The Fish Pathogen Francisella Orientalis: Characterisation and Vaccine Development

Total Page:16

File Type:pdf, Size:1020Kb

The Fish Pathogen Francisella Orientalis: Characterisation and Vaccine Development The fish pathogen Francisella orientalis: characterisation and vaccine development A thesis submitted to the University of Stirling for the degree of: Doctor of Philosophy in Aquatic Veterinary Studies By D.V.M. José Gustavo Ramírez Paredes Institute of Aquaculture University of Stirling, Stirling, Scotland, United Kingdom April 2015 Declaration Declaration This thesis has been composed in its entirety by me, the candidate. Except where specifically acknowledged, the work described in this thesis has been conducted independently and has not been submitted for any other degree. José Gustavo Ramírez Paredes Candidate’s signature: _________________________________________ Supervisor’s signature: _________________________________________ Supervisor’s signature: _________________________________________ Date: _________________________________________ I Supervisors and external advisors Supervisors and external advisors …………………………….. Professor Randolph Richards Institute of Aquaculture Stirling, United Kingdom …………………………….. Professor Sandra Adams Institute of Aquaculture Stirling, United Kingdom Dr. Duncan Colquhoun Dr. Esteban Soto Section for Bacteriology School of Veterinary Medicine Norwegian Veterinary Institute University of California-Davis Oslo, Norway California, United States Dr. Pär Larsson Dr. Cristian Gallardo Umeå University Hospital and Interdisciplinary Centre for Aquaculture Swedish Defence Research Agency Research and University of Concepcion Umeå, Sweden Concepcion, Chile Dr. Kim Thompson Dr. David Penman Aquaculture Research Group Institute of Aquaculture Moredun Research Institute University of Stirling Edinburgh, United Kingdom Stirling, United Kingdom II To my ever supportive parents Gloria Paredes & Gustavo Ramírez y a la memoria de mi abuelita Clotilde Coty Pérez III Acknowledgments Acknowledgements The studies of this thesis were conducted at the Aquatic Vaccine Unit, Institute of Aquaculture, University of Stirling and were partially financed by the National Council for Science and Technology in Mexico (CONACyT) with a scholarship that covered most of my tuition fees and some of my personal expenses. First of all I am truly grateful to my supervisors at the Institute of Aquaculture (IoA), Professor Alexandra Adams and Professor Randolph Richards, Dr. Kim Thompson and Dr. David Penman for giving me the opportunity to undertake a PhD, encouraging my research and allowing me to grow as a scientist. My sincere gratitude and appreciation are also given to Dr. Duncan Colquhoun and Dr. Pär Larsson for their expert advice and help during the course of the work. I will never forget your keenness, guidance and contributions to my project. I am without doubt in “life-debt” with both of you for being a cornerstone for this study and trusting my ideas. My acknowledgments also to Mr. Warren Turner at Nam Sai Farms, DVM Khan Kledmanee at the Faculty of Veterinary Medicine in Mahidol University, family Krajangwong and Dr. David Little for facilitating my visit to Thailand. The “chapter zero” “chasing Francisella in Thailand” was the baseline of this thesis! I am also grateful to Dr. Cristian Gallardo at Universidad de Concepcion and the “INCAR crew” for your hospitality while visiting the lab in Chile and to Dr. Esteban Soto for your invaluable advices, long hours on the phone and interest on my proposals. I really hope this is the beginning of many more collaborations with both of you. I am truly indebted to my friends Dr. Phuoc Nguyen Ngoc and Dr. Dilok Wongsathein for their help in the bacteriology and molecular labs when I had just arrived to Stirling. I will always remember those “Francisella hunting” days in the pangasius fish with Dr. Phuoc. A huge thanks also to Dr. Keith Jolley and Dr. Martin Maiden at Oxford University for allowing me to use their rMLST platform for my genomic analyses and to Hans-Jürgen Busse at the University of Veterinary Medicine in Vienna Austria for kindly contributing with the chemotaxonomical analyses of some of the strains. Many thanks to Caroline Öhrman and Mats Forsman at the Swedish Defence Research Agency for their contribution to the bacterial genome sequencing. I am furthermore grateful to James Dick at the IoA Nutrition Group for his support with the bacterial fatty acid analysis. Thanks also to Dr. Mansour El-Matbouli at the University of Veterinary Medicine in Vienna Austria and Dr. Cesar Ortega Santana at the Faculty of Veterinary Medicine Universidad Autónoma del Estado de México for their contribution with bacterial isolates. Special credits to DVM Miguel Mendoza for his astounding performance during his MSc project which enormously contributed to Chapter 5. Thanks patron for trusting this project and me as a supervisor. IV Acknowledgments Also thanks to Dr. Matt Metselaar (Fish Vet Group UK) for believing in my ideas. A major part of this project would not have been possible without the financial support from the FVG in Chapters 2 and 5. I would like to collectively acknowledge all the staff at the IoA but especially to Keith Ranson at the Tropical Aquarium, Niall Auchinachie at the challenge aquarium, Hillary McEwan and Karen Snedden at the Aquatic Vaccine Lab, Linton Brown at the Electron Microscope, Debbie Faichney at the Bacteriology Lab, Jacquie Ireland in Genetics and Denny Conway in Parasitology. I am also thankful to my friend DVM Sandra Schlittenhardt for her contribution with the histopathological interpretations. I also gratefully acknowledge Dr. Mario Garduño Lugo and Biol. Germán Muñoz- Córdova at the Faculty of Veterinary Medicine, National Autonomous University of Mexico for broadening my academic horizons and setting me up on track to pursue this degree in the field of the Aquatic Veterinary Medicine. Important part of this quest were the friends and colleagues with whom I shared many scientific and les serious discussions, moments of happiness and stress: Claudia Mansilla, Nilantha Jayasuriya, Stuart McMillan, Thao Ngo, Carsten Krome, Jomer Bo Lucanas, Carina Duarte, Phil Lyons, Benjamin Lopez, Jan Heumann, Sara Picon, Eric Leclercq, Rasina Rasid, Mathew Sprague, Nancy Xu, La Licenciada Berta Rivera, Polyana Silva, Ploy Krajangwong, Lislie Solis, Rogelio Sierra, Winarti Sarmin and Khalid Shahin and also a huge apology in advance for all those that I maybe forgetting at this time in the morning (27/5/15 5:05 am). I should also say thank you to the members of the Aquaculture Students Association (ASA) my good friends: Antonis Chalaris, Hazel McDonald and Lynn Chalmers, It’s been nice working with you towards the benefit of our community. A very special recognition to Dr. Sean Monaghan who more than a friend has been like a brother to me over these years in Scotland. Million thanks for your patience and advices. I am deeply thankful and indebted to my dearest Marie for your love, support and encouragement during the completion of this thesis. I will never forget the nice days together and the many ways you helped me to pass through the toughest moments of my project. Finally and most importantly I’d like to express my deepest gratitude to my loving family back in Mexico who have always been there to support me. Words cannot express how grateful I am, especially to my beloved parents Goya y Pedro. This work is dedicated to both of you as well as to my sister Gabby Ramirez-Paredes, my dearly loved nephew Ångel his father Guillermo and my grandma Maria de Jesus Ledesma whom I am looking forward to meet again at the end of the summer, thanks again for your prayers and blessings abue. This thesis is also dedicated to my other grandmothers Clotilde Perez Onofre who passed away last December while I was writing it. Te quiero muchísimo abuela Cota Pérez y espero que orgullosa desde el cielo me estés mirando. V Abstract Abstract Piscine francisellosis in an infectious emerging bacterial disease that affects several marine and fresh water fish species worldwide, including farmed salmon, wild and farmed cod, farmed tilapia and several ornamental species, for which no commercial treatment or vaccine exists. During 2011 and the first semester of 2012, chronic episodes of moderate to high levels of mortality with nonspecific clinical signs, and widespread multifocal white nodules as the most consistent gross pathological lesion were experienced by farmed tilapia fingerlings at two different locations in Northern Europe. In this study such outbreaks of granulomatous disease were diagnosed as francisellosis with a genus-specific PCR, and 10 new isolates of the bacterium including the one named STIR-GUS-F2f7, were recovered on a new selective “cysteine blood-tilapia” agar and cysteine heart agar with bovine haemoglobin. Ultrastructural observations of the pathogen in Nile tilapia (O. niloticus) tissues suggested the secretion of outer membrane vesicles (OMVs) by the bacterial cells during infection in these fish. This represented the first documented report of isolation of pathogenic Francisella strains from tilapia in Europe. The phenotypic characterisation indicated that isolates recovered were able to metabolise dextrin, N-acetyl-D glucosamine, D-fructose, α-D-glucose, D-mannose, methyl pyruvate, acetic acid, α-keto butyric acid, L-alaninamide, L-alanine, L- alanylglycine, L-asparagine, L-glutamic acid, L-proline, L-serine, L-threonine, inosine, uridine, glycerol, D L-α-glycerol phosphate, glucose-1-phosphate and glucose-6- phosphate. The predominant structural fatty acids of the isolates were 24:1 (20.3%), 18:1n-9 (16.9%), 24:0 (13.1%) 14:0 (10.9%), 22:0 (7.8%),
Recommended publications
  • Francisella Spp. Infections in Farmed and Wild Fish. ICES CM 2008/D:07
    ICES CM 2008/D:07 Francisella spp. infections in farmed and wild fish Duncan J. Colquhoun1, Adam Zerihun2 and Jarle Mikalsen3 National Veterinary Institute, Section for Fish Health, Ullevaalsveien 68, 0454 Oslo, Norway 1 tel: +47 23 21 61 41; fax: +47 23 21 61 01; e-mail: [email protected] 2 tel: +47 23 21 61 08; fax: +47 23 21 61 01; e-mail: [email protected] 3 tel: +47 23 21 61 55; fax: +47 23 21 61 01; e-mail: [email protected] Abstract Bacteria within the genus Francisella are non-motile, Gram-negative, strictly aerobic, facultatively intracellular cocco-bacilli. While the genus includes pathogens of warm-blooded animals including humans, and potential bioterror agents, there is also increasing evidence of a number of as yet unrecognised environmental species. Due to their nutritionally fastidious nature, bacteria of the genus Francisella are generally difficult to culture, and growth is also commonly inhibited by the presence of other bacteria within sample material. For these reasons, Francisella-related fish disease may be under-diagnosed. Following the discovery in 2004/2005 that a granulomatous disease in farmed and wild Atlantic cod (Gadus morhua) is caused by a previously undescribed member of this genus (Francisella philomiragia subsp. noatunensis), similar diseases have been identified in fish in at least seven countries around the world. These infections affect both freshwater and marine fish species and involve bacteria more or less closely related to F. philomiragia subsp. philomiragia, an opportunistic human pathogen. Recent work relating to characterisation of the disease/s, classification of fish pathogenic Francisella spp.
    [Show full text]
  • Bioinformatics Resource Centers Systems Biology (Brcs) Centers
    Fondation Merieux – J Craig Venter Institute Bioinformatics Workshop December 5 – 8, 2017 Module 3: Genomic Data & Sequence Annotations in Public Databases NIH/NIAID Genomics and Bioinformatics Program SlideSource:A.S.Fauci SlideSource:A.S.Fauci Conducts and supports basic and applied research to better understand, treat, and ultimately prevent infectious, immunologic, and allergic diseases. NIAIDGenomicsProgram Proteomics Systems Sequencing Functional Structural Biology Genomics Genomics Genomic Clinical Functional Systems Sequencing Proteomics Structural Genomic Biology Centers Centers Genomics Research Centers Centers Centers Bioinformatics BioinformaticsResource Centers GenomicResearchResources Genomic/OmicsDataSets,Databases,BioinformaticsTools,Biomarkers,3DStructures,ProteinClones,PredictiveModels Toaddresskeyquestionsin microbiologyandinfectious disease NIAID Genome Sequencing Center Influenza Genome Sequencing Project at JCVI • 2004: 80 influenza genomes in GenBank • 3OCT2017: ~20,000 influenza genomes sequenced at JCVI • 75% complete influenza genomes in GenBank by JCVI Slide source: Maria Giovanni * Genome Sequencing Centers Bioinformatics Resource Centers Systems Biology (BRCs) Centers Structure Genomics Centers Clinical Proteomics Centers Courtesy of Alison Yao, DMID *Bioinformatics Resource Centers (BRCs) Goal: Provide integrated bioinformatics resources in support of basic and applied infectious diseases research • Data and metadata management and integration solutions • Computational analysis and visualization tools • Work
    [Show full text]
  • Francisella Tularensis Subspecies Holarctica and Tularemia in Germany
    microorganisms Review Francisella tularensis Subspecies holarctica and Tularemia in Germany 1, 2, 3 1 1 Sandra Appelt y, Mirko Faber y , Kristin Köppen , Daniela Jacob , Roland Grunow and Klaus Heuner 3,* 1 Centre for Biological Threats and Special Pathogens (ZBS 2), Robert Koch Institute, 13353 Berlin, Germany; [email protected] (S.A.); [email protected] (D.J.); [email protected] (R.G.) 2 Gastrointestinal Infections, Zoonoses and Tropical Infections (Division 35), Department for Infectious Disease Epidemiology, Robert Koch Institute, 13353 Berlin, Germany; [email protected] 3 Cellular Interactions of Bacterial Pathogens, ZBS 2, Robert Koch Institute, 13353 Berlin, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-301-8754-2226 These authors contributed equally to this work. y Received: 27 August 2020; Accepted: 18 September 2020; Published: 22 September 2020 Abstract: Tularemia is a zoonotic disease caused by Francisella tularensis a small, pleomorphic, facultative intracellular bacterium. In Europe, infections in animals and humans are caused mainly by Francisella tularensis subspecies holarctica. Humans can be exposed to the pathogen directly and indirectly through contact with sick animals, carcasses, mosquitoes and ticks, environmental sources such as contaminated water or soil, and food. So far, F. tularensis subsp. holarctica is the only Francisella species known to cause tularemia in Germany. On the basis of surveillance data, outbreak investigations, and literature, we review herein the epidemiological situation—noteworthy clinical cases next to genetic diversity of F. tularensis subsp. holarctica strains isolated from patients. In the last 15 years, the yearly number of notified cases of tularemia has increased steadily in Germany, suggesting that the disease is re-emerging.
    [Show full text]
  • Isolation of Francisella Tularensis from Skin Ulcer After a Tick Bite, Austria, 2020
    microorganisms Case Report Isolation of Francisella tularensis from Skin Ulcer after a Tick Bite, Austria, 2020 Mateusz Markowicz 1,*, Anna-Margarita Schötta 1 , Freya Penatzer 2, Christoph Matscheko 2, Gerold Stanek 1, Hannes Stockinger 1 and Josef Riedler 2 1 Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Kinderspitalgasse 15, A-1090 Vienna, Austria; [email protected] (A.-M.S.); [email protected] (G.S.); [email protected] (H.S.) 2 Kardinal Schwarzenberg Klinikum, Kardinal Schwarzenbergplatz 1, A-5620 Schwarzach, Austria; [email protected] (F.P.); [email protected] (C.M.); [email protected] (J.R.) * Correspondence: [email protected]; Tel.: +43-1-40160-33023 Abstract: Ulceroglandular tularemia is caused by the transmission of Francisella tularensis by arthro- pods to a human host. We report a case of tick-borne tularemia in Austria which was followed by an abscess formation in a lymph node, making drainage necessary. F. tularensis subsp. holarctica was identified by PCR and multilocus sequence typing. Keywords: tularemia; Francisella tularensis; tick; multi locus sequence typing Depending on the transmission route of Francisella tularensis, tularemia can present Citation: Markowicz, M.; Schötta, as a local infection or a systemic disease [1]. Transmission of the pathogen takes place A.-M.; Penatzer, F.; Matscheko, C.; by contact with infected animals, by bites of arthropods or through contaminated water Stanek, G.; Stockinger, H.; Riedler, J. and soil. Hares and wild rabbits are the main reservoirs of the pathogen in Austria [2].
    [Show full text]
  • Francisella Tularensis
    The Genetic Composition and Diversity of Francisella tularensis Pär Larsson Akademisk avhandling som med vederbörligt tillstånd av rektorsämbetet vid Umeå Universitet för avläggande av medicine doktorsexamen i klinisk mikrobiologi med inriktning mot bakteriologi vid Medicinska fakulteten, framlägges till offentligt försvar vid Institutionen för Klinisk Mikrobiologi, sal E04 byggnad 6, torsdagen den 31 maj 2007, klockan 09.00. Avhandlingen kommer att försvaras på engelska. Fakultetsopponent: Dr. Andrew K Benson Department of Food Science & Technology University of Nebraska–Lincoln Lincoln, Nebraska USA Department of Clinical Microbiology, Clinical Bacteriology Umeå University Umeå 2007 Organization Document type UMEÅ UNIVERSITY DOCTORAL DISSERTATION Department of Clinical Microbiology Date of publication SE-901 87 Umeå, Sweden May 2007 Author Pär Larsson Title The Genetic Composition and Diversity of Francisella tularensis Abstract Francisella tularensis is the causative agent of the debilitating, sometimes fatal zoonotic disease tularemia. Despite all F. tularensis bacteria having very similar genotypes and phenotypes, the disease varies significantly in severity depending on the subspecies of the infectious strain. To date, little information has been available on the genetic makeup of this pathogen, its evolution, and the genetic differences which characterize subspecific lineages. These are the main areas addressed in this thesis. Using the F. tularensis subsp. tularensis SCHU S4 strain as a genetic reference, microarray-based comparative genomic hybridisations were used to investigate the differences in genomic composition of F. tularensis isolates. Overall, the strains analysed were very similar, matching the high degree of conservation previously observed at the sequence level. One striking finding was that subsp. mediasiatica was most similar to subsp. tularensis, despite their natural confinement to Central Asia and North America, respectively.
    [Show full text]
  • Francisella Tularensis Blue-Grey Phase Variation Involves Structural
    Francisella tularensis blue-grey phase variation involves structural modifications of lipopolysaccharide O-antigen, core and lipid A and affects intramacrophage survival and vaccine efficacy THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Shilpa Soni Graduate Program in Microbiology The Ohio State University 2010 Master's Examination Committee: John Gunn, Ph.D. Advisor Mark Wewers, M.D. Robert Munson, Ph.D. Copyright by Shilpa Soni 2010 Abstract Francisella tularensis is a CDC Category A biological agent and a potential bioterrorist threat. There is no licensed vaccine against tularemia in the United States. A long- standing issue with potential Francisella vaccines is strain phase variation to a grey form that lacks protective capability in animal models. Comparisons of the parental strain (LVS) and a grey variant (LVSG) have identified lipopolysaccharide (LPS) alterations as a primary change. The LPS of the F. tularensis variant strain gains reactivity to F. novicida anti-LPS antibodies, suggesting structural alterations to the O-antigen. However, biochemical and structural analysis of the F. tularensis LVSG and LVS LPS demonstrated that LVSG has less O-antigen but no major O-antigen structural alterations. Additionally, LVSG possesses structural differences in both the core and lipid A regions, the latter being decreased galactosamine modification. Recent work has identified two genes important in adding galactosamine (flmF2 and flmK) to the lipid A. Quantitative real-time PCR showed reduced transcripts of both of these genes in the grey variant when compared to LVS. Loss of flmF2 or flmK caused less frequent phase conversion but did not alter intramacrophage survival or colony morphology.
    [Show full text]
  • Tularemia – Epidemiology
    This first edition of theWHO guidelines on tularaemia is the WHO GUIDELINES ON TULARAEMIA result of an international collaboration, initiated at a WHO meeting WHO GUIDELINES ON in Bath, UK in 2003. The target audience includes clinicians, laboratory personnel, public health workers, veterinarians, and any other person with an interest in zoonoses. Tularaemia Tularaemia is a bacterial zoonotic disease of the northern hemisphere. The bacterium (Francisella tularensis) is highly virulent for humans and a range of animals such as rodents, hares and rabbits. Humans can infect themselves by direct contact with infected animals, by arthropod bites, by ingestion of contaminated water or food, or by inhalation of infective aerosols. There is no human-to-human transmission. In addition to its natural occurrence, F. tularensis evokes great concern as a potential bioterrorism agent. F. tularensis subspecies tularensis is one of the most infectious pathogens known in human medicine. In order to avoid laboratory-associated infection, safety measures are needed and consequently, clinical laboratories do not generally accept specimens for culture. However, since clinical management of cases depends on early recognition, there is an urgent need for diagnostic services. The book provides background information on the disease, describes the current best practices for its diagnosis and treatment in humans, suggests measures to be taken in case of epidemics and provides guidance on how to handle F. tularensis in the laboratory. ISBN 978 92 4 154737 6 WHO EPIDEMIC AND PANDEMIC ALERT AND RESPONSE WHO Guidelines on Tularaemia EPIDEMIC AND PANDEMIC ALERT AND RESPONSE WHO Library Cataloguing-in-Publication Data WHO Guidelines on Tularaemia.
    [Show full text]
  • Communicating in a Crisis: Biological Attack
    2. Use common sense, practice good hygiene and cleanliness to avoid spreading germs. “Communication before, during People who are potentially exposed should: and after a biological attack will 1. Follow instructions of health care providers and other public health officials. NEWS &TERRORISM 2. Expect to receive medical evaluation and treatment. Be prepared for long lines. If COMMUNICATING IN A CRISIS be a critical element in effectively the disease is contagious, persons exposed may be quarantined. A fact sheet from the National Academies and the U.S. Department of Homeland Security responding to the crisis and help­ If people become aware of a suspicious substance nearby, they should: ing people to protect themselves 1. Quickly get away. and recover.” 2. Cover their mouths and noses with layers of fabric that can filter the air but still allow breathing. —A Journalist’s Guide to Covering 3. Wash with soap and water. Bioterrorism (Radio and Television News 4. Contact authorities. BIOLOGICAL ATTACK Director’s Foundation, 2004) 5. Watch TV, listen to the radio, or check the Internet for official news and informa- HUMAN PATHOGENS, BIOTOXINS, tion including the signs and symptoms of the disease, if medications or vaccinations AND AGRICULTURAL THREATS are being distributed, and where to seek medical attention if they become sick. 6. Seek emergency medical attention if they become sick. Table 1. Diseases/Agents Listed by the CDC as Potential WHAT IS IT? Bioterror Threats (as of March 2005). The U.S. Department of Medical Treatment Agriculture maintains lists of animal and plant agents of concern. Table 2 lists general medical treatments for several biothreat agents.
    [Show full text]
  • A Dissertation Entitled Characterization of a Novel
    A Dissertation entitled Characterization of a novel Francisella tularensis Virulence Factor Involved in Cell Wall Repair by Briana Collette Zellner Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Biomedical Sciences ___________________________________________ Jason Huntley, Ph.D., Major Advisor ___________________________________________ R. Mark Wooten, Ph.D., Committee Member ___________________________________________ Jyl Matson, Ph.D., Committee Member ___________________________________________ Robert Blumenthal, Ph.D. Committee Member ___________________________________________ R. Travis Taylor, Ph.D., Committee Member ___________________________________________ Cyndee Gruden, PhD, Dean College of Graduate Studies The University of Toledo December 2019 © 2019 Briana Collette Zellner This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Characterization of a Novel Francisella tularensis Virulence Factor Involved in Cell Wall Repair by Briana Collette Zellner Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Biomedical Sciences The University of Toledo December 2019 Francisella tularensis, the causative agent of tularemia, is one of the most dangerous bacterial pathogens known. F. tularensis has a low infectious dose, is easily aerosolized, and induces high morbidity and mortality; thus, it
    [Show full text]
  • Francisellosis of Atlantic Cod (Gadus Morhua L.)
    ICES IDENTIFICATION LEAFLETS FOR DISEASES AND PARASITES OF FISH AND SHELLFISH Leaflet No. 64 Francisellosis of Atlantic cod (Gadus morhua L.) Anders Alfjorden and Neil Ruane International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer H.C. Andersens Boulevard 44–46 DK-1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk [email protected] Recommended format for purposes of citation: Alfjorden, A., and Ruane, N. 2015. Francisellosis of Atlantic cod (Gadus morhua L.). ICES Identification Leaflets for Diseases and Parasites of Fish and Shellfish. Leaflet No. 64. 5 pp. Series Editor: Stephen Feist. Prepared under the auspices of the ICES Working Group on Pathology and Diseases of Marine Organisms. The material in this report may be reused for non-commercial purposes using the recommended citation. ICES may only grant usage rights of information, data, images, graphs, etc. of which it has ownership. For other third-party material cited in this report, you must contact the original copyright holder for permission. For citation of datasets or use of data to be included in other databases, please refer to the latest ICES data policy on the ICES website. All extracts must be acknowledged. For other reproduction requests please contact the General Secretary. ISBN 978-87-7482-173-1 ISSN 0109–2510 © 2015 International Council for the Exploration of the Sea Leaflet No. 64 | 1 Francisellosis of Atlantic cod (Gadus morhua L.) Anders Alfjorden and Neil Ruane Susceptible species Francisellosis, caused by infection with Francisella noatunensis, primarily affects Atlantic cod (Gadus morhua) and was first described in Norway in 2004 (Nylund et al., 2006) and 2005 (Olsen et al., 2006).
    [Show full text]
  • In Vivo and in Vitro Pathogenesis of Francisella Asiatica in Tilapia
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2010 In vivo and in vitro pathogenesis of Francisella asiatica in tilapia nilotica (Oreochromis niloticus) Esteban Soto Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Veterinary Pathology and Pathobiology Commons Recommended Citation Soto, Esteban, "In vivo and in vitro pathogenesis of Francisella asiatica in tilapia nilotica (Oreochromis niloticus)" (2010). LSU Doctoral Dissertations. 2796. https://digitalcommons.lsu.edu/gradschool_dissertations/2796 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. IN VIVO AND IN VITRO PATHOGENESIS OF FRANCISELLA ASIATICA IN TILAPIA NILOTICA (OREOCHROMIS NILOTICUS) A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Interdepartmental Program in Veterinary Medical Sciences through the Department of Pathobiological Sciences by Esteban Soto Med.Vet., Universidad Nacional-Costa Rica, 2005 M.Sc., Mississippi State University, 2007 August, 2010 ACKNOWLEDGEMENTS The main reason why I’m being able to present this dissertation is because of all the help and advices received by many people along these years. Firstly and foremost I thank my wife Tati for always believing in me and giving me all the support I needed. To my dad and mom, thanks for being a perfect example of integrity and perseverance.
    [Show full text]
  • Francisella Novicida–Causing Two Samples of Blood Cultures from Peripheral Lines Bacteremia in a Woman from Thailand Who Was Receiving Chemotherapy for Ovarian Cancer
    she was treated with lamivudine. A follow-up visit in early Emergence of September showed that her liver function biochemistry re- sults had returned to within normal limits. Chemotherapy Francisella with carboplastin and paclitaxel was then initiated. At the time of admission, 25 days after the start of novicida chemotherapy, the patient had fever (39oC), blood pressure 90/60 mm Hg, and pulse rate 75 beats/min. She also had Bacteremia, an episode of gastrointestinal hemorrhage with melena. It Thailand was believed that fever and gastrointestinal bleeding were complications from chemotherapy; thus, microbiologic Amornrut Leelaporn, Samaporn Yongyod, investigation was not promptly initiated. Abnormal labo- Sunee Limsrivanichakorn, Thitiya Yungyuen, ratory fi ndings included anemia (hemoglobin 80 g/L) and and Pattarachai Kiratisin leukocytosis with marked neutrophilia (Figure). Urine and stool cultures showed insignifi cant growth. We report isolation of Francisella novicida–causing Two samples of blood cultures from peripheral lines bacteremia in a woman from Thailand who was receiving chemotherapy for ovarian cancer. The organism was iso- were obtained using BacT/Alert FA bottles (bioMérieux, lated from blood cultures and identifi ed by 16S rDNA and Durham, NC, USA) on day 10 of hospital admission and PPIase gene analyses. Diagnosis and treatment were de- incubated in the continuous monitoring BacT/Alert 3D sys- layed due to unawareness of the disease in this region. tem (bioMérieux). Both blood culture bottles grew small pleomorphic gram-negative coccobacillus after incubation for 2 days. Samples from positive bottles were subcultured rancisella novicida, a rare human pathogen, has recent- onto 5% (vol/vol) sheep blood agar, MacConkey agar, and Fly been considered to be a subspecies of F.
    [Show full text]