Arsenic (Trioxide)

Total Page:16

File Type:pdf, Size:1020Kb

Arsenic (Trioxide) pan-Canadian Oncology Drug Review Final Clinical Guidance Report Arsenic Trioxide (Trisenox) for Acute Promyelocytic Leukemia February 18, 2014 DISCLAIMER Not a Substitute for Professional Advice This report is primarily intended to help Canadian health systems leaders and policymakers make well-informed decisions and thereby improve the quality of health care services. While patients and others may use this report, they are made available for informational and educational purposes only. This report should not be used as a substitute for the application of clinical judgment in respect of the care of a particular patient or other professional judgment in any decision making process, or as a substitute for professional medical advice. Liability pCODR does not assume any legal liability or responsibility for the accuracy, completeness or usefulness of any information, drugs, therapies, treatments, products, processes, or services disclosed. The information is provided "as is" and you are urged to verify it for yourself and consult with medical experts before you rely on it. You shall not hold pCODR responsible for how you use any information provided in this report. Reports generated by pCODR are composed of interpretation, analysis, and opinion on the basis of information provided by pharmaceutical manufacturers, tumour groups, and other sources. pCODR is not responsible for the use of such interpretation, analysis, and opinion. Pursuant to the foundational documents of pCODR, any findings provided by pCODR are not binding on any organizations, including funding bodies. pCODR hereby disclaims any and all liability for the use of any reports generated by pCODR (for greater certainty, "use" includes but is not limited to a decision by a funding body or other organization to follow or ignore any interpretation, analysis, or opinion provided in a pCODR report). FUNDING The pan-Canadian Oncology Drug Review is funded collectively by the provinces and territories, with the exception of Quebec, which does not participate in pCODR at this time. pCODR Final Clinical Guidance Report - Arsenic Trioxide (Trisenox) for Acute Promyelocytic Leukemia pERC Meeting: January 16, 2014; Early Conversion: February 18, 2014 © 2013 pCODR | PAN-CANADIAN ONCOLOGY DRUG REVIEW ii INQUIRIES Inquiries and correspondence about the pan-Canadian Oncology Drug Review (pCODR) should be directed to: pan-Canadian Oncology Drug Review 1 University Avenue, suite 300 Toronto, ON M5J 2P1 Telephone: 416-673-8381 Fax: 416-915-9224 Email: [email protected] Website: www.pcodr.ca pCODR Final Clinical Guidance Report - Arsenic Trioxide (Trisenox) for Acute Promyelocytic Leukemia pERC Meeting: January 16, 2014; Early Conversion: February 18, 2014 © 2013 pCODR | PAN-CANADIAN ONCOLOGY DRUG REVIEW iii TABLE OF CONTENTS DISCLAIMER AND FUNDING .......................................................................................... ii INQUIRIES ............................................................................................................. iii TABLE OF CONTENTS ............................................................................................... iiv 1 GUIDANCE IN BRIEF ............................................................................................. 1 1.1. Background ................................................................................................ 1 1.2. Key Results and Interpretation ........................................................................ 1 1.3. Conclusions ................................................................................................ 4 2 CLINICAL GUIDANCE ............................................................................................ 6 2.1 Context for the Clinical Guidance ................................................................. 6 2.2 Interpretation and Guidance ...................................................................... 13 2.3 Conclusions ........................................................................................... 15 3 BACKGROUND CLINICAL INFORMATION .................................................................... 16 4 SUMMARY OF PATIENT ADVOCACY GROUP INPUT ....................................................... 19 5 SUMMARY OF PROVINCIAL ADVISORY GROUP (PAG) INPUT............................................. 24 6 SYSTEMATIC REVIEW .......................................................................................... 26 6.1 Objectives ............................................................................................. 26 6.2 Methods................................................................................................ 26 6.3 Results ................................................................................................. 29 6.4 Ongoing Trials ........................................................................................ 58 7 SUPPLEMENTAL QUESTIONS ................................................................................. 59 8 ABOUT THIS DOCUMENT ..................................................................................... 60 APPENDIX A: LITERATURE SEARCH STRATEGY ................................................................. 61 REFERENCES ......................................................................................................... 65 pCODR Final Clinical Guidance Report - Arsenic Trioxide (Trisenox) for Acute Promyelocytic Leukemia pERC Meeting: January 16, 2014; Early Conversion: February 18, 2014 © 2013 pCODR | PAN-CANADIAN ONCOLOGY DRUG REVIEW iv 1 GUIDANCE IN BRIEF 1.1 Background The purpose of this review is to evaluate the safety and efficacy of arsenic trioxide (ATO; Trisenox) as monotherapy or in combination with ATRA and/or other chemotherapy agents, on patient outcomes compared with appropriate comparators in treatment of patients with: • Previously untreated (first-line) Acute Promyelocytic Leukemia (APL). • Relapsed/Refractory Acute Promyelocytic Leukemia Currently ATO has a Health Canada approved indication for use in induction of remission and consolidation in patients with APL who are refractory to, or have relapsed from, retinoid and anthracycline chemotherapy and whose APL is characterized by presence of the t(15;17) translocation of PML/RAR-alpha gene expression 22. As per the Health Canada product monograph, induction treatment with ATO is administered intravenously at 0.15 mg/kg daily until bone marrow remission. Total dose should not exceed 60 doses and should be stopped at any time if substantial toxicity occurs. Consolidation treatment is given 3 to 6 weeks after completion of induction therapy, administered intravenously at a dose of 0.15 mg/kg daily for 25 doses over a period up to 5 weeks. 1.2 Key Results and Interpretation 1.2.1 Systematic Review Evidence First Line setting Three randomized controlled trials met the eligibility criteria for this review. Lo-Coco 20131 evaluated the non-inferiority of ATO in combination with ATRA (n=77) in comparison to ATRA/chemotherapy (n=79) as an induction and consolidation treatment. Powell 20102 evaluated early stage consolidation with (n=244) or without ATO (n=237) monotherapy. Shen 20043 evaluated ATO (n=20), ATRA (n=20) and ATO/ATRA combination (n=21) as induction therapy. Most patient characteristics were well matched within and between trials in the Lo-Coco and Powell studies with no statistically significant differences in baseline characteristics between the study arms. However, the Powell study included low, intermediate and high risk patients as defined by their white blood cell counts while the Lo-Coco study included only low/intermediate risk patients. There were limitations in the Shen study in terms of the sample size, generalizability of the patient population, lack of information on the randomization and blinding and unclear reporting of results that created significant uncertainty in the comparability of Shen 2004 to the two other included studies. Relapsed/Refractory setting No randomized controlled trials comparing ATO with a relevant comparator were identified that met the eligibility criteria of this review. Eleven prospective studies were however identified and included in the systematic review, each incorporating ATO into the treatment of relapsed/refractory APL in different combinations with other agents and at different stages of treatment (e.g. induction, consolidation or both). One study (Wang 20044) included both a prospective arm (ATO monotherapy) arm and a comparative historical cohort (ATRA). One study (Raffoux 20035) was a randomized controlled trial that had ATO in both arms and thus did not pCODR Final Clinical Guidance Report - Arsenic Trioxide (Trisenox) for Acute Promyelocytic Leukemia pERC Meeting: January 16, 2014; Early Conversion: February 18, 2014 © 2013 pCODR | PAN-CANADIAN ONCOLOGY DRUG REVIEW 1 provide an appropriate comparison but was considered as a prospective cohorts for the purpose of this review. The remaining 9 studies were single arm, non-randomized, non-comparative studies. (Alimoghaddam 20116, Lazo 20037, , Niu 19998, Shen 20019, Shen 199710, Shigeno 200511, Soignet 200112, Soignet 199813, Yanada 201314). In the Wang 2004 study some patients in the ATRA/ATO and ATO alone arm had received ATO containing treatment in the first line setting. In all other included relapsed/refractory studies, the previous first line treatment regimen of patients was either not reported or included an ATRA/chemotherapy containing regimen. There was variability among the eleven
Recommended publications
  • Gy Total Body Irradiation Followed by Allogeneic Hematopoietic St
    Bone Marrow Transplantation (2009) 44, 785–792 & 2009 Macmillan Publishers Limited All rights reserved 0268-3369/09 $32.00 www.nature.com/bmt ORIGINAL ARTICLE Fludarabine, amsacrine, high-dose cytarabine and 12 Gy total body irradiation followed by allogeneic hematopoietic stem cell transplantation is effective in patients with relapsed or high-risk acute lymphoblastic leukemia F Zohren, A Czibere, I Bruns, R Fenk, T Schroeder, T Gra¨f, R Haas and G Kobbe Department of Haematology, Oncology and Clinical Immunology, Heinrich Heine-University, Du¨sseldorf, Germany In this prospective study, we examined the toxicity and Introduction efficacy of an intensified conditioning regimen for treatment of patients with relapsed or high-risk acute The use of intensified conventional induction chemothera- lymphoblastic leukemia who undergo allogeneic hemato- pies in the treatment of newly diagnosed ALL in adult poietic stem cell transplantation. Fifteen patients received patients has led to initial CR rates of up to 90%. But, as fludarabine 30 mg/m2, cytarabine 2000 mg/m2, amsacrine some patients are even refractory to first-line therapy, the 100 mg/m2 on days -10, -9, -8 and -7, anti-thymocyte majority of the responding patients unfortunately suffer globulin (ATG-Fresenius) 20 mg/kg body weight on days from relapse. Therefore, the probability of long-term -6, -5 and -4 and fractionated total body irradiation disease-free survival is o30%.1–5 Risk stratification based 2 Â 2 Gy on days -3, -2 and -1 (FLAMSA-ATG-TBI) on prognostic factors allows identification of high-risk before allogeneic hematopoietic stem cell transplantation. ALL patients with poor prognosis.6–12 Myeloablative At the time of hematopoietic stem cell transplantation, 10 conditioning therapy followed by allogeneic hematopoietic patients were in complete remission (8 CR1; 2 CR2), 3 stem cell transplantation (HSCT) is currently the treatment with primary refractory and 2 suffered from refractory of choice for these high-risk patients.13–15 A combination of relapse.
    [Show full text]
  • CK0403, a 9‑Aminoacridine, Is a Potent Anti‑Cancer Agent in Human Breast Cancer Cells
    MOLECULAR MEDICINE REPORTS 13: 933-938, 2016 CK0403, a 9‑aminoacridine, is a potent anti‑cancer agent in human breast cancer cells YUAN-WAN SUN1, KUEN-YUAN CHEN2, CHUL-HOON KWON3 and KUN-MING CHEN1 1Department of Biochemistry and Molecular Biology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; 2Department of Surgery, National Taiwan University Hospital, Taipei 8862, Taiwan, R.O.C.; 3Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, New York, NY 11439, USA Received November 11, 2014; Accepted October 22, 2015 DOI: 10.3892/mmr.2015.4604 Abstract. 3-({4-[4-(Acridin-9-ylamino)phenylthio]phenyl} reduced growth inhibitory activity under hypoxic conditions, (3-hydroxypropyl)amino)propan-1-ol (CK0403) is a which can induce autophagy. Collectively, the present results sulfur-containing 9-anilinoacridine analogue of amsacrine and supported that CK0403 is highly potent and more effective than was found to be more potent than its analogue 2-({4-[4-(acridin- CK0402 against estrogen receptor-negative and 9-ylamino)phenylthio]phenyl}(2-hydroxyethyl)amino) HER2-overexpressing breast cancer cell lines, suggesting its ethan-1-ol (CK0402) and amsacrine in the inhibition of the future application for chemotherapy in breast cancer. topoisomerase II-catalyzed decatenation reaction. A previous study by our group reported that CK0402 was effective against Introduction numerous breast cancer cell lines, and the combination of CK0402 with herceptin enhanced its activity in HER2(+) Breast cancer is the most common type of cancer diagnosed SKBR-3 cells. In order to identify novel chemotherapeutic agents in American women and is the second most common cause with enhanced potency, the present study explored the potential of cancer-associated mortality.
    [Show full text]
  • Promising Findings for SCC in Organ Transplant Recipients Repeated PDT Treatments May Reduce the Incidence of Sccs in This High-Risk Population
    Oncology Watch Cyclic Photodynamic Therapy: Promising Findings for SCC in Organ Transplant Recipients Repeated PDT treatments may reduce the incidence of SCCs in this high-risk population. By Jonathan Wolfe, MD hotodynamic therapy with 5-aminolevulinic acid SOTRs typically undergo chemoprophylaxis with sys- (ALA, Levulan, DUSA Pharmaceuticals) has temic retinoids, although there have been few ran- become established as a safe and effective option domized controlled trials to quantify their benefit. Pfor the management of AKs (see the January edi- Acitretin is probably the most frequently used agent,3 tion, available at PracticalDermatology.com). The drug but isotretinoin and etretinate are also used, and there is indicated, along with blue light application, for the is anecdotal evidence to support the use of treatment of minimally to moderately thick actinic bexarotene.4 Of note, rebound flares have been associ- keratoses of the face or scalp. However, there has ated with discontinuation of retinoids, leading some to been increasing interest in the role of PDT to manage advocate chemoprevention as a lifelong therapy.3 other types of skin cancers. A recent study shows that the procedure may be effective for reducing the inci- An Emerging Option dence of squamous cell carcinoma (SCC) in solid Given the concerns about high rates of NMSCs in organ transplant recipients (SOTR). transplant recipients, there is interest in identifying optimal treatment and prevention strategies. While Skin Cancer and SOTRs retinoid chemoprophylaxis is an important and effec- Compared to the general population, solid organ trans- tive option, additional interventions are welcome. plant recipients are at higher risk of skin cancer, with Recent findings suggest a role for cyclic 5-ALA PDT up to a 100-fold estimated increase in the relative risk therapy.5 Twelve high-risk SOTRs received cyclic PDT of squamous cell carcinoma (SCC) compared to the treatments at four- to eight-week intervals for two non-transplanted population.
    [Show full text]
  • Incidence of Differentiation Syndrome Associated with Treatment
    Journal of Clinical Medicine Review Incidence of Differentiation Syndrome Associated with Treatment Regimens in Acute Myeloid Leukemia: A Systematic Review of the Literature Lucia Gasparovic 1, Stefan Weiler 1,2, Lukas Higi 1 and Andrea M. Burden 1,* 1 Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland; [email protected] (L.G.); [email protected] (S.W.); [email protected] (L.H.) 2 National Poisons Information Centre, Tox Info Suisse, Associated Institute of the University of Zurich, 8032 Zurich, Switzerland * Correspondence: [email protected]; Tel.: +41-76-685-22-56 Received: 30 August 2020; Accepted: 14 October 2020; Published: 18 October 2020 Abstract: Differentiation syndrome (DS) is a potentially fatal adverse drug reaction caused by the so-called differentiating agents such as all-trans retinoic acid (ATRA) and arsenic trioxide (ATO), used for remission induction in the treatment of the M3 subtype of acute myeloid leukemia (AML), acute promyelocytic leukemia (APL). However, recent DS reports in trials of isocitrate dehydrogenase (IDH)-inhibitor drugs in patients with IDH-mutated AML have raised concerns. Given the limited knowledge of the incidence of DS with differentiating agents, we conducted a systematic literature review of clinical trials with reports of DS to provide a comprehensive overview of the medications associated with DS. In particular, we focused on the incidence of DS reported among the IDH-inhibitors, compared to existing ATRA and ATO therapies. We identified 44 published articles, encompassing 39 clinical trials, including 6949 patients. Overall, the cumulative incidence of DS across all treatment regimens was 17.7%.
    [Show full text]
  • BC Cancer Benefit Drug List September 2021
    Page 1 of 65 BC Cancer Benefit Drug List September 2021 DEFINITIONS Class I Reimbursed for active cancer or approved treatment or approved indication only. Reimbursed for approved indications only. Completion of the BC Cancer Compassionate Access Program Application (formerly Undesignated Indication Form) is necessary to Restricted Funding (R) provide the appropriate clinical information for each patient. NOTES 1. BC Cancer will reimburse, to the Communities Oncology Network hospital pharmacy, the actual acquisition cost of a Benefit Drug, up to the maximum price as determined by BC Cancer, based on the current brand and contract price. Please contact the OSCAR Hotline at 1-888-355-0355 if more information is required. 2. Not Otherwise Specified (NOS) code only applicable to Class I drugs where indicated. 3. Intrahepatic use of chemotherapy drugs is not reimbursable unless specified. 4. For queries regarding other indications not specified, please contact the BC Cancer Compassionate Access Program Office at 604.877.6000 x 6277 or [email protected] DOSAGE TUMOUR PROTOCOL DRUG APPROVED INDICATIONS CLASS NOTES FORM SITE CODES Therapy for Metastatic Castration-Sensitive Prostate Cancer using abiraterone tablet Genitourinary UGUMCSPABI* R Abiraterone and Prednisone Palliative Therapy for Metastatic Castration Resistant Prostate Cancer abiraterone tablet Genitourinary UGUPABI R Using Abiraterone and prednisone acitretin capsule Lymphoma reversal of early dysplastic and neoplastic stem changes LYNOS I first-line treatment of epidermal
    [Show full text]
  • Arsenic Trioxide As a Radiation Sensitizer for 131I-Metaiodobenzylguanidine Therapy: Results of a Phase II Study
    Arsenic Trioxide as a Radiation Sensitizer for 131I-Metaiodobenzylguanidine Therapy: Results of a Phase II Study Shakeel Modak1, Pat Zanzonico2, Jorge A. Carrasquillo3, Brian H. Kushner1, Kim Kramer1, Nai-Kong V. Cheung1, Steven M. Larson3, and Neeta Pandit-Taskar3 1Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York; 2Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York; and 3Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York sponse rates when compared with historical data with 131I-MIBG Arsenic trioxide has in vitro and in vivo radiosensitizing properties. alone. We hypothesized that arsenic trioxide would enhance the efficacy of Key Words: radiosensitization; neuroblastoma; malignant the targeted radiotherapeutic agent 131I-metaiodobenzylguanidine pheochromocytoma/paraganglioma; MIBG therapy 131 ( I-MIBG) and tested the combination in a phase II clinical trial. J Nucl Med 2016; 57:231–237 Methods: Patients with recurrent or refractory stage 4 neuroblas- DOI: 10.2967/jnumed.115.161752 toma or metastatic paraganglioma/pheochromocytoma (MP) were treated using an institutional review board–approved protocol (Clinicaltrials.gov identifier NCT00107289). The planned treatment was 131I-MIBG (444 or 666 MBq/kg) intravenously on day 1 plus arsenic trioxide (0.15 or 0.25 mg/m2) intravenously on days 6–10 and 13–17. Toxicity was evaluated using National Cancer Institute Common Metaiodobenzylguanidine (MIBG) is a guanethidine analog Toxicity Criteria, version 3.0. Response was assessed by Interna- that is taken up via the noradrenaline transporter by neuroendo- tional Neuroblastoma Response Criteria or (for MP) by changes in crine malignancies arising from sympathetic neuronal precursors 123I-MIBG or PET scans.
    [Show full text]
  • Resimmune, an Anti-Cd3ε Recombinant Immunotoxin, Induces
    Non-Hodgkin Lymphoma SUPPLEMENTARY APPENDIX Resimmune, an anti-CD3 recombinant immunotoxin, induces durable remissions in patients wiεth cutaneous T-cell lymphoma Arthur E. Frankel, 1 Jung H. Woo, 2 Chul Ahn, 1 Francine M. Foss, 3 Madeleine Duvic, 4 Paul H. Neville, 5 and David M. Neville 5 1University of Texas Southwestern Medical Center, Dallas, TX; 2Baylor Scott & White Health, Temple, TX; 3Yale University School of Medi - cine, New Haven, CT; 4The University of Texas MD Anderson Cancer Center, Houston, TX; and 5Angimmune, LLC, Bethesda, MD, USA ©2015 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2015.123711 Manuscript received on January 20, 2015. Manuscript accepted on March 18, 2015. Correspondence: [email protected] Supplemental Material Administration-- The study was performed under the sponsorship of Angimmune, LLC, registered in clinical trials.gov as NCT00611208, and approved by Institutional Review Boards at the participating institutions. In the dose escalation phase of the study, cohorts of new patients were treated with a single course of Resimmune as 15-minute infusions at doses ranging from 2.5 to 11.25µg/kg intravenously twice daily for 4 days. There was an expansion cohort at the maximal tolerated dose (MTD) in patients with stage IB-IIB CTCL and modified skin weighted assessment tool (mSWAT) scores of <50. In the expansion phase of the study, 13 patients received a single course at the 7.5µg/kg dose level. Patient eligibility-- Patients with CD3+ T cell malignancies diagnosed by morphologic, histochemical, and cell surface criteria and having failed a systemic therapy were eligible for the dose-escalation portion of the study.
    [Show full text]
  • Busulfan–Melphalan Followed by Autologous Stem Cell
    Bone Marrow Transplantation (2016) 51, 1265–1267 © 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved 0268-3369/16 www.nature.com/bmt LETTER TO THE EDITOR Busulfan–Melphalan followed by autologous stem cell transplantation in patients with high-risk neuroblastoma or Ewing sarcoma: an exposed–unexposed study evaluating the clinical impact of the order of drug administration Bone Marrow Transplantation (2016) 51, 1265–1267; doi:10.1038/ survival (OS) was the time from study entry (that is, the first day bmt.2016.109; published online 25 April 2016 of HDC) to death or the last follow-up, whichever occurred first. EFS was the time from study entry to disease progression, a second malignancy, death or the last follow-up, whichever High-dose chemotherapy (HDC) and autologous stem cell occurred first. OS and EFS were estimated using the Kaplan–Meier transplantation (ASCT) have improved the prognosis of high-risk method. Patients from the two treatment groups (Bu–Mel neuroblastoma and metastatic Ewing sarcoma.1,2 The impact of and Mel–Bu) of the same age at diagnosis were matched. the drugs in the HDC regimen was first demonstrated in a The association of the treatment group with toxicity and study performed in the Gustave Roussy Pediatrics Department. efficacy outcomes was assessed using Cox regression models It showed improved survival for patients with stage 4 stratified on matched pairs and adjusted for other confounding neuroblastoma who received a combination of busulfan (Bu) factors, such as the year of diagnosis, VOD prophylaxis and age at and melphalan (Mel).3 These results were confirmed in a diagnosis.
    [Show full text]
  • Acitretin; Adapalene; Alitretinoin; Bexarotene; Isotretinoin
    8 February 2018 EMA/254364/2018 Pharmacovigilance Risk Assessment Committee (PRAC) Assessment report Referral under Article 31 of Directive 2001/83/EC resulting from pharmacovigilance data Retinoids containing medicinal products INN: Acitretin, Adapalene, Alitretinoin, Bexarotene, Isotretinoin, Tretinoin, Tazarotene Procedure number: EMEA/H/A-31/1446 Panretin EMEA/H/A-31/1446/C/000279/0037 Targretin EMEA/H/A-31/1446/C/000326/0043 Note: Assessment report as adopted by the PRAC and considered by the CHMP with all information of a commercially confidential nature deleted. 30 Churchill Place ● Canary Wharf ● London E14 5EU ● United Kingdom Telephone +44 (0)20 3660 6000 Facsimile +44 (0)20 3660 5555 Send a question via our website www.ema.europa.eu/contact An agency of the European Union © European Medicines Agency, 2018. Reproduction is authorised provided the source is acknowledged. Table of contents Table of contents ......................................................................................... 2 1. Information on the procedure ................................................................. 3 2. Scientific discussion ................................................................................ 3 2.1. Introduction......................................................................................................... 3 2.2. Clinical aspects .................................................................................................... 5 2.3. Data on efficacy ..................................................................................................
    [Show full text]
  • An Evaluation of Engraftment, Toxicity and Busulfan Concentration in Children Receiving Bone Marrow Transplantation for Leukemia Or Genetic Disease
    Bone Marrow Transplantation (2000) 25, 925–930 2000 Macmillan Publishers Ltd All rights reserved 0268–3369/00 $15.00 www.nature.com/bmt An evaluation of engraftment, toxicity and busulfan concentration in children receiving bone marrow transplantation for leukemia or genetic disease AM Bolinger1, AB Zangwill1, JT Slattery2,3, D Glidden4, K DeSantes5, L Heyn6, LJ Risler3, B Bostrom7 and MJ Cowan8 1University of California at San Francisco, Department of Clinical Pharmacy; 2Department of Pharmaceutics, University of Washington; 3Fred Hutchinson Cancer Research Center; 4University of California at San Francisco, Department of Epidemiology and Biostatistics; 5University of Wisconsin, Department of Pediatrics; 6University of California at San Francisco, Department of Nursing; 7University of Minnesota, Department of Pediatrics; and 8University of California at San Francisco, Department of Pediatrics, San Francisco, CA, USA Summary: children exhibit average busulfan steady-state concen- trations (Css) or an area under the curve (AUC) substan- Autologous recovery is a major problem with busulfan tially less than do older children or adults.7–9 The Css corre- as a marrow ablative agent in conditioning children for sponds to the AUC over a dosing interval divided by the allogeneic BMT. Data suggest the average concentration 6 h between doses. The AUC over a dosing interval is equal of busulfan at steady state (Bu Css) is critical for suc- to the AUC from the time the first dose is ingested to infin- cessful engraftment. We prospectively evaluated busul- ity if no subsequent doses are taken. A Css of 900 ng/ml fan pharmacokinetics in 31 children (age 0.6–18 years) is equal to an AUC of 1350 ␮m × min.
    [Show full text]
  • Acitretin; Adapalene; Alitretinoin; Bexarotene; Isotretinoin
    21 June 2018 EMA/261767/2018 Updated measures for pregnancy prevention during retinoid use Warning on possible risk of neuropsychiatric disorders also to be included for oral retinoids On 22 March 2018, the European Medicines Agency (EMA) completed its review of retinoid medicines, and confirmed that an update of measures for pregnancy prevention is needed. In addition, a warning on the possibility that neuropsychiatric disorders (such as depression, anxiety and mood changes) may occur will be included in the prescribing information for oral retinoids (those taken by mouth). Retinoids include the active substances acitretin, adapalene, alitretinoin, bexarotene, isotretinoin, tazarotene and tretinoin. They are taken by mouth or applied as creams or gels to treat several conditions mainly affecting the skin, including severe acne and psoriasis. Some retinoids are also used to treat certain forms of cancer. The review confirmed that oral retinoids can harm the unborn child and must not be used during pregnancy. In addition, the oral retinoids acitretin, alitretinoin and isotretinoin, which are used to treat conditions mainly affecting the skin, must be used in accordance with the conditions of a new pregnancy prevention programme by women able to have children. Topical retinoids (those applied to the skin) must also not be used during pregnancy, and by women planning to have a baby. More information is available below. Regarding the risk of neuropsychiatric disorders, the limitations of the available data did not allow to clearly establish whether this risk was due to the use of retinoids. However, considering that patients with severe skin conditions may be more vulnerable to neuropsychiatric disorders due to the nature of the disease, the prescribing information for oral retinoids will be updated to include a warning about this possible risk.
    [Show full text]
  • Sequential Combination of Decitabine
    Li et al. Journal of Translational Medicine 2014, 12:167 http://www.translational-medicine.com/content/12/1/167 RESEARCH Open Access Sequential combination of decitabine and idarubicin synergistically enhances anti-leukemia effect followed by demethylating Wnt pathway inhibitor promoters and downregulating Wnt pathway nuclear target Kongfei Li1,2,3, Chao Hu1,3, Chen Mei6, Zhigang Ren4, Juan Carlos Vera5, Zhengping Zhuang5, Jie Jin1,3 and Hongyan Tong1,3* Abstract Background: The methylation inhibitor 5-Aza-2′-deoxycytidine (decitabine, DAC) has a great therapeutic value for acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS). But decitabine monotherapy was associated with a relatively low rate of complete remission in AML and MDS. We aimed to investigate the effect of several anti-leukemia drugs in combination with decitabine on the proliferation of myeloid leukemia cells, to select the most efficient combination group and explore the associated mechanisms of these combination therapies. Methods: Cell proliferation was tested by MTT assay and CFU-GM assay. Cell apoptosis was evaluated by Annexin V and PI staining in cell culture, TUNEL assay and transmission electron microscopy in animal study. MicroPET was used to imaging the tumor in mouse model. Molecular studies were conducted using microarray expression analysis, which was used to explore associated pathways, and real-time quantitative reverse transcription-PCR, western blot and immunohistochemistry, used to assess regulation of Wnt/β-catenin pathway. Statistical significance among groups was determined by one-way ANOVA analysis followed by post hoc Bonferroni’s multiple comparison test. Results: Among five anti-leukemia agents in combining with decitabine, the sequential combination of decitabine and idarubicin induced synergistic cell death in U937 cells, and this effect was verified in HEL, SKM-1 cells and AML cells isolated from AML patients.
    [Show full text]