Prolonged Activation of Innate Antiviral Gene Signature After Childbirth Is Determined by IFNL3 Genotype

Total Page:16

File Type:pdf, Size:1020Kb

Prolonged Activation of Innate Antiviral Gene Signature After Childbirth Is Determined by IFNL3 Genotype Prolonged activation of innate antiviral gene signature after childbirth is determined by IFNL3 genotype Aryn A. Pricea,b, Dana Tedescoa,b, Mona R. Prasadc, Kimberly A. Workowskid, Christopher M. Walkere,f, Mehul S. Suthara,b,g, Jonathan R. Honeggere,f,1, and Arash Grakouia,b,h,1 aEmory Vaccine Center, Division of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30329; bYerkes National Primate Research Center, Emory University, Atlanta, GA 30329; cDepartment of Obstetrics and Gynecology, The Ohio State University School of Medicine, Columbus, OH 43205; dDepartment of Medicine, Emory University School of Medicine, Atlanta, GA 30322; eThe Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205; fDepartment of Pediatrics, The Ohio State University School of Medicine, Columbus, OH, 43205; gDepartment of Pediatrics and Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322; and hDivision of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30329 Edited by Michael B. A. Oldstone, The Scripps Research Institute, La Jolla, CA, and approved July 26, 2016 (received for review February 11, 2016) Maternal innate and adaptive immune responses are modulated IFN-γ production (15). We hypothesized that maternal innate during pregnancy to concurrently defend against infection and immune activation extends beyond gestation, thus compensating tolerate the semiallogeneic fetus. The restoration of these systems for the lag phase in postpartum T-cell immunity. We tested this after childbirth is poorly understood. We reasoned that enhanced hypothesis by comparing the transcriptional profiles of total pe- innate immune activation may extend beyond gestation while ripheral blood mononuclear cells (PBMCs) from healthy mothers adaptive immunity recovers. To test this hypothesis, the transcrip- following delivery in relation to nonpregnant control subjects tional profiles of total peripheral blood mononuclear cells follow- (NPCs). We identified an IFN-stimulated gene (ISG) signature that + ing delivery in healthy women were compared with those of was primarily expressed in CD14 cells and depended on the in- nonpregnant control subjects. Interestingly, interferon-stimulated terferon-λ3(IFNL3, also known as IL28B) single-nucleotide poly- genes (ISGs) encoding proteins such as IFIT1, IFIT2, and IFIT3, as morphism (SNP) rs12979860. Together these data suggest that well as signaling proteins such as STAT1, STAT2, and MAVS, were IFNL3 genotype may influence innate immunity following delivery. enriched postpartum. Antiviral genes were primarily expressed in + CD14 cells and could be stratified according to genetic variation at Results λ IFNL3 the interferon- 3 gene ( , also named IL28B) SNP rs12979860. We used a systems biology approach to identify gene expression Antiviral gene expression was sustained beyond 6 mo following patterns and pathways that may contribute to postpartum control delivery in mothers with a CT or TT genotype, but resembled base- of viral infections. PBMCs were collected 2 wk following delivery line nonpregnant control levels following delivery in mothers with from two healthy mothers, UM07 and UM08, and two NPCs, a CC genotype. CT and TT IFNL3 genotypes have been associated NPC354 and NPC357. All NPC subjects were women in their with persistent elevated ISG expression in individuals chronically in- fected with hepatitis C virus. Together, these data suggest that post- childbearing years who had never been pregnant. Postpartum partum, the normalization of the physiological rheostat controlling genes enriched at least twofold over NPCs were included in the IFN signaling depends on IFNL3 genotype. analysis; 982 genes were differentially expressed in both UM07 and UM08. Further analysis of these genes by DAVID bio- postpartum | CD14 | interferon | innate immunity | antiviral genes informatics indicated that the top five enriched biological processes were related to immune response [Gene Ontology (GO):0006955], positive regulation of defense response to virus aternal immunoregulatory adaptations such as the expan- sion of regulatory T cells (T ) with potent immunosup- by host (GO:0002230), response to virus (GO:0009615), defense M regs response to virus by host (GO:0050691), and regulation of immune pressive capacity serve to maintain fetal tolerance during pregnancy A (1, 2). Although tolerance mechanisms are necessary for fetal effector process (GO:0002697) (Fig. 1 ). Remarkably, all five survival, suppressed cellular immunity renders pregnant women susceptible to severe infection with certain pathogens (3–7). Significance Augmented innate immunity may partially offset the reduced adaptive immune protection in pregnancy (8, 9). Following de- In this study, we examined the possibility that the maternal livery, however, the maternal immune system is released from innate immune system is modulated following delivery. We the constraints of pregnancy. identified an interferon-stimulated gene signature that was The postpartum period is associated with alterations in the primarily expressed in CD14+ cells circulating in the peripheral severity of certain autoimmune diseases and enhanced control of blood. Postpartum antiviral gene expression depended on the several chronic viruses. For example, multiple sclerosis symptom interferon-λ3(IFNL3) single-nucleotide polymorphism rs12979860, severity is often alleviated during pregnancy and exacerbated which suggests that IFNL3 genotype may influence a mother’s following delivery (10). Similarly, women persistently infected innate immune response following delivery. with hepatitis C virus (HCV) or hepatitis B virus (HBV) may experience a precipitous decrease in viral load in the months Author contributions: A.A.P., D.T., C.M.W., M.S.S., J.R.H., and A.G. designed research; A.A.P., – D.T., M.S.S., and J.R.H. performed research; A.A.P., D.T., C.M.W., M.S.S., J.R.H., and A.G. following delivery (11 13). Factors that contribute to the enhanced analyzed data; A.A.P., D.T., C.M.W., M.S.S., J.R.H., and A.G. wrote the paper; and M.R.P. postpartum viral control are not fully understood, although in the and K.A.W. recruited subjects. context of HCV infection, the decrease in viral load was linked in The authors declare no conflict of interest. two women to the emergence of viral variants with escape mu- This article is a PNAS Direct Submission. tations in class I epitopes, suggesting a restoration of virus-spe- + Data deposition: The data reported in this paper have been deposited in the Gene Ex- cific CD8 T-cell selection pressure (11). pression Omnibus (GEO) database, www.ncbi.nlm.nih.gov/geo (accession no. GSE85960). There is evidence, however, that a brief lag phase in T-cell 1To whom correspondence may be addressed. Email: jonathan.honegger@nationwidechildrens. function may occur following delivery. Although absolute num- org or [email protected]. bers of T cells normalize by 1-mo postpartum (14, 15), these T This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. cells may possess functional effector deficits such as decreased 1073/pnas.1602319113/-/DCSupplemental. 10678–10683 | PNAS | September 20, 2016 | vol. 113 | no. 38 www.pnas.org/cgi/doi/10.1073/pnas.1602319113 Downloaded by guest on September 27, 2021 biological processes were associated with immunity, and three of NPCs (Fig. 1C). Interestingly, many antiviral genes were enriched as these were specifically related to antiviral immunity. late as 24 wk following delivery. Expression patterns varied from Due to the number of antiviral genes within the “defense re- transient expression 2- to 4-wk postpartum, as in the case of MAVS sponse to virus” biological process, this category was investigated and STAT2, to prolonged expression from 12 to 24 wk following further. The enriched antiviral defense genes encoded proteins delivery, as exemplified by IFIT1, IFIT2,andIFIT3 (Fig. 1C). with antiviral effector function (IFIT1, IFIT2, IFIT3, and OAS1) IFIT1, IFIT2, IFIT3,andOAS1 were chosen for further analysis and signaling function (STAT1, STAT2, MAVS, and TLR7). because of their relative fold increases in transcript levels within total Interestingly, the IFN-α/β signaling pathway was enriched post- PBMCs. These genes are canonical ISGs that when translated pos- partum. Network analysis identified STAT1 and STAT2 to be sess antiviral function against numerous viruses. The IFN-induced the regulatory nodes within the network (Fig. 1B). STAT1 and protein with tetratricopeptide repeats (IFIT) family proteins func- STAT2 are key modulators of type I and type III IFN signaling, tion by inhibiting distinct steps of the viral life cycle (16), whereas oligoadenylate synthetase 1 (OAS1) activates RNase L to cleave and together these data are consistent with up-regulated antiviral viral RNA (17). Because the transcriptome analysis indicated that IFN signaling in peripheral blood cells following delivery in IFIT1, IFIT2, IFIT3,andOAS1 remained elevated 6-mo postpartum UM07 and UM08. in PBMCs from UM07 and UM08, we extended these findings in We then examined the duration of antiviral gene enrichment additional healthy mothers. PBMCs were collected from 10 mothers following delivery. Gene expression analysis was performed on at late time points following delivery (Table S1). RT-PCR was used PBMCs from UM07 and UM08 obtained 2-, 4-, 12-, and 24-wk to compare transcript expression
Recommended publications
  • Secretion and LPS-Induced Endotoxin Shock Α Lipopolysaccharide
    IFIT2 Is an Effector Protein of Type I IFN− Mediated Amplification of Lipopolysaccharide (LPS)-Induced TNF- α Secretion and LPS-Induced Endotoxin Shock This information is current as of September 27, 2021. Alexandra Siegfried, Susanne Berchtold, Birgit Manncke, Eva Deuschle, Julia Reber, Thomas Ott, Michaela Weber, Ulrich Kalinke, Markus J. Hofer, Bastian Hatesuer, Klaus Schughart, Valérie Gailus-Durner, Helmut Fuchs, Martin Hrabe de Angelis, Friedemann Weber, Mathias W. Hornef, Ingo B. Autenrieth and Erwin Bohn Downloaded from J Immunol published online 6 September 2013 http://www.jimmunol.org/content/early/2013/09/06/jimmun ol.1203305 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2013/09/06/jimmunol.120330 Material 5.DC1 Why The JI? Submit online. by guest on September 27, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published September 6, 2013, doi:10.4049/jimmunol.1203305 The Journal of Immunology IFIT2 Is an Effector Protein of Type I IFN–Mediated Amplification of Lipopolysaccharide (LPS)-Induced TNF-a Secretion and LPS-Induced Endotoxin Shock Alexandra Siegfried,*,1 Susanne Berchtold,*,1 Birgit Manncke,* Eva Deuschle,* Julia Reber,* Thomas Ott,† Michaela Weber,‡ Ulrich Kalinke,x Markus J.
    [Show full text]
  • Small Nucleolar Rnas Determine Resistance to Doxorubicin in Human Osteosarcoma
    International Journal of Molecular Sciences Article Small Nucleolar RNAs Determine Resistance to Doxorubicin in Human Osteosarcoma Martina Godel 1, Deborah Morena 1, Preeta Ananthanarayanan 1, Ilaria Buondonno 1, Giulio Ferrero 2,3 , Claudia M. Hattinger 4, Federica Di Nicolantonio 1,5 , Massimo Serra 4 , 1 2 1, , 1, , Riccardo Taulli , Francesca Cordero , Chiara Riganti * y and Joanna Kopecka * y 1 Department of Oncology, University of Torino, 1026 Torino, Italy; [email protected] (M.G.); [email protected] (D.M.); [email protected] (P.A.); [email protected] (I.B.); [email protected] (F.D.N.); [email protected] (R.T.) 2 Department of Computer Science, University of Torino, 10149 Torino, Italy; [email protected] (G.F.); [email protected] (F.C.) 3 Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Italy 4 Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; [email protected] (C.M.H.); [email protected] (M.S.) 5 Candiolo Cancer Institute, FPO–IRCCS, 10060 Candiolo, Italy * Correspondence: [email protected] (C.R.); [email protected] (J.K.); Tel.: +39-0116705857 (C.R.); +39-0116705849 (J.K.) These authors equally contributed to this work. y Received: 31 May 2020; Accepted: 21 June 2020; Published: 24 June 2020 Abstract: Doxorubicin (Dox) is one of the most important first-line drugs used in osteosarcoma therapy. Multiple and not fully clarified mechanisms, however, determine resistance to Dox. With the aim of identifying new markers associated with Dox-resistance, we found a global up-regulation of small nucleolar RNAs (snoRNAs) in human Dox-resistant osteosarcoma cells.
    [Show full text]
  • TBK1 Antiviral Signaling by Bridging MAVS and IFN-Induced TPR Protein IFIT3 Potentiates
    IFN-Induced TPR Protein IFIT3 Potentiates Antiviral Signaling by Bridging MAVS and TBK1 This information is current as Xin-Yi Liu, Wei Chen, Bo Wei, Yu-Fei Shan and Chen of October 1, 2021. Wang J Immunol published online 3 August 2011 http://www.jimmunol.org/content/early/2011/08/03/jimmun ol.1100963 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2011/08/04/jimmunol.110096 Material 3.DC1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on October 1, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2011 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published August 3, 2011, doi:10.4049/jimmunol.1100963 The Journal of Immunology IFN-Induced TPR Protein IFIT3 Potentiates Antiviral Signaling by Bridging MAVS and TBK1 Xin-Yi Liu,1 Wei Chen,1 Bo Wei, Yu-Fei Shan, and Chen Wang Intracellular RNA viruses are sensed by receptors retinoic acid-inducible gene I/MDA5, which trigger formation of the mitochon- drial antiviral signaling (MAVS) complex on mitochondria.
    [Show full text]
  • Entinostat Augments NK Cell Functions Via Epigenetic Upregulation of IFIT1-STING-STAT4 Pathway
    www.oncotarget.com Oncotarget, 2020, Vol. 11, (No. 20), pp: 1799-1815 Research Paper Entinostat augments NK cell functions via epigenetic upregulation of IFIT1-STING-STAT4 pathway John M. Idso1, Shunhua Lao1, Nathan J. Schloemer1,2, Jeffrey Knipstein2, Robert Burns3, Monica S. Thakar1,2,* and Subramaniam Malarkannan1,2,4,5,* 1Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA 2Division of Pediatric Hematology-Oncology-BMT, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA 3Bioinformatics Core, Blood Research Institute, Versiti, Milwaukee, WI, USA 4Divson of Hematology-Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA 5Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA *Co-senior authors Correspondence to: Monica S. Thakar, email: [email protected] Subramaniam Malarkannan, email: [email protected] Keywords: NK cells; histone deacetylase inhibitor; Ewing sarcoma; rhabdomyosarcoma; immunotherapy Received: September 10, 2019 Accepted: March 03, 2020 Published: May 19, 2020 Copyright: Idso et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Histone deacetylase inhibitors (HDACi) are an emerging cancer therapy; however, their effect on natural killer (NK) cell-mediated anti-tumor responses remain unknown. Here, we evaluated the impact of a benzamide HDACi, entinostat, on human primary NK cells as well as tumor cell lines. Entinostat significantly upregulated the expression of NKG2D, an essential NK cell activating receptor. Independently, entinostat augmented the expression of ULBP1, HLA, and MICA/B on both rhabdomyosarcoma and Ewing sarcoma cell lines.
    [Show full text]
  • Microarray Analysis of Novel Genes Involved in HSV- 2 Infection
    Microarray analysis of novel genes involved in HSV- 2 infection Hao Zhang Nanjing University of Chinese Medicine Tao Liu ( [email protected] ) Nanjing University of Chinese Medicine https://orcid.org/0000-0002-7654-2995 Research Article Keywords: HSV-2 infection,Microarray analysis,Histospecic gene expression Posted Date: May 12th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-517057/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/19 Abstract Background: Herpes simplex virus type 2 infects the body and becomes an incurable and recurring disease. The pathogenesis of HSV-2 infection is not completely clear. Methods: We analyze the GSE18527 dataset in the GEO database in this paper to obtain distinctively displayed genes(DDGs)in the total sequential RNA of the biopsies of normal and lesioned skin groups, healed skin and lesioned skin groups of genital herpes patients, respectively.The related data of 3 cases of normal skin group, 4 cases of lesioned group and 6 cases of healed group were analyzed.The histospecic gene analysis , functional enrichment and protein interaction network analysis of the differential genes were also performed, and the critical components were selected. Results: 40 up-regulated genes and 43 down-regulated genes were isolated by differential performance assay. Histospecic gene analysis of DDGs suggested that the most abundant system for gene expression was the skin, immune system and the nervous system.Through the construction of core gene combinations, protein interaction network analysis and selection of histospecic distribution genes, 17 associated genes were selected CXCL10,MX1,ISG15,IFIT1,IFIT3,IFIT2,OASL,ISG20,RSAD2,GBP1,IFI44L,DDX58,USP18,CXCL11,GBP5,GBP4 and CXCL9.The above genes are mainly located in the skin, immune system, nervous system and reproductive system.
    [Show full text]
  • Genome-Wide Analysis of DNA Methylation, Copy Number Variation, and Gene Expression in Monozygotic Twins Discordant for Primary Biliary Cirrhosis
    UC Davis UC Davis Previously Published Works Title Genome-wide analysis of DNA methylation, copy number variation, and gene expression in monozygotic twins discordant for primary biliary cirrhosis. Permalink https://escholarship.org/uc/item/34d4m5nk Journal Frontiers in immunology, 5(MAR) ISSN 1664-3224 Authors Selmi, Carlo Cavaciocchi, Francesca Lleo, Ana et al. Publication Date 2014 DOI 10.3389/fimmu.2014.00128 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ORIGINAL RESEARCH ARTICLE published: 28 March 2014 doi: 10.3389/fimmu.2014.00128 Genome-wide analysis of DNA methylation, copy number variation, and gene expression in monozygotic twins discordant for primary biliary cirrhosis Carlo Selmi 1,2*, Francesca Cavaciocchi 1,3, Ana Lleo4, Cristina Cheroni 5, Raffaele De Francesco5, Simone A. Lombardi 1, Maria De Santis 1,3, Francesca Meda1, Maria Gabriella Raimondo1, Chiara Crotti 1, Marco Folci 1, Luca Zammataro1, Marlyn J. Mayo6, Nancy Bach7, Shinji Shimoda8, Stuart C. Gordon9, Monica Miozzo10,11, Pietro Invernizzi 4, Mauro Podda1, Rossana Scavelli 5, Michelle R. Martin12, Michael F. Seldin13,14, Janine M. LaSalle 12 and M. Eric Gershwin2 1 Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center, Milan, Italy 2 Division of Rheumatology, Allergy, and Clinical Immunology, University of California at Davis, Davis, CA, USA 3 BIOMETRA Department, University of Milan, Milan, Italy 4 Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Milan, Italy 5 National Institute of Molecular Genetics (INGM), Milan, Italy 6 University of Texas Southwestern, Dallas, TX, USA 7 Mt. Sinai University, NewYork, NY, USA 8 Clinical Research Center, National Nagasaki Medical Center, Nagasaki, Japan 9 Henry Ford Hospital, Detroit, MI, USA 10 Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy 11 Division of Pathology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy 12 Genome Center and M.I.N.D.
    [Show full text]
  • Mir-19 Regulates the Expression of Interferon-Induced Genes and MHC
    Int. J. Med. Sci. 2020, Vol. 17 953 Ivyspring International Publisher International Journal of Medical Sciences 2020; 17(7): 953-964. doi: 10.7150/ijms.44377 Research Paper miR-19 regulates the expression of interferon-induced genes and MHC class I genes in human cancer cells Jing Li1,5*, Tao-Yan Lin1,4*, Lin Chen1*, Yu Liu1, Mei-Juan Dian1, Wei-Chao Hao1, Xiao-Lin Lin1, Xiao-Yan Li1,3, Yong-Long Li1,3, Mei Lian1,3, Heng-Wei Chen1,3, Jun-Shuang Jia1, Xiao-Ling Zhang6, Sheng-Jun Xiao7, Dong Xiao1,3, Yan Sun2 1. Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China 2. Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China 3. Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China 4. Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China 5. Radiotherapy Center, the First People’s Hospital of Chenzhou, Chenzhou 423000, China 6. Department of Physiology, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin 541004, China 7. Department of Pathology, the Second Affiliated Hospital, Guilin Medical University, Guilin 541199, China *These authors contributed equally to this work. Corresponding authors: Yan Sun, [email protected]; Dong Xiao, [email protected], [email protected]; Sheng-Jun Xiao, [email protected]. © The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.
    [Show full text]
  • Rnaseq Reveals the Contribution of Interferon Stimulated Genes to the Increased Host Defense and Decreased PPR Viral Replication in Cattle
    viruses Article RNAseq Reveals the Contribution of Interferon Stimulated Genes to the Increased Host Defense and Decreased PPR Viral Replication in Cattle 1, 1, Krishnaswamy Gopalan Tirumurugaan y , Rahul Mohanchandra Pawar y, Gopal Dhinakar Raj 2,* , Arthanari Thangavelu 3, John A. Hammond 4 and Satya Parida 4,* 1 Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai 600007, India; [email protected] (K.G.T.); [email protected] (R.M.P.) 2 Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Chennai 600051, India 3 Department of Veterinary Microbiology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai 600007, India; [email protected] 4 The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK; [email protected] * Correspondence: [email protected] (G.D.R.); [email protected] (S.P.) These authors contributed equally. y Received: 7 March 2020; Accepted: 16 April 2020; Published: 20 April 2020 Abstract: Peste des petits ruminants virus (PPRV) is known to replicate in a wide variety of ruminants causing very species-specific clinical symptoms. Small ruminants (goats and sheep) are susceptible to disease while domesticated cattle and buffalo are dead-end hosts and do not display clinical symptoms. Understanding the host factors that influence differential pathogenesis and disease susceptibility could help the development of better diagnostics and control measures. To study this, we generated transcriptome data from goat and cattle peripheral blood mononuclear cells (PBMC) experimentally infected with PPRV in-vitro. After identifying differentially expressed genes, we further analyzed these immune related pathway genes using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and selected candidate genes were validated using in-vitro experiments.
    [Show full text]
  • And Chemoresistant MDA-MB-231 Human Breast Cancer Cells Through Up-Regulation of IFIT2
    nutrients Article Baicalein Suppresses Stem Cell-Like Characteristics in Radio- and Chemoresistant MDA-MB-231 Human Breast Cancer Cells through Up-Regulation of IFIT2 So Yae Koh 1, Jeong Yong Moon 2, Tatsuya Unno 2,3 and Somi Kim Cho 1,2,3,* 1 Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea; [email protected] 2 Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea; [email protected] (J.Y.M.); [email protected] (T.U.) 3 Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University, Jeju 63243, Korea * Correspondence: [email protected]; Tel.: +82-64-754-3348 Received: 18 February 2019; Accepted: 11 March 2019; Published: 14 March 2019 Abstract: Resistance to both chemotherapy and radiation therapy is frequent in triple-negative breast cancer (TNBC) patients. We established treatment-resistant TNBC MDA-MB-231/IR cells by irradiating the parental MDA-MB-231 cells 25 times with 2 Gy irradiation and investigated the molecular mechanisms of acquired resistance. The resistant MDA-MB-231/IR cells were enhanced in migration, invasion, and stem cell-like characteristics. Pathway analysis by the Database for Annotation, Visualization and Integrated Discovery revealed that the NF-κB pathway, TNF signaling pathway, and Toll-like receptor pathway were enriched in MDA-MB-231/IR cells. Among 77 differentially expressed genes revealed by transcriptome analysis, 12 genes involved in drug and radiation resistance, including interferon-induced protein with tetratricopeptide repeats 2 (IFIT2), were identified. We found that baicalein effectively reversed the expression of IFIT2, which is reported to be associated with metastasis, recurrence, and poor prognosis in TNBC patients.
    [Show full text]
  • (Hies) Infected with Enteric RNA Viruses Identifies Universal and Virus-Specific Epithelial Responses
    viruses Article Comparative Analysis of Public RNA-Sequencing Data from Human Intestinal Enteroid (HIEs) Infected with Enteric RNA Viruses Identifies Universal and Virus-Specific Epithelial Responses Roberto J. Cieza 1,2 , Jonathan L. Golob 2, Justin A. Colacino 3,4 and Christiane E. Wobus 1,* 1 Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA; [email protected] 2 Department of Internal Medicine, Division of Infectious Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA; [email protected] 3 Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA; [email protected] 4 Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI 48109, USA * Correspondence: [email protected] Abstract: Acute gastroenteritis (AGE) has a significant disease burden on society. Noroviruses, rotaviruses, and astroviruses are important viral causes of AGE but are relatively understudied Citation: Cieza, R.J.; Golob, J.L.; enteric pathogens. Recent developments in novel biomimetic human models of enteric disease are Colacino, J.A.; Wobus, C.E. opening new possibilities for studying human-specific host–microbe interactions. Human intestinal Comparative Analysis of Public enteroids (HIE), which are epithelium-only intestinal organoids derived from stem cells isolated from RNA-Sequencing Data from Human human intestinal biopsy tissues, have been successfully used to culture representative norovirus, Intestinal Enteroid (HIEs) Infected rotavirus, and astrovirus strains. Previous studies investigated host–virus interactions at the intestinal with Enteric RNA Viruses Identifies epithelial interface by individually profiling the epithelial transcriptional response to a member of Universal and Virus-Specific each virus family by RNA sequencing (RNA-seq).
    [Show full text]
  • Mouse Ifit3 Conditional Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Ifit3 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Ifit3 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Ifit3 gene (NCBI Reference Sequence: NM_010501 ; Ensembl: ENSMUSG00000074896 ) is located on Mouse chromosome 19. 2 exons are identified, with the ATG start codon in exon 1 and the TAG stop codon in exon 2 (Transcript: ENSMUST00000102825). Exon 2 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Ifit3 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-111N1 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 2 is not frameshift exon, and covers 99.59% of the coding region. The size of intron 1 for 5'-loxP site insertion: 3456 bp. The size of effective cKO region: ~2421 bp. The cKO region does not have any other known gene. Page 1 of 7 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Ifit3 Homology arm cKO region loxP site Page 2 of 7 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • Conventional and Unconventional Mechanisms for Capping Viral Mrna
    REVIEWS Conventional and unconventional mechanisms for capping viral mRNA Etienne Decroly1, François Ferron1, Julien Lescar1,2 and Bruno Canard1 Abstract | In the eukaryotic cell, capping of mRNA 5′ ends is an essential structural modification that allows efficient mRNA translation, directs pre-mRNA splicing and mRNA export from the nucleus, limits mRNA degradation by cellular 5′–3′ exonucleases and allows recognition of foreign RNAs (including viral transcripts) as ‘non-self’. However, viruses have evolved mechanisms to protect their RNA 5′ ends with either a covalently attached peptide or a cap moiety (7‑methyl-Gppp, in which p is a phosphate group) that is indistinguishable from cellular mRNA cap structures. Viral RNA caps can be stolen from cellular mRNAs or synthesized using either a host- or virus-encoded capping apparatus, and these capping assemblies exhibit a wide diversity in organization, structure and mechanism. Here, we review the strategies used by viruses of eukaryotic cells to produce functional mRNA 5′-caps and escape innate immunity. Pre-mRNA splicing The cap structure found at the 5′ end of eukaryotic reactions involved in the viral RNA-capping process, A post-transcriptional mRNAs consists of a 7‑methylguanosine (m7G) moi‑ and the specific cellular factors that trigger a response modification of pre-mRNA, in ety linked to the first nucleotide of the transcript via a from the innate immune system. which introns are excised and 5′–5′ triphosphate bridge1 (FIG. 1a). The cap has several exons are joined in order to form a translationally important biological roles, such as protecting mRNA Capping, decapping and turnover of host RNA functional, mature mRNA.
    [Show full text]