Optimal Generation of Output Torque for Industrial Motors Using Variable Frequency Drive and Gearbox Drive

Total Page:16

File Type:pdf, Size:1020Kb

Optimal Generation of Output Torque for Industrial Motors Using Variable Frequency Drive and Gearbox Drive International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-8 Issue-4, November 2019 Optimal Generation of Output Torque for Industrial Motors using Variable Frequency Drive and Gearbox Drive S.Joseph Francis, S.Karthikeyan, S.Balasundaram, L.Kalaivani, M.Gengaraj, used to control the drive speed by decreasing the frequency Abstract: This paper depicts the exploration of output torque of and the appropriate voltage to satisfy the requirement of Gear reduction drive and variable frequency drive (VFD) with electric motor load. If any application required the speed detailed analysis report for the various load conditions. The right requirement, as VFD can increase or decrease the motor selection of VFD will depend on the load requirement and application. The higher the load therefore more torque needed in speed to meet the specified speed requirement. [2]. an application, the higher the current draw of the motor will be. In order to reduce the mechanical components and to Since VFDs are rated by their continuous output current (amps), improve the overall maintenance, the VFD is proficient it is important to select a drive with adequate current to the motor to changing the output speed of the drive without the for optimal performance. The property of Torque is converse effect of gear reduction. By means of gear ratio, the output torque need for any mechanical pulleys. Though, VFD has a is increased by developing the torque with reduced efficiency distinct feature that it has the capability to save the losses. On the other hand, in some applications the gear reduction economy of the user through its unique nature to save play a vital role in reduces the speed while increase the torque and energy by controlling only the power that is required for in many other applications it uses to increase speed with reduced the application. By means of power conversion only, a VFD torque. In recent era, many industrial drives are designed as such can accomplish. As like traditional electric motor, a VFD is that to run at 60% to 100% of rated load. In this scenario the drive would get optimum efficiency is generally obtained nearly 75% of attached, that convert the power to the usable form. The rated load. Thus, a 20 horsepower (HP) electric drive has a principle behind the induction motor in which the electrical satisfactory load range of 12 to 20 HP with optimum efficiency is supply is given to its stator and the given input electrical at 7.5 HP. A motor’s efficiency tends to decrease dramatically power is converted to mechanical output power through the below about 50% load. Hence it’s very important to choose the rotating magnetic field and that produced torque by means of drive for the proper application with different loading conditions. slip. In other words a VFD, will convert its incoming power, a fixed voltage, and frequency, to a variable voltage and Keywords: Torque coefficient, Variable frequency drive, Load, frequency [3]. This feature of VFD is used to vary the speed I. INTRODUCTION of the industrial drive without the need any additional mechanical pulleys of gearboxes. The fig. 1 shows the block diagram of variable frequency drive fed motor. n modern era, the Variable Frequency Drive (VFD) is I finding a variety of applications over the industrial field. It is used to drive the industrial electric motor by controlling the frequency and voltage applied to the motor. Simply it s a type of motor controller that controls the performance parameter of the industrial drive. VFD can be otherwise called as adjustable speed drive, adjustable frequency drive, AC drive, micro drive, and inverter depends upon the application where it is used [1]. The relationship between the Frequency (Hz) and the motor’s speed (RPMs) is linear in other words it is directly proportional. In general, if the Fig. 1. Block Diagram of VFD. frequency is faster this yields the motor speed as faster. If any application which doesn’t require the rated speed the VFD is The vital reason to acquire the VFD is speed control. The major advantage of this type of speed control is for the purpose to process, operation and economic benefits with Revised Manuscript Received on November 15, 2019 proper energy consumption. While considering maintenance * Correspondence Author the VFD is the suitable choice because it not having any S.Joseph Francis, EEE Department, National Engineering College, Kovilpatti, India. Email: [email protected] carbon brushes or mechanical components like pulleys and S.Karthikeyan, EEE Department, National Engineering College, gearboxes etc., Fans and Pumps are the apparent profitable Kovilpatti, India. Email: [email protected] benefits of VFDs. The relationship of the power and velocity S.Balasundaram, EEE Department, National Engineering College, that a pump or fan consumes is directly proportional to the Kovilpatti, India. Email: [email protected] Dr.L.Kalaivani*, EEE Department, National Engineering College, cube of the velocity. For Kovilpatti, India. Email: [email protected] example, if a consumer can run M.Gengaraj, EEE Department, National Engineering College, a fan at 80% of full speed; it Kovilpatti, India.,. Email: [email protected] Retrieval Number: D8195118419/2019©BEIESP Published By: DOI:10.35940/ijrte.D8195.118419 Blue Eyes Intelligence Engineering 12147 & Sciences Publication Optimal Generation of Output Torque for Industrial Motors using Variable Frequency Drive and Gearbox Drive hypothetically uses 51% of full load power [4]. C. Determinations of Motor loading At rated load, many conventional electrical drives are II. VARIABLE FREQUENCY DRIVE develop to run at 50% to 100% of rated load. About the half A. Correlation of Voltage and Frequency of the rated load the motor’s efficiency is considerably At rated frequencies, if the applied frequency of an Induction decreased. On the other hand, the choice of good efficiency motor is reduced, the applied voltage also should reduced to should ranges with individual motor drives and it will extend suppress the current drawn by the motor. over a wide range for large larger motors which is shown in (The inductive reactance of an AC magnetic circuit is directly fig 3. While the efficiency reduces significantly with reduced load, the motor drive is considered under loaded. [7]. proportional to the frequency according to the formula XL = 2πfL. Where: f = frequency in hertz, and L= inductive reactance in Henry) Fig. 3. Motor Efficiency ( as a function of % full load efficiency) The motor get overheat and it will lose some efficicecy it may called as overloaded motors. A service factor has been fixed for many industrial drives which allows intermittent overlaoding. Service factor is a value which indicates the motor overloading condtion under ideal situations. If we take, 20-hp motor with a 1.2 service factor can handle an 24 hp Fig. 2. Relationships of VFD with constant load for minimum periods without sustaining considerable torque and constant power with various damage. However many motors continously running above frequencies the rated load with the service factor of 1.15 which results in Fig. 2 shows the relationship between the frequency versus effeiciency and life span of motor decreases. When the voltage is below nominal value and the cooling is weaken by torque and power. In order to evaluate the relationship ratio elevation, high ambiernt heat or dirty motor surfaces the the applied voltage applied to the motor should divided by motor should be never operated. rated frequency. The ratio should be low at low frequencies and it will increased as the frequency increases.[5] To III. GEAR BOX maintain the constant volts/hertz ratio throughout the range several methods are adopted to adjusts the output voltage A. Gearbox Setup waveform such as microprocessor control , PWM control by Gears are the device which used to reduce the output speed simultaneously change the voltage and frequency. For the while increased the torque value for the electric motor drive above rated frequency, the voltage is kept constant for the or engine to obtain the required result. [8]. many AC variable speed drives. B. Calculation of Horse power for the Drive Power = Work / Time Power = (Force X Distance) / Time The power value of the drive has been calculated from the torque and speed of the motor. For example, if the drive motor have speed of 2000 RPM then the horsepower is calculated below. Horse power = (2,000 X 6) / 63,025 = 0.190 Here the constant value 63025 is a common constant which makes the unit conversion. [6]. This common constant has been obtained using the 33,000 ft-lbs /min = 1 horsepower. Though horsepower units are a derivative of the 33,000 Fig. 4. Gearbox setup arrangement for Motor ft-lbs/min, for the given speed and torque, it is not significant to accepting how to calculate motor horsepower. Watts is the common unit used for power. The conversion from watts to horsepower is 745.7 watts = 1 hp. Published By: Retrieval Number: D8195118419/2019©BEIESP Blue Eyes Intelligence Engineering DOI:10.35940/ijrte.D8195.118419 12148 & Sciences Publication International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-8 Issue-4, November 2019 The fig.4 shows the reduction of Gear exclusively refers to Fig. 5. Experimental setup of VFD fed Induction motor the speed of the rotary machine; by dividing of gear ratio Table- I: Specifications greater than 1:1 the rotational speed of the rotary machine is Parameter Induction Motor VFD reduced. With fewer numbers of teeth meshes and drives a Type 3 phase 3 phase large gear it need increased number of teeth. Voltage 415 V 415 V B. Reduction of Gearbox Current 7.6 A 8 A Frequency 50 Hz 50 Hz The property of Torque is converse effect of gear reduction.
Recommended publications
  • RC Baja: Drivetrain Nick Paulay [email protected]
    Central Washington University ScholarWorks@CWU All Undergraduate Projects Undergraduate Student Projects Winter 2019 RC Baja: DriveTrain Nick Paulay [email protected] Follow this and additional works at: https://digitalcommons.cwu.edu/undergradproj Part of the Mechanical Engineering Commons Recommended Citation Paulay, Nick, "RC Baja: DriveTrain" (2019). All Undergraduate Projects. 79. https://digitalcommons.cwu.edu/undergradproj/79 This Undergraduate Project is brought to you for free and open access by the Undergraduate Student Projects at ScholarWorks@CWU. It has been accepted for inclusion in All Undergraduate Projects by an authorized administrator of ScholarWorks@CWU. For more information, please contact [email protected]. Central Washington University MET Senior Capstone Projects RC Baja: Drivetrain By Nick Paulay (Partner: Hunter Jacobson-RC Baja Suspension & Steering) 1 Table of Contents Introduction Description Motivation Function Statement Requirements Engineering Merit Scope of Effort Success Criteria Design and Analyses Approach: Proposed Solution Design Description Benchmark Performance Predictions Description of Analyses Scope of Testing and Evaluation Analyses Tolerances, Kinematics, Ergonomics, etc. Technical Risk Analysis Methods and Construction Construction Description Drawing Tree Parts list Manufacturing issues Testing Methods Introduction Method/Approach/Procedure description Deliverables Budget/Schedule/Project Management Proposed Budget Proposed Schedule Project Management Discussion Conclusion Acknowledgements References Appendix A – Analyses Appendix B – Drawings Appendix C – Parts List Appendix D – Budget Appendix E – Schedule Appendix F - Expertise and Resources 2 Appendix G –Testing Data Appendix H – Evaluation Sheet Appendix I – Testing Report Appendix J – Resume 3 Abstract The American Society of Mechanical Engineers (ASME) annually hosts an RC Baja challenge, testing a RC car in three events: slalom, acceleration and Baja.
    [Show full text]
  • Electric Vehicle Conversion: Optimisation of Parameters in the Design Process
    M. Gordić i dr. Prepravak u električno vozilo: optimizacija parametara u procesu konstruiranja ISSN 1330-3651 (Print), ISSN 1848-6339 (Online) https://doi.org/10.17559/TV-20160613131757 ELECTRIC VEHICLE CONVERSION: OPTIMISATION OF PARAMETERS IN THE DESIGN PROCESS Mirko Gordić, Dragan Stamenković, Vladimir Popović, Slavko Muždeka, Aleksandar Mićović Preliminary communication One of the directions for making cleaner and more economic vehicles is to adopt electric vehicle concept. The paper shows current design concepts for electric vehicles worldwide, as well as current sources for supplying vehicles with electric energy. It describes a conversion of one vehicle so that it can be powered by electric motor. The results of tractive and dynamic characteristics calculation and vehicle stability simulation, before and after the conversion, are shown. Obtained results and influential factors are analysed so they can be optimised in order to influence the final characteristics of the converted vehicle. The conclusion is that the complete optimisation process should be performed before the beginning of vehicle conversion in order to avoid undesirable effects, i.e. undesirable characteristics of converted vehicle and high conversion costs. Keywords: conversion; electric vehicle; vehicle dynamics Prepravak u električno vozilo: optimizacija parametara u procesu konstruiranja Prethodno priopćenje Jedan od pravaca ka stvaranju čistijih i ekonomičnijih vozila jeste prihvatanje koncepta električnog vozila. Rad predstavlja suvremene koncepte konstrukcije električnih vozila širom svijeta, kao i načine snabdjevanja vozila energijom. Opisan je prepravak vozila kako bi ga se moglo pogoniti elektro- motorom. Prikazani su rezultati vučno-dinamičkog proračuna i simulacije stabilnosti prije i poslije prepravka. Analizirani su dobiveni rezultati i utjecajni čimbenici radi optimiziranja u cilju utjecaja na karakteristike prepravljenog vozila.
    [Show full text]
  • Actuators the Following Products Suit Many Applications That Include Linear Positioning, Robotic Applications, Pick and Place Mechanisms, and XYZ Axis Gantry Systems
    Robotic & Linear Positioning Actuators The following products suit many applications that include linear positioning, robotic applications, pick and place mechanisms, and XYZ axis gantry systems. • High Strength Belt or Ballscrew Driven Linear Actuators • Belt Driven Linear Actuator • Ballscrew Driven Linear Actuator • Built-in Linear Ball Rail Guide System • High Precision Reinforced Polyurethane Belt Drive • Ballscrew and Leadscrew Driven Actuators • Options that include built-in low backlash planetary gear reducers, belt reduction drive systems, and custom built adapters. • Accessories High Strength Belt or Ballscrew Driven Linear Actuators Features • Linear velocities over 3M/sec • Heavy duty anodized aluminum extrusion • Low friction bearing guide system • Clamps for rigid mounting of actuators • Optional belt reduction drives • Optional linear scale feedback for high positional accuracy Built-in single point lubrication for guide system • Lengths to 12 meters • Optional built-in low backlash planetary gear reducer • Mechanical and proximity switch ready • Adapter plates available for easy machine assembly • Assembled to the customer’s requirements • Complete systems are available. Belt Driven Linear Actuator Features • High thrust capacities • Belt acts as cover • Highly repeatable positioning • Ideal for high speed applications Ballscrew Driven Linear Actuator Features • Precision rolled ballscrews • Optional ground ballscrews or leadscrews • Bellows cover to protect screw and guide system • High accuracy applications • High thrust
    [Show full text]
  • Ditch Witch 1820, 1330, 1230, 1030 Pedestrian Trenchers Get What You Ask For
    DITCH WITCH 1820, 1330, 1230, 1030 PEDESTRIAN TRENCHERS GET WHAT YOU ASK FOR. DITCH WITCH. DITCH WITCH 1820 Featuring a powerful 18hp (13.4 kW) engine, rugged components and straightforward operation, the Ditch Witch 1820 is a compact pedestrian trencher that helps you install underground service lines at residential and commercial sites with equal ease. The operator’s station features quick-reference controls and color-coded levers, so reliable performance is always within reach. On the business end, a strengthened sprocket hub and variety of digging chains keep the 1820 going even on those marathon workdays. KEY FEATURES DETAILS Drive wheels can be locked for Operator presence system is standard equipment on all units. straight-line trenching or one Strengthened digging chain sprocket hub means great long-term performance. wheel freed for maneuverability. Spoils auger attaches to and rotates with the headshaft. Hydraulically steerable axle; one lever moves wheels. Larger sheaves on headshaft drive provide longer belt life. Mechanical digging drive Weather resistant electrical connectors and an automotive-type fuse enhance reliability. requires less horsepower to do Minimal service points and convenient access to service areas make the 1820 easy to the same amount of work. keep running. The Ditch Witch organization supports all of its products with superior-quality parts, service and training, all available from a worldwide network of Ditch Witch dealers. DITCH WITCH 1330 The 1330 is a compact walk-behind that is clearly in front of the 13-horsepower (9.7 kW) trencher fi eld. Built for low maintenance and high reliability, the 1330 features an innovative hydraulic oil cooling system that keeps the trencher humming even on the hottest days.
    [Show full text]
  • ZF 60000 NR2H Horizontal Offset, Remote Mount Marine Transmission
    Marine Propulsion Systems ZF 60000 NR2H Horizontal offset, remote mount marine transmission. Description Design, manufacture and quality control standards comply with ISO 9001 and AQAP . Marine transmission with reduction drive gearing and hydraulically actuated mulit-disc clutch for engagement . Low weight design for heavy duty fast ferry applications. Also suitable for other weight sensitive craft, e.g. high speed motor yachts. Compatible with all types of engines and water jet propulsion. Output shaft rotating in the opposite direction to that of the input shaft. Easy installation and fully works tested for guaranteed reliability . Features Case hardened and precisely ground gear teeth for long life and smooth running . Compact, space-saving design, complete with integral oil cooler, pump and full-f1ow filter . Modular component design for fast and easy service and repair. Lightweight cast aluminum alloy housing resistant to sea water corrosion. Smooth and reliable clutch operation with hydraulically controlled clutch engagement and electrical actuation . One power take off (PTO) drive with SAE connection, permanently connected and driven from the input shaft. Trailing pump to guarantee adequate transmission lubrication when the output shaft is rotated with the input shaft stationary. HW version: special "AntiFlex" mounting arrangement to prevent housing and component stress as a result of hull distortion and temperature changes. Options Monitoring devices fitted and connected to a terminal box as required . Classification certification from all major Classification Societies available on request. Additional power take off (PTO) drives with SAE connections, permanently connected and driven from the input shaft . Last Updated:12:14 PM GMT - 15-Dec-11 ZF 60000 NR2H Ratings Light Duty MAX.
    [Show full text]
  • HR.10240 Nvg118covuk
    OSPREY New Vanguard PUBLISHING US Submarines 1941–45 Jim Christley • Illustrated by Tony Bryan © Osprey Publishing • www.ospreypublishing.com New Vanguard • 118 US Submarines 1941–45 Jim Christley • Illustrated by Tony Bryan © Osprey Publishing • www.ospreypublishing.com US SUBMARINES 1941–45 INTRODUCTION he shooting portion of World War II burst on the American Navy early on a Sunday morning in December 1941, with the Japanese Tattack on Pearl Harbor. On that morning the face of naval warfare in the Pacific changed utterly. No longer would the war at sea be decided by squadrons of the world’s largest and most powerful battleships. Instead, the strategic emphasis shifted to a combination of two more lethal and far-ranging naval weapon systems. The aircraft carrier would replace the battleship by being able to increase the deadly range of a fleet from a few tens of miles – the range of battleship guns – to the hundreds of miles range of bomb- and torpedo-carrying aircraft. In addition, the American submarine would be able to place a strangler’s grip on the throat of the Japanese empire that, unlike the German U-boats’ attempts to control the Atlantic waters, could not be broken. Some have said that the result of the attack at Pearl Harbor was fortuitous in that it forced the US Navy to look toward the carrier and submarine to defend the southern Pacific and the United States’ western coast. This argument overlooks, however, the prewar build-up in those two weapons platforms, which seems to indicate that some individuals were looking seriously toward the future and the inevitable conflict.
    [Show full text]
  • Research of Modified Gear Drive for Multioperational Machine with Increased Load Capacity
    Article citation info: 87 Krol O, Sokolov V. Research of modified gear drive for multioperational machine with increased load capacity. Diagnostyka. 2020; 21(3):87-93. https://doi.org/10.29354/diag/126026 ISSN 1641-6414 DIAGNOSTYKA, 2020, Vol. 21, No. 3 e-ISSN 2449-5220 DOI: 10.29354/diag/126026 RESEARCH OF MODIFIED GEAR DRIVE FOR MULTIOPERATIONAL MACHINE WITH INCREASED LOAD CAPACITY Oleg KROL, Volodymyr SOKOLOV Volodymyr Dahl East Ukrainian National University, Department of Machinery Engineering and Applied Mechanics, 59-a Central pr., Severodonetsk, 93400 e-mail: [email protected] Abstract The presented work is devoted to the improvement of spur gears of the reduction drive for metal-cutting machines according to the criterion of load capacity. A feature of this article is the creation of such a constructive solution, which is aimed at finding a compromise between reducing contact loads in the engagement zone and increasing the complexity and labour intensity of the manufacturing gears process. A procedure for accelerated creation of 3D models of a gear drive and its components using the specialized software application “Shafts and Mechanical Transmissions-3D” in the environment of integrated CAD system KOMPAS-3D is proposed. A study of a new cylindrical gear transmission design with a longitudinal generatrix of axoids, confirmed by the corresponding patent solution is realized. A calculation form for the practical design and manufacture of a new design cylindrical gear is proposed. Keywords: cylindrical gear transmission, machine gear drive, axoid generatrix, 3D model, load capacity 1. INTRODUCTION involves the use of conventional two-stage and planetary gears.
    [Show full text]
  • USING EMRAX MOTORS for EV How to Calculate Power and Torque
    USING EMRAX MOTORS FOR EV How to calculate power and torque for EV? 1. First you have to calculate the torque that will be needed for the vehicle (torque on the wheels): Example: EV weight: G = 1700 kg Acceleration time from 0 km to 100 km/h (= 27,78 m/s ): t = 5 sec Acceleration: 푎 = 푣 ÷ 푡 = 27,778 푚/푠 ÷ 5 푠 = 5,55 푚/푠2 Force for acceleration: 퐹 = 1700 푘푔 ∗ 5,55 푚/푠2 = 9444,5 푁 Torque on the wheels (wheel diameter 0,64 m): 푀푡 = 9444,5 푁 ∗ 0,32 푚 = 3022,2 푁푚 3000 Nm is a torque on the wheels, which is needed to accelerate the vehicle (EV weight is 1700 kg) from 0 km/h to 100km/h. 2. Now you need to consider the transmission gear (TG) ratio and calculate the torque: Example: Differential ratio is approximately 3:1, TG ratio is approximately 4:1. Therefore total ratio in the first gear is: 푡표푡푎푙 푟푎푡표 = 3 ∗ 4 = 12 For example, one EMRAX 228 motor can deliver 240 Nm peak torque and 120 Nm continuous torque. Therefore peak torque on the wheels in first gear is: 푡표푡푎푙 푝푒푎푘 푡표푟푞푢푒 표푛 푡ℎ푒 푤ℎ푒푒푙푠 푛 푓푟푠푡 푔푒푎푟 = 12 ∗ 240 푁푚 = 2880 푁푚 In this case close to 3000 Nm of peak torque in first gear can be expected. In the second gear the torque is lower. Only higher gear can deliver higher and finally end speed of EV. End speed also depends on the maximal battery voltage (Vdc) and magnetic field weakening (MFW) – more information in Item 9.
    [Show full text]
  • Helicopter Transmission Arrangements with Split-Torque Gear Trains *
    Helicopter Transmission Arrangements with Split-Torque Gear Trains * G. White? A need for progressive improvement in the performance of helicopter propulsion systems leads the transmission designer to examine alternative methods for transferring power from the engines to the rotors. Predominant in this effort is the problem of designing main rotor gearboxes having higher power to weight ratios with increased life and reliability. Development and uprating of components used in production gearboxes has, in the past, enabled transmission designers to match improvements elsewhere in the propulsion system. This short-term form of development is attractive since the design loads and problem areas are known in advance and the improved design can be incorporated into an existing transmission with minimum changes. But the uprating of conventional components results in progressively smaller gains and, as is historically demonstrable, contributes little to the problem of weight reduction for there is a natural tendency to trade-off any potential weight benefit with component life and reliability. As an alternative to component development, this work argues the case for improved drive-train configurations. In particular, the use of torque-splitting gear trains is proposed as a practicable means of improving the effectiveness of helicopter main gearboxes; the work thus makes use of and extends concepts presented earlier in references 1 and 2. The potential for major weight reduction exists, but since significant changes to the propulsion configuration may be required, the development of such gear trains is necessarily longterm. Of equal importance, however, is that no advance in technology level is required, for split-torque gear trains merely involve novel arrangements of well developed components such as gears, shafts and bearings.
    [Show full text]
  • Final Design Report for Human Powered Vehicle Drivetrain Project
    Final Design Report for Human Powered Vehicle Drivetrain Project Sponsored by The Cal Poly Human Powered Vehicle Club in conjunction with George Leone May 31, 2019 Team members: Derek Fromm: [email protected] Luke Opitz: [email protected] Michael Juri: [email protected] Olivier Côté: [email protected] i Statement of Disclaimer Since this project is a result of a class assignment, it has been graded and accepted as fulfillment of the course requirements. Acceptance does not imply technical accuracy or reliability. Any use of information in this report is done at the risk of the user. These risks may include catastrophic failure of the device or infringement of patent or copyright laws. California Polytechnic State University at San Luis Obispo and its staff cannot be held liable for any use or misuse of the project. ii Abstract The Cal Poly Human Powered Vehicle Club is building a bike to surpass 61.3 mph in 2019. The club and their mentor, George Leone, have proposed a senior project to design, build, and test the drivetrain for this year’s human powered vehicle. Research into human powered vehicles and their drivetrains has shown that the power that a rider can output and the efficiency at which the rider can pedal depend extensively on the design of the drivetrain. Despite the existence of standard bicycle drivetrain designs, the senior project team has found that the best design to meet the club’s requirements is a completely custom drivetrain based on the rider’s dimensions and preferences. The team defined a list of technical specifications that they used to validate the completed final prototype.
    [Show full text]
  • Planar Two-Stage Movable Tooth Reducer Closed by Input Shaft
    Bulletin of the JSME Vol.14, No.4, 2020 Journal of Advanced Mechanical Design, Systems, and Manufacturing Planar two-stage movable tooth reducer closed by input shaft Lizhong XU* and Ruixing LI* * Mechanical engineering institute, Yanshan University, Qinhuangdao 066004, China E-mail: [email protected] Received: 21 February 2020; Revised: 10 April 2020; Accepted: 27 May 2020 Abstract In this paper, a planar two-stage movable tooth reducer closed by input shaft is proposed. Through analyzing the motion transfer flow, the equation for calculating the speed ratio of the reducer is given. From the equation, the tooth numbers for realizing large speed ratio are determined. The power flow of the reducer is analyzed, and the equation of power flow calculation is given by which the conditions for generating closed power are determined. The output torque of the reducer and the force on the meshing pair are investigated, and the changes of the forces on the meshing pair with the parameters are analyzed. The three - dimensional design and motion simulation of the reducer are done which verifies the feasibility of the proposed reducer. Keywords : Two-stage, Movable tooth, Reducer, Closed by input shaft, Force 1. Introduction The joint drive device is a key component widely used in robots, which directly determines the performance of robots. In order to ensure that the robot has good dynamic characteristics and motion accuracy, the driving device is required to have the advantages of high motion accuracy, small sizes, large output torque and high efficiency (Yang, 2019). Harmonic gear reducer is an indispensable part for reliable and accurate operation of light industrial robots (Li, 2009; Vassileva, 2011; Kennedy, 2005).The elastic deformation of the harmonic gear reducer under load could affect the positioning accuracy and dynamic characteristics of the robot.
    [Show full text]
  • 2017 Formula Sae Lincoln / Electric Event Guide
    2017 FORMULA SAE LINCOLN / ELECTRIC EVENT GUIDE 2016 1st Place IC Class Overall – Auburn University FORMULA SAE LINCOLN/ELECTRIC #FSAELINCOLN FORMULA SAE LINCOLN / ELECTRIC 2017 SAE PRESIDENT’S MESSAGE Formula SAE Lincoln/Electric 2017 SAE President’s Message Dear Formula SAE® Participants and Organizers: Welcome to the Formula SAE and Formula SAE Electric competitions in Lincoln, Nebraska. Formula SAE is steeped in tradition and competition. Now in its 35th year, Formula SAE provides the real-world challenges of systems engineering, design and problem solving, along with the teaming challenges of collaboration and cooperation. The Formula Electric competition, in its sixth year, offers a unique set of skills and learning opportunities related to the burgeoning electric powertrain technologies. In short, Formula SAE competitions, along with all of the SAE Collegiate Design Series™ competitions, provide the skills and experiences needed for a well-rounded engineering education. In addition to learning, Formula SAE also provides a unique form of competition. This week, collegiate engineering students from many different nations will compete in a series of static and dynamic events designed to challenge their engineering, problem-solving and teamwork skills. The students will work hard and compete to win. Some will win first place, others will not. But all will leave here winners because they will be better engineering students. Good luck to everyone competing this week. The experiences you gain will last throughout your lives. Also, I want to thank everyone for their hard work, support and participation; it’s because of you these competitions are such a success. Sincerely, Douglas Patton 2017 President SAE International 3 TABLE OF CONCEPT OF THE COMPETITION CONTENTS: The Formula SAE® Series are competitions that challenge teams of university undergraduate and graduate students to conceive, design, fabricate and compete with a small, formula style, Concept of the Competition ..................4 competition vehicle.
    [Show full text]