretically, relying on the complex description of the the rapid neutron capture or r-process of nucleosynthesis. nucleus, its excited states, and the likelihood of particle For r-process nucleosynthesis, the predicted produc- emission. In particular it is difficult in any model to cal- tion pathway ventures far from the currently known nu- culate the energies of the high-lying states near the neu- clides towards the neutron dripline where Sn is small tron separation energy very accurately. Two approaches and Qβ is large. In this case, multiple-neutron emis- to the description of delayed neutron emission can be sion is possible and may even be the dominant decay found in the literature. The first approach involves mod- pathway for many nuclei near the neutron dripline. This els using systematics, such as the Kratz-Herman formula provides a secondary source of free neutrons during late- [11] or more recent approaches, see e.g. [12]. Models us- times when the nuclei decay back to stability [2]. See ing systematics produce a good global fit to known data Ref. [3] for a recent review and further discussions of the and improvements have recently been made by Miernik impact of β-delayed neutron emission on r-matter flow. et al. where they provide an approximation to neutron- arXiv:1608.01956v1 [nucl-th] 5 Aug 2016 Experimental studies of β-delayed neutron emission gamma competition [13]. The applicability of system- are difficult due to the challenge of producing short-lived atics to multi-neutron emission towards the dripline is neutron-rich nuclei. Studies of these nuclei are further unknown, as they are based on simple relations which compounded by the requirement of high efficiency neu- factor in Qβ and Sn. tron detectors [4]. Alternative techniques seek to sidestep A second approach is to use a microscopic descrip- the problem of developing high efficiency neutron detec- tion, usually starting with some form of Quasi-particle tors by using recoil-ion spectroscopy coupled with a β- Random Phase Approximation (QRPA) that provides Paul trap [5]. Only recently has it been possible to mea- the initial population of the daughter nucleus [8{10, 14{ sure delayed neutron branching ratios for heavy nuclei 16]. Rapid progress has been made for the description near the N = 126 shell closure [6]. In total, roughly of half-lives using the Finite Amplitude Method which is equivalent to QRPA, but this method has not yet been applied to Pn predictions [17]. To calculate Pn values from the QRPA approaches, a schematic formula is used ∗Electronic address: [email protected] based off the available energy window [8{10]. This ap- 2 proach to calculating Pn values is sometimes referred to calculation we smooth the β-strength distribution by a the ‘cutoff' method in the literature. For ease of cita- Gaussian, tion later in the paper, we define three reference mod- (k) 2 els: QRPA-1 (Gamow-Teller (GT) only) [8] and QRPA-2 X (k) 1 [E − Ex] !(Ex) = C b p exp − ; (2) (additional inclusion of First-Forbidden (FF) transitions) 2πΓ 2Γ2 [9], and D3C∗ [10]. The latter is a microscopic approach k based off covariant density functional theory and proton- where b(k) are the branching ratios from the parent state neutron relativistic QRPA. (k) to the daughter states E , Ex is the excitation energy In this paper we present a further upgrade to the of the daughter nucleus, and the Gaussian width is taken microscopic framework of computing delayed neutron- to Γ = 100 keV, as in [18]. The normalization constant, emission probabilities. Our approach combines both the C, is the given by the condition QRPA and statistical methods into a single theoretical framework. This is achieved by first calculating the β- Z Qβ decay intensities to accessible states in the daughter nu- !(Ex)dEx = 1; (3) cleus using QRPA. The subsequent decay of these states 0 by neutron or γ-ray emission is then treated in the sta- where Q is the β−-decay energy window. tistical Hauser-Feshbach (HF) theory. This work extends β Our QRPA solution may be fully replaced or supple- that of Ref. [18], which was limited to near stable iso- mented with experimental data when available. In the topes, to the entire chart of nuclides. case where the level structure and β-decay scheme are known completely, data are taken from the RIPL-3 / ENSDF and no QRPA strength is used. If the database is II. MODEL incomplete, we combine the QRPA solutions with renor- malized ENSDF data. In some cases, energy levels are The calculation of β-delayed neutron emission in known but the spin and parity assignments are uncertain. the Quasi-particle Random Phase Approximation plus In this case, or in the case of that no level information is Hauser-Feshbach (QRPA+HF) approach is a two step found in ENSDF, the QRPA solution is relied upon. process. It involves both the β-decay of the precursor When applicable, ground state masses are taken from nucleus (Z,A) where Z represents the atomic number, the latest compilation of the Atomic Mass Evaluation and A is the total number of nucleons, and the statisti- (AME2012) [22]. Ground state masses and deformations cal decay of the subsequent generations, (Z + 1,A − j) from the 1995 version of the Finite-Range Droplet Model where j is the number of neutrons emitted, ranging from (FRDM1995) are used unless otherwise noted [23]. 0 to many. The statistical decay continues until all the In the second stage of the calculation we assume the available excitation energy is exhausted. This is shown daughter nucleus is a compound nucleus initially pop- schematically in Fig 1. ulated by the β-decay strength from the QRPA calcu- Beginning with the precursor nucleus (Z,A), the de- lations. This assumption is based off the independence cay to the daughter (Z + 1, A) is calculated using the hypothesis from N. Bohr, from which it follows that the QRPA framework of M¨olleret al. [8, 9, 19, 20]. In this compound nucleus depends only on its overall properties framework, the Schr¨odingerequation is solved for the nu- rather than the details of formation [24]. We follow the clear wave functions and single-particle energies using a statistical decay of this nucleus and subsequent genera- folded-Yukawa Hamiltonian. Residual interactions (pair- tions until all the available excitation energy is exhausted ing and Gamow-Teller) are added to obtain the decay using the Los Alamos CoH statistical Hauser-Feshbach matrix element from initial to final state, hfjβGT jii.A code [18, 25, 26]. β-decay strength function is used to describe the behav- For calculation of the neutron transmission coefficients ior of the squares of overlap integrals of nuclear wave we employ the Koning-Delaroche global optical potential functions. The β-decay strength function is given by [21] that has an iso-spin dependent term [27]. This model has been shown to provide a very good description of I(E) neutron-rich nuclei, see e.g. Ref. [28, 29]. We have also Sβ(Ex) = (1) f(Z; Qβ − Ex)T1=2 used the Kunieda deformed optical potential [30], how- ever we find only minor changes to our results and so do where I(Ex) β-intensity per MeV of levels at energy Ex not report on this model here. in the daughter nucleus, f is the usual Fermi function As shown in Fig.
Recommended publications
  • Systematic of Delayed Neutron Parameters
    RU0110988 40 XIV International Workshop on Nuclear Fission Physics Systematic of Delayed Neutron Parameters S.G. Isaev, V.M. Piksaikin Institute of Physics and Power Engineering, Obninsk, Russia Abstract The experimental studies of the energy dependence of the delayed neutron parameters for various fissioning systems has shown that the behavior of a some combination of delayed neutron parameters has a similar features. On the basis of this findings the systematics of delayed neutron experimental data for thorium, uranium, plutonium and americium isotopes have been investigated with the purpose to find a correlation of DN parameters with characteristics of fissioning system as well as a correlation between the delayed neutron parameters themselves. Below we will present the preliminary results which were obtained during this study omitting the physics interpretation of the results. Introduction The knowledge of the time dependence of P-delayed neutron emission is of great importance for the development of reliable data base required both for reactor-physics analysis and for the investigation of nuclei which are far from the valley of stability. Since discovery of delayed neutrons the time dependence of delayed neutron emission from neutron induced fission was studied in more than 238 experiments [1]. In parallel to the experimental studies of aggregate DN emission from neutron induced fission the group parameters of delayed neutron emission were calculated using microscopic approach (summation technique) [2]. These calculations are based on the knowledge of the emission probabilities values Pn, half-life values and yields of individual precursors of delayed neutrons [3]. One of the main results of the aggregate DN decay curve measurements was that the group periods (or decay constants) for various fissioning systems for fast neutrons induced fission do not differ from each other [4].
    [Show full text]
  • 1- TOPIC: 292001 KNOWLEDGE: K1.02 [3.0/3.1] QID: B45 the Term “Neutron Generation Time” Is Defined As the Average Time Betw
    NRC Generic Fundamentals Examination Question Bank--BWR May 2020 TOPIC: 292001 KNOWLEDGE: K1.02 [3.0/3.1] QID: B45 The term “neutron generation time” is defined as the average time between... A. neutron absorption and the resulting fission. B. the production of a delayed neutron and subsequent neutron thermalization. C. neutron absorption producing a fission and absorption or leakage of resultant neutrons. D. neutron thermalization and subsequent neutron absorption. ANSWER: C. TOPIC: 292001 KNOWLEDGE: K1.02 [3.0/3.1] QID: B174 Which one of the following is the definition of the term, prompt neutron? A. A high-energy neutron emitted from a neutron precursor, immediately after the fission process. B. A neutron with an energy level greater than 0.1 MeV, emitted in less than 1.0 x 10-4 seconds following a nuclear fission. C. A neutron emitted in less than 1.0 x 10-14 seconds following a nuclear fission. D. A neutron emitted as a result of a gamma-neutron or alpha-neutron reaction. ANSWER: C. -1- Neutrons NRC Generic Fundamentals Examination Question Bank--BWR May 2020 TOPIC: 292001 KNOWLEDGE: K1.02 [3.0/3.1] QID: B245 Delayed neutrons are neutrons that... A. have reached thermal equilibrium with the surrounding medium. B. are expelled within 1.0 x 10-14 seconds of the fission event. C. are expelled with the lowest average kinetic energy of all fission neutrons. D. are responsible for the majority of U-235 fissions. ANSWER: C. TOPIC: 292001 KNOWLEDGE: K1.02 [3.0/3.1] QID: B1146 (P1945) Which one of the following types of neutrons has an average neutron generation lifetime of 12.5 seconds? A.
    [Show full text]
  • (I) CORRELATION PROPERTIES of DELAYED NEUTRONS from FAST NEUTRON INDUCED FISSION
    XA9848517-/? International Atomic Energy Agency INDC(CCP)-415 Distr. CI + Special INTERNATIONAL NUCLEAR DATA COMMITTEE TWO REPORTS: (i) CORRELATION PROPERTIES OF DELAYED NEUTRONS FROM FAST NEUTRON INDUCED FISSION V.M. Piksaikin, S.G. Isaev Institute of Physics and Power Engineering, Obninsk, Russia (ii) METHOD AND SET-UP FOR MEASUREMENTS OF TRACE LEVEL CONTENT OF HEAVY FISSIONABLE ELEMENTS BASED ON DELAYED NEUTRON COUNTING V.M. Piksaikin, A.A. Goverdovski, G.M Pshakin Institute of Physics and Power Engineering, Obninsk, Russia October 1998 IAEA NUCLEAR DATA SECTION, WAGRAMERSTRASSE 5, A-1400 VIENNA 29-49 Printed by the IAEA in Austria October 1998 INDC(CCP)-415 Distr. CI + Special TWO REPORTS: (i) CORRELATION PROPERTIES OF DELAYED NEUTRONS FROM FAST NEUTRON INDUCED FISSION V.M. Piksaikin, S.G. Isaev Institute of Physics and Power Engineering, Obninsk, Russia Abstract The experimental studies of the energy dependence of the delayed neutron parameters for various fissioning systems has shown that the behavior of a some combination of delayed neutron parameters (group relative abundances a, and half lives T,) has a similar features. On the basis of this findings the systematics of delayed neutron experimental data for thorium, uranium, plutonium and americium isotopes have been investigated with the purpose to find a correlation of DN parameters with characteristics of fissioning system as well as a correlation between the delayed neutron parameters themselves. Below we will present the preliminary results which were obtained during this study omitting the physics interpretation of the results. (ii) METHOD AND SET-UP FOR MEASUREMENTS OF TRACE LEVEL CONTENT OF HEAVY FISSIONABLE ELEMENTS BASED ON DELAYED NEUTRON COUNTING V.M.
    [Show full text]
  • The Study of Beta-Delayed Neutron Decay Near the Neutron Drip Line
    THE STUDY OF BETA-DELAYED NEUTRON DECAY NEAR THE NEUTRON DRIP LINE By Chandana Sujeewa Sumithrarachchi A DISSERTATION Submitted to Michigan State University in partial ful¯llment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Chemistry 2007 ABSTRACT The Study of Beta-delayed Neutron Decay Near The Neutron Drip Line By Chandana Sujeewa Sumithrarachchi The study of neutron-rich oxygen and uorine isotopes can provide important information on the evolution of nuclear shell structure close to the neutron drip line. The structural changes in this region are reected with observations of the rapid change in the location of the drip line at uorine and appearance of a new shell closure at N = 14. The recent experiments along with the shell model calculations provide evidence for the doubly magic nature of 22O. The negative parity states in 22O rooted in the neutron pf orbitals are not experimentally known. The knowledge of nuclear structure in 23F, which has the structure of a single proton outside the doubly magic 22O, is also important as it should be sensitive to the proton s and d orbital splitting. The present work focused on the beta-delayed neutron and gamma- ray spectroscopes from 22N and 23O beta decay. The measurements of 22N and 23O were carried out at the NSCL using fragments from the reaction of 48Ca beam in a Be target. The desired isotopes were stopped in the implantation detector and then monitored for beta-delayed neutrons and gamma- rays using a neutron spectroscopic array and eight detectors from SeGA, respectively.
    [Show full text]
  • Arxiv:1803.08168V1 [Nucl-Th] 21 Mar 2018 4 Nrydpnec,Admlicac Sin Hywr Able Account Were Into They Taking of fission, Data Multi-Chance Considered
    Neutron Energy Dependence of Delayed Neutron Yields and its Assessments Futoshi Minato1, 2 1Nuclear Data Center, Japan Atomic Energy Agency, Tokai 319-1195, Japan 2NSCL/FRIB Laboratory, Michigan State University, East Lansing, Michigan 48824, USA (Dated: September 9, 2018) Incident neutron energy dependence of delayed neutron yields of uranium and plutonium isotopes is investigated. A summation calculation of decay and fission yield data is employed, and the energy dependence of the latter part is considered in a phenomenological way. Our calculation systematically reproduces the energy dependence of delayed neutron yields by introducing an energy dependence of the most probable charge and the odd-even effect. The calculated fission yields are assessed by comparison with JENDL/FPY-2011, delayed neutron activities, and decay heats. Although the fission yields in this work are optimized to delayed neutron yields, the calculated decay heats are in good agreement with the experimental data. Comparison of the fission yields calculated in this work and JENDL/FPY-2011 gave an important insight for the evaluation of the next JENDL nuclear data. I. INTRODUCTION Some fission fragments located on neutron-rich side of the nuclear chart emit neutrons after the β-decay, which are the so-called delayed neutrons. Delayed neutron yields resulting from neutron induced fission of actinide nuclides are crucial to making a light water reactor controllable because they lengthen the reactor period to a time scale long enough to keep the critical state of the reactor. Delayed neutrons play a meaningful role in other research fields as well. One of the examples is r-process nucleosynthesis, which is the leading candidate for producing heavy elements by successive neutron capture at an astronomical site.
    [Show full text]
  • Evaluation and Application of Delayed Neutron Precursor Data
    LA-U534-T Thesis UC-413 Issued: April 1989. LA--U534-T DE89 009586 Evaluation and Application of Delayed Neutron Precursor Data Michaele Clarice Brady* 'Collaborator,Graduate Research Assistant at /.<>> Alamos. Oak Ridge Sulumal laboratory. Oak Ridge. TV ITtiM MASTER DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED v Los Alamos National Laboratory Los Alamos.New Mexico 87545 IV ACKNOWLEDGEMENTS The author wishes to take this opportunity to acknowledge the many peo- ple and organizations who helped to make this work possible. The research presented here was funded in part by Associated Western Universities under a Department of Energy (DOE) contract and also by the DOE Office of Basic Energy Sciences. These organizations are gratefully acknowledged and their assistance in this endeavor is highly appreciated. A special thanks to Dr. T. R. England from whom I have received many benefits based on his expertise, experience, and good nature. I am indebted to him for his guidance and inspiration in performing the work presented here. I would also like to express my appreciation to Dr. T. A. Parish for his encour- agement throughout the course of this work and particularly his assistance in the preparation of this manuscript. Prof. K. -L. Kratz of the University of Mainz; Prof. Gosta Rudstam of the Swedish Research Council's Laboratory at Studsvik; P. Reeder and R. Warner of Pacific Northwest Laboratory; and Prof. G. Couchell of the University of Lowell are gratefully acknowledged for providing their experimental delayed neutron spectral data. A special note of appreciation is expressed to Drs. F. M. Mann and R. E.
    [Show full text]
  • NTP 101 Short Course
    NTP 101 Short Course An Introductory Overview of Nuclear Science and Space Nuclear Power and Propulsion Systems ENERGY COMPARISON Chemical: combustion, reaction Natural: solar (PV, thermal), EM tethers Nuclear: radioactive decay, fission Advanced nuclear: fusion, antimatter Process Maturity Reaction Reaction Specific Specific Energy Energy Cost (eV) (J/kg) ($/kg) 6 -1 0 Combustion Proven CH4 + 2O2 → CO2 + 2H2O41010 –10 (CH4) -1 10 (O2) 7 0 Fuel Cell Proven 2H2 + O2 → 2H2O 10.2 10 10 (H2) -1 10 (O2) 6 12 6 Radioisotope Proven → 5.59 x 10 10 10 6 13 4 Fission Proven → 2 + γ 195 x 10 10 10 (XF > 93%) 6 14 3 Fusion Research → 17.57 x 10 10 10 (D) 6 6 3 → 18.35 x 10 10 ( He) Antimatter Research p + p- → γ 1.05 x 109 1016 1012 NUCLEAR = MISSION ENABLING L = 46.9 m OD = 8.4 m Fission 341 mL of 235U = 50x MLOX = 630 MT MH2 = 106 MT Significantly extends mission capability by overcoming current technology limitations: Power Reliable, robust, long-duration, power dense Logistics (consumables) – Food, water, oxygen Time dependant Human Factors factors mitigated by – μg atrophy rapid propulsion decreasing transit – Psychological isolation Shielding decreases – Radiation dose crew dose RADIOSIOTOPE DECAY U-234 Heat produced from natural alpha (α) decay 5.6 MeV Pu-238 (He-4) 238Pu Decay Service life activity (A) inversely proportional to isotope half-life (t1/2) / Radioisotope Half-life Comparison RADIOISOTOPE POWER SYSTEMS General Purpose Heat Source (GPHS) Nuclide wt % 238 Fuel PuO2 Pu 83.6 239 Power 250 Wth (BOM) Pu 14.0 Mass 1.44 kg 240Pu 2.0 238 241 PuO2 Pellet.
    [Show full text]
  • 22.05 Reactor Physics - Part Twenty-Six
    22.05 Reactor Physics - Part Twenty-Six Reactor Operation Without Feedback Effects 1. Reference Material: See pp. 363-368 of the article, “Light Water Reactor Control Systems,” in Wiley Encyclopedia of Electrical and Electronics Engineering. 2 Critical – Point of Adding Heat a) Crucial concepts are: Prompt and delayed neutrons Importance of delayed neutrons Power-period relation Reactivity Dynamic period equation Step and ramp reactivity transients. b) The 'point of adding heat' is the power level above which a change in temperature is observed following a change of power. Reactors may be critical at a few Watts or even less. At such low powers, no change in temperature results because of the core's heat capacity. In general, there are no reactivity feedback effects below the point-of-adding heat. 3. Prompt and Delayed Neutrons The reactor multiplication factor, K, has been defined as the ratio of neutrons in one generation to those in the immediately preceding generation. Combining this definition with a physical understanding of the neutron life cycle allowed us to write an equation that predicted the equilibrium neutron count rate in a subcritical reactor. Unfortunately, that relationship is not valid for a critical or supercritical reactor. We need to develop a means of describing both the neutron level and its rate of change in a supercritical reactor. The first thing that we should do is to examine the fission process and determine what types of neutrons are produced. The fission of a U-235 nucleus normally yields two fission fragments, an average of 2.5 neutrons, and an assortment of beta particles, gamma rays and neutrinos.
    [Show full text]
  • Improved Neutron Kinetics for Coupled Three-Dimensional Boiling Water Reactor Analysis
    The Pennsylvania State University The Graduate School Department of Mechanical and Nuclear Engineering IMPROVED NEUTRON KINETICS FOR COUPLED THREE-DIMENSIONAL BOILING WATER REACTOR ANALYSIS A Thesis in Nuclear Engineering by Bedirhan Akdeniz © 2007 Bedirhan Akdeniz Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2007 The thesis of Bedirhan Akdeniz was reviewed and approved* by the following: Kostadin N. Ivanov Professor of Nuclear Engineering Thesis Advisor Chair of Committee Lawrence E. Hochreiter Professor of Nuclear Engineering Yousry Y. Azmy Professor of Nuclear Engineering Cengiz Camcı Professor of Aerospace Engineering Erwin Müller Fellow Engineer Westinghouse Electric, Sweden Special Member Dobromir Panayotov Principal Engineer Westinghouse Electric, Sweden Special Member Jack S. Brenizer, Jr. Professor of Nuclear Engineering Chair of Nuclear Engineering Program *Signatures are on file in the Graduate School iii ABSTRACT The need for a more accurate method of modelling cross section variations for off-nominal core conditions is becoming an important issue with the increased use of coupled three-dimensional (3-D) thermal-hydraulics/neutronics simulations. In traditional reactor core analysis, thermal reactor core calculations are customarily performed with 3- D two-group nodal diffusion methods. Steady-state multi-group transport theory calculations on heterogeneous single assembly domains subject to reflective boundary conditions are normally used to prepare the equivalent two-group spatially homogenized nodal parameters. For steady-state applications, the equivalent nodal parameters are theoretically well-defined; but, for transient applications, the definition of the nodal kinetics parameters, in particular, delayed neutron precursor data is somewhat unclear. The fact that delayed neutrons are emitted at considerably lower energies than prompt neutrons and that this difference cannot be accounted for in a two-group representation is of particular concern.
    [Show full text]
  • Beta-Delayed Neutron Data and Models for SCALE
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2016 Beta-Delayed Neutron Data and Models for SCALE Kemper Dyar Talley University of Tennessee, Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Nuclear Commons, and the Nuclear Engineering Commons Recommended Citation Talley, Kemper Dyar, "Beta-Delayed Neutron Data and Models for SCALE. " PhD diss., University of Tennessee, 2016. https://trace.tennessee.edu/utk_graddiss/4170 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Kemper Dyar Talley entitled "Beta-Delayed Neutron Data and Models for SCALE." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Energy Science and Engineering. Mark L Williams, Major Professor We have read this dissertation and recommend its acceptance: Robert K. Grzywacz, Larry Townsend, Thomas Handler Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Beta-Delayed Neutron Data and Models for SCALE A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Kemper Dyar Talley December 2016 c by Kemper Dyar Talley, 2016 All Rights Reserved.
    [Show full text]
  • Delayed Neutron Emission from Mass-Separated Fission Products Jay Harold Norman Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1973 Delayed neutron emission from mass-separated fission products Jay Harold Norman Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Nuclear Engineering Commons, and the Oil, Gas, and Energy Commons Recommended Citation Norman, Jay Harold, "Delayed neutron emission from mass-separated fission products " (1973). Retrospective Theses and Dissertations. 5111. https://lib.dr.iastate.edu/rtd/5111 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page\S/ or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image.
    [Show full text]
  • Arxiv:2102.01165V1 [Nucl-Ex] 1 Feb 2021 CONTENTS 4
    Development of a Reference Database for Beta-Delayed Neutron Emission P. Dimitriou,1, ∗ I. Dillmann,2, 3 B. Singh,4 V. Piksaikin,5 K.P. Rykaczewski,6 J.L. Tain,7 A. Algora,7 K. Banerjee,8 I.N. Borzov,9, 10 D. Cano-Ott,11 S. Chiba,12 M. Fallot,13 D. Foligno,14 R. Grzywacz,15, 6 X. Huang,16 T. Marketin,17 F. Minato,18 G. Mukherjee,8 B.C. Rasco,19, 6, 15, 20 A. Sonzogni,21 M. Verpelli,1 A. Egorov,5 M. Estienne,13 L. Giot,13 D. Gremyachkin,5 M. Madurga,15 E.A. McCutchan,21 E. Mendoza,11 K.V. Mitrofanov,5 M. Narbonne,13 P. Romojaro,11 A. Sanchez-Caballero,11 and N.D. Scielzo22 1NAPC-Nuclear Data Section, International Atomic Energy Agency, A-1400 Vienna, Austria 2TRIUMF, Vancouver, British Columbia V6T 2A3, Canada 3Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8P 5C2, Canada 4Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada 5State Scientific Center of Russian Federation, Institute of Physics and Power Engineering, 249033 Obninsk, Russian Federation 6Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA 7IFIC, CSIC-Universitat de Valencia, 46071 Valencia, Spain 8Variable Energy Cyclotron Centre, Kolkata 700064, India 9National Research Centre Kurchatov Institute, Department of Nuclear Astrophysics, 1 Akademika Kurchatova pl., Moscow 123182, Russian Federation 10Joint Institute for Nuclear Research, Bogolubov Laboratory of Theoretical Physics, 6 Joliot-Curie, 141980 Dubna, Moscow region, Russian Federation 11Centro de Investigaciones Energ´eticas, Medioambientales y Tecnol´ogicas (CIEMAT), Avenida Complutense 40, Madrid 28040, Spain 12Tokyo Institute of Technology, 2-12-1-N1-9, Ookayama, Meguru-ku, Japan 13Subatech, CNRS/in2p3, Univ.
    [Show full text]