The Microscope
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Method of Detecting Viral Contamination in Parenteral Solutions
University of the Pacific Scholarly Commons University of the Pacific Theses and Dissertations Graduate School 1978 A Method Of Detecting Viral Contamination In Parenteral Solutions. Joseph Alexander Woelfel University of the Pacific Follow this and additional works at: https://scholarlycommons.pacific.edu/uop_etds Part of the Pharmacy and Pharmaceutical Sciences Commons Recommended Citation Woelfel, Joseph Alexander. (1978). A Method Of Detecting Viral Contamination In Parenteral Solutions.. University of the Pacific, Dissertation. https://scholarlycommons.pacific.edu/uop_etds/3240 This Dissertation is brought to you for free and open access by the Graduate School at Scholarly Commons. It has been accepted for inclusion in University of the Pacific Theses and Dissertations by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. A METHOD OF' Di'~'rECTING VIRAL CONTAMINATION IN PAP.ENTF,RAL SOLUTIONS . ' A Dissertation Presented to the Faculty of the School of Pharmaey the University of the Pacific In Partial Fulfillment of the Hequj.remen ts for the Degree Doctor of Philosophy by Joseph Alexander Woelfel 1 July 1978 j Copyright © 1978 Joseph Alexander Woelfel All Rights Reserved This dissertation, written and submitted by JOSEPH ALEXANDER WOELFEL is approved for recommendation to the Committee on Graduate Studies, University of the Pacific Dean of the School or Department Chairman: Dissertation Committee: ~M 1 ~~~ Chairman 4-;/~ud~C?/~~ Dated._hyp=:!=::f9.--<ZL.2~S,:.,..._.t._l ~9.L.11Lf _____ A ME THOll OF DETECTING VIRAL CONTAr~I!JA TI!HJ IN PARENTERAL SOLUTIONS Abstract of Dissertation Th~ pres~nce of contaminants in parenteral sol~tions is a constant nemesis against whic h pharmaceutical manufacturers, as well as medical, pharmacy , and nursing practitioners mus t vigilantly struggle to provi de quality healt h care. -
Application of Machine Learning to Toolmarks: Statistically Based Methods for Impression Pattern Comparisons
The author(s) shown below used Federal funds provided by the U.S. Department of Justice and prepared the following final report: Document Title: Application of Machine Learning to Toolmarks: Statistically Based Methods for Impression Pattern Comparisons Author: Nicholas D. K. Petraco, Ph.D.; Helen Chan, B.A.; Peter R. De Forest, D.Crim.; Peter Diaczuk, M.S.; Carol Gambino, M.S., James Hamby, Ph.D.; Frani L. Kammerman, M.S.; Brooke W. Kammrath, M.A., M.S; Thomas A. Kubic, M.S., J.D., Ph.D.; Loretta Kuo, M.S.; Patrick McLaughlin; Gerard Petillo, B.A.; Nicholas Petraco, M.S.; Elizabeth W. Phelps, M.S.; Peter A. Pizzola, Ph.D.; Dale K. Purcell, M.S.; Peter Shenkin, Ph.D. Document No.: 239048 Date Received: July 2012 Award Number: 2009-DN-BX-K041 This report has not been published by the U.S. Department of Justice. To provide better customer service, NCJRS has made this Federally- funded grant final report available electronically in addition to traditional paper copies. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice. This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice. Report Title: Application of Machine Learning to Toolmarks: Statistically Based Methods for Impression Pattern Comparisons Award Number: 2009-DN-BX-K041 Authors: Nicholas D. -
Forensic Laboratories: Handbook for Facility Planning, Design, Construction, and Moving
Forensic Laboratories: Handbook for Facility Planning, Design, Construction, and Moving Some figures, charts, forms, and tables are not included in this PDF file. To view this document in its entirety, order a photocopy from NCJRS. T O EN F J TM U R ST U.S. Department of Justice A I P C E E D B O J C S F A V Office of Justice Programs F M O I N A C I J S R E BJ G O OJJ DP O F PR National Institute of Justice JUSTICE ForensicForensic Laboratories:Laboratories: HandbookHandbook forfor FacilityFacility Planning,Planning, Design,Design, Construction,Construction, andand MovingMoving RESEARCH REPORT National Institute of Justice National Institute of Standards and Technology Department of Justice Department of Commerce U. S. Department of Justice Office of Justice Programs 810 Seventh Street N.W. Washington, DC 20531 Janet Reno Attorney General U.S. Department of Justice Raymond C. Fisher Associate Attorney General Laurie Robinson Assistant Attorney General Noël Brennan Deputy Assistant Attorney General Jeremy Travis Director, National Institute of Justice Office of Justice Programs National Institute of Justice World Wide Web Site: World Wide Web Site: http://www.ojp.usdoj.gov http://www.ojp.usdoj.gov/nij U.S. Department of Justice Office of Justice Programs National Institute of Justice Forensic Laboratories: Handbook for Facility Planning, Design, Construction, and Moving Law Enforcement and Corrections Standards and Testing Program Coordinated by Office of Law Enforcement Standards National Institute of Standards and Technology Gaithersburg, MD 20899–0001 April 1998 NCJ 168106 National Institute of Justice Jeremy Travis Director This technical effort to develop this report was conducted under Interagency Agreement No. -
Firearms & Tool Marks Comparison Microscope
Firearms & Tool Marks Comparison Microscope LCF3 The LCF3 Firearms & Tool Marks Comparison Microscope is a robust and powerful system offering outstanding performance, ergonomic comfort, and incredible versatility. Leeds has designed the system incorporating feedback from the first hand experience of forensic examiners. PERFORMANCE • The LCF3 is built with world-class Olympus apochromatically cor- rected optics, providing crisp, aberration-free, high-resolution images. The macro bodies, with a 16:1 zoom ratio and built-in aperture diaphragms, provide the examiner with 14 matched mag- nification positions to choose from. The optics are parcentric and parfocal throughout the zoom range. Leeds’ technicians align all 14 of the click stop settings to assure that the magnification of the right and left zoom bodies are matched. This matching is complet- ed using N.I.S.T. (National Institute of Standards and Technology) traceable standards and includes an ISO 17025 accredited Certificate of Calibration with each LCF3. Optional objectives are available to provide alternate magnification ranges and working distances for the examiners. • Low profile stages help maintain an ergonomic viewing position and places the X and Y controls near the coarse and fine focus knobs. These mechanical stages and focus units are positioned to minimize repetitive hand-over-wrist motions. The stage mounts are placed on adjustable posts, allowing the stages to be remove from the work surface, to accommodate large samples. • The LCF3 optical bridge produces an erect, un-reversed image with a large 22mm field of view. Compared images can be viewed as 100% right, 100% left, and divided or overlapped into any ratio. -
Physical Evidence Manual
If you have issues viewing or accessing this file contact us at NCJRS.gov. City of Phoenix Physical Evidence Manual 142520 U.S. Department of Justice National Institute of Justice This document has been reproduced exactly as received from the person or organization originating it. Points of view or opinions stated in this document are those of the authors and do not necessarily represent the official position or policies of the National Institute of Justice. Permission to reproduce this copyrighted material has been granJ;l}\8'enix Police Department (AZ) to the National Criminal Justice Reference Service (NCJRS). Further reproduction outside of the NCJRS system requires permission of the copyright owner. Phoenix Police Department Crime Detection Laboratory d 5 CITY OF PHOENIX POLICE DEPARTMENT Crime Detection Laboratory WILLIAM J. COLLIER Director Edited by Raymond Gieszl 1990 -------------_._---------------------' CONTENTS I. Introduction ---------------------------------- 3-4 II. Laboratory ------------------------------------- 5 III. Function and Services ------------------------- 6-7 IV. General Instruction for Collection and -------- 8-10 Preservation of Physical Evidence V. Crime Scene Processing and Reconstruction ----- 11-15 VI. Marijuana, Narcotics and Dangerous Drugs ------ 16-18 VII. Prescription Only Drugs ------------------------ 19-20 VIII. Toxicology ------------------------------------ 21-22 IX. Blood stains ---------------------------------- 23-29 X. Hair ------------------------------------------- 30-32 XI. Seminal -
Forensic Applications of Microscopy: Fibers 99
© Jones & Bartlett© Darren Baker/ShutterStock, Inc. Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 9781449691790_CH04_FINAL.indd 82 28/10/13 9:42 AM © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTIONCHAPTER The Microscope © Jones & Bartlett Learning, -
Advanced Light Microscopy
Advanced Light Microscopy Volume 2 Specialized Methods Maksymilian Pluta Professor of Applied Optics Head of the Physical Optics Department Central Optical Laboratory, Warszawa Elsevier Amsterdam-Oxford-New York-Tokyo PWN-Polish Scientific Publishers Warszawa 1989 Contents Introduction, XI Chapter 5. Phase Contrast Microscopy, 1 5.1. General principles, 1 5.2. Typical phase contrast systems, 11 5.3. Imaging properties, 15 5.3.1. Halo, shading-off, and image fidelity, 15 5.3.2. Resolution, 20 5.3.3. Sensitivity, 22 5.3.4. Influence of stray light, 25 5.4. Nomenclature, 28 5.5. Highly sensitive phase contrast devices, 30 5.5.1. Optical properties of soot layers, 30 5.5.2. Highly sensitive negative phase contrast device (KFA), 32 5.5.3. Highly sensitive positive phase contrast device (KFS), 36 5.6. Alternating phase contrast systems, 38 5.6.1. Beyer's phase contrast device, 39 v 5.6.2. Device with both positive and negative phase rings (KFZ), 42 5.7. Phase contrast systems with continuously variable image contrast, 45 5.7.1. The Polanret system, 46 5.7.2. Nomarski's variable achromatic phase contrast system, 50 5.7.3. Nikon interference-phase contrast device, 52 5.7.4. Variable phase contrast device with a single polarizing phase ring, 54 5.8. Phase contrast microscopy by using interference systems, 56 5.8.1. Interphako, 57 5.8.2. Variable phase contrast microscopy based on the Michelson inter ferometer, 61 5.9. Stereoscopic phase contrast microscope, 66 5.9.1. Underlying principles and mode of operation, 67 VI CONTENTS 5.9.2. -
High School Science Materials Ordering List 2017
Featuring 2017 Grades 9–12 High School Science Materials Ordering List Biology ...............................................Pages 3–10 Chemistry ..........................................Pages 11–15 Earth Science ....................................Pages 16–19 We are Environmental Science .....................Pages 20–22 your essential Physics ...............................................Pages 23–27 resource for a STEM .................................................Pages 28–33 well-stocked science classroom. www.freyscientific.com 800-225-3739 Ordering Information EASY ORDERING SHIPPING AND Damages Please call customer service within 5 days Phone: 800-225-3739 HANDLING of delivery to report damaged shipments. All Call toll-free from 8:00am to 5:30pm (EST), A shipping and handling charge of 12% carriers reserve the right to inspect damaged Monday through Friday. Please have your will be added to all orders, with a minimum shipments. We suggest that visibly damaged credit card or purchase order number handy. charge of $5.00. shipments be refused at the time of delivery. From outside the U.S. call: 603-579-3400 Standard Delivery Fax: 877-256-3739 US 12% EASY PAYMENT Fax your order form or authorized purchase International 30% Credit Card and P-Card order toll-free 24 hours a day, 7 days a week. Minimum Charge We accept: From outside the U.S. fax to: 603-886-4632 Continental US $5.00 Order by mail AK, HI and Int’l $15.00 Send your authorized purchase order to: Standard delivery is UPS Ground or Please include credit card name, number, Frey Scientific equivalent. Overnight, second-day, and expiration date and authorized signature. P.O. Box 3000 other shipping methods are available at an Call us for more information if you would Nashua NH 03061-3000 additional cost. -
By Arshya Feizi a Thesis Submitted in Conformity with the Requirements For
A CMOS MULTI-MODAL CONTACT-IMAGING SCANNING MICROSCOPE by Arshya Feizi A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Graduate Department of Electrical and Computer Engineering University of Toronto Copyright c 2014 by Arshya Feizi A CMOS multi-modal contact-Imaging Scanning Microscope Arshya Feizi Master of Applied Science Graduate Department of Electrical and Computer Engineering University of Toronto 2014 Abstract This thesis presents the design, implementation and partial experimental characterization of a multi-modality scanning-contact microscope (SCM) with application in biomedical imaging. Bench-top light microscopes are bulky and expensive and provide only one imaging modality. The SCM’s imaging component is a custom-made CMOS imager in the AMS0.35µm imaging process. Six pixel types are integrated into the imager, which enable the SCM to support six imaging modalities. For sub-pixel resolution imaging, a specialized pixel layout is used which allows the system to support a super-resolution algorithm which takes multiple images with sub-pixel shifts as its input and generates a single high-resolution image. Each pixel type may generate an output voltage or current, depending on whether it is active or passive. A low-power dual-input 2nd order ΔΣ ADC with an SNR of 78dB is implemented to accommodate both current and voltage inputs while preserving noiseshaping characteristics for both inputs. ii Acknowledgements Despite the fact that this work solely bears my name, it would not have been possible without the help of many significant individuals. First, I would like to thank my parents for their unconditional love and emotional support through the ups and downs of this project. -
An Access-Dictionary of Internationalist High Tech Latinate English
An Access-Dictionary of Internationalist High Tech Latinate English Excerpted from Word Power, Public Speaking Confidence, and Dictionary-Based Learning, Copyright © 2007 by Robert Oliphant, columnist, Education News Author of The Latin-Old English Glossary in British Museum MS 3376 (Mouton, 1966) and A Piano for Mrs. Cimino (Prentice Hall, 1980) INTRODUCTION Strictly speaking, this is simply a list of technical terms: 30,680 of them presented in an alphabetical sequence of 52 professional subject fields ranging from Aeronautics to Zoology. Practically considered, though, every item on the list can be quickly accessed in the Random House Webster’s Unabridged Dictionary (RHU), updated second edition of 2007, or in its CD – ROM WordGenius® version. So what’s here is actually an in-depth learning tool for mastering the basic vocabularies of what today can fairly be called American-Pronunciation Internationalist High Tech Latinate English. Dictionary authority. This list, by virtue of its dictionary link, has far more authority than a conventional professional-subject glossary, even the one offered online by the University of Maryland Medical Center. American dictionaries, after all, have always assigned their technical terms to professional experts in specific fields, identified those experts in print, and in effect held them responsible for the accuracy and comprehensiveness of each entry. Even more important, the entries themselves offer learners a complete sketch of each target word (headword). Memorization. For professionals, memorization is a basic career requirement. Any physician will tell you how much of it is called for in medical school and how hard it is, thanks to thousands of strange, exotic shapes like <myocardium> that have to be taken apart in the mind and reassembled like pieces of an unpronounceable jigsaw puzzle. -
Aligned Layers of Silver Nano-Fibers
Materials 2012, 5, 239-247; doi:10.3390/ma5020239 OPEN ACCESS materials ISSN 1996-1944 www.mdpi.com/journal/materials Article Aligned Layers of Silver Nano-Fibers Andrii B. Golovin 1, Jeremy Stromer 2 and Liubov Kreminska 2,* 1 Department of Electrical Engineering, City College of the City University of New York, New York, NY 10031, USA; E-Mail: [email protected] 2 Department of Physics & Physical Science, University of Nebraska at Kearney, Kearney, NE 68847, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-308-865-8144; Fax: +1-308-865-8281. Received: 5 January 2012; in revised form: 23 January 2012 / Accepted: 28 January 2012 / Published: 1 February 2012 Abstract: We describe a new dichroic polarizers made by ordering silver nano-fibers to aligned layers. The aligned layers consist of nano-fibers and self-assembled molecular aggregates of lyotropic liquid crystals. Unidirectional alignment of the layers is achieved by means of mechanical shearing. Aligned layers of silver nano-fibers are partially transparent to a linearly polarized electromagnetic radiation. The unidirectional alignment and density of the silver nano-fibers determine degree of polarization of transmitted light. The aligned layers of silver nano-fibers might be used in optics, microwave applications, and organic electronics. Keywords: metal nano-fibers; lyotropic liquid crystals; aligned layers; dichroic polarizers; dichroic ratio; degree of polarization 1. Introduction Modern optical applications, e.g., flexible liquid crystal displays, require a polarizer with large optical aperture, minimized thickness, broad band transmission, and low cost. To resolve such contradictory requirements one may use so-called dichroic film polarizers. -
The Microscope; However, It Is Not the First Time Collector’S Item
69 VOLUME 54, THIRD/FOURTH QUARTER, 2006 CONTENTS VOL. 54 NO. 3/4 Editorial ii Gary J. Laughlin Note on Page Numbering in Volume 15 iv Cumulative Indexes 1937 - 2006 (Volumes 1 - 54) Author Index 5 Subject Index 87 Book Reviews (by Author) 188 EDITORIAL This issue is the complete 69 year index of the con- light microscope was in danger of becoming a tents of The Microscope; however, it is not the first time collector’s item. In fact, for years I believed that this that a cumulative index for this journal has been made was a modern dilemma but it wasn’t until Dr. McCrone available for its readers. An earlier version was pub- told me that when he left Cornell, he was unable to lished as a supplement in 1982 (covering Volumes 1- find anyone in industry who really knew what the 30) and again, after the completion of the first 50 years light microscope or a chemical microscopist could do. of The Microscope, in 1987 (Vol. 35:4). Because these two Armour Research Foundation in Chicago took a chance early indexes are no longer available and nearly 20 and hired him — that was 1948. The rest is history. additional years have passed, we thought it a good The light microscope has been accused of being idea to bring things up to date and make the complete too simple or too complicated, too subjective, or too author, subject, and book review indexes available as unreliable — as compared to automated alternatives. a single-volume print issue that will now, for the first Microscopists couldn’t disagree more: the results pro- time, also be available in electronic format.