Mouse Ifit3 Conditional Knockout Project (CRISPR/Cas9)

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Ifit3 Conditional Knockout Project (CRISPR/Cas9) https://www.alphaknockout.com Mouse Ifit3 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Ifit3 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Ifit3 gene (NCBI Reference Sequence: NM_010501 ; Ensembl: ENSMUSG00000074896 ) is located on Mouse chromosome 19. 2 exons are identified, with the ATG start codon in exon 1 and the TAG stop codon in exon 2 (Transcript: ENSMUST00000102825). Exon 2 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Ifit3 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-111N1 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 2 is not frameshift exon, and covers 99.59% of the coding region. The size of intron 1 for 5'-loxP site insertion: 3456 bp. The size of effective cKO region: ~2421 bp. The cKO region does not have any other known gene. Page 1 of 7 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Ifit3 Homology arm cKO region loxP site Page 2 of 7 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats. Tandem repeats are found in the dot plot matrix. It may be difficult to construct this targeting vector. Overview of the GC Content Distribution Window size: 300 bp Sequence 12 Summary: Full Length(8171bp) | A(28.66% 2342) | C(19.35% 1581) | T(29.68% 2425) | G(22.31% 1823) Note: The sequence of homologous arms and cKO region is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Page 3 of 7 https://www.alphaknockout.com BLAT Search Results (up) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr19 + 34583812 34586811 3000 browser details YourSeq 2808 1 3000 3000 97.1% chr19 + 34608207 34611181 2975 browser details YourSeq 139 861 1032 3000 90.7% chr2 + 39076761 39076935 175 browser details YourSeq 135 523 1032 3000 80.7% chr10 + 8347999 8348253 255 browser details YourSeq 134 852 1032 3000 88.5% chr1 + 154441033 154441211 179 browser details YourSeq 131 524 1031 3000 80.2% chr5 - 92565092 92565274 183 browser details YourSeq 131 852 1032 3000 84.0% chr10 - 21180112 21180285 174 browser details YourSeq 131 850 1032 3000 85.7% chr3 + 90203322 90203502 181 browser details YourSeq 130 852 1032 3000 86.1% chr5 - 146902886 146903066 181 browser details YourSeq 129 523 1032 3000 81.5% chr11 - 3178375 3178562 188 browser details YourSeq 127 863 1029 3000 88.5% chr1 - 30774846 30775012 167 browser details YourSeq 126 862 1032 3000 92.6% chr10 - 77225149 77225322 174 browser details YourSeq 124 852 1024 3000 87.3% chr1 - 60904982 60905134 153 browser details YourSeq 124 852 1029 3000 87.6% chr17 + 59614260 59614434 175 browser details YourSeq 123 864 1032 3000 88.2% chr12 + 54801756 54801924 169 browser details YourSeq 122 852 1032 3000 90.7% chr7 + 27959888 27960084 197 browser details YourSeq 122 523 1032 3000 79.4% chr18 + 38107629 38107822 194 browser details YourSeq 120 852 1020 3000 94.2% chrX - 100272816 100272993 178 browser details YourSeq 120 898 1032 3000 94.9% chr19 - 24237880 24238015 136 browser details YourSeq 120 871 1032 3000 92.9% chr15 - 93515970 93516520 551 Note: The 3000 bp section upstream of Exon 2 is BLAT searched against the genome. No significant similarity is found. BLAT Search Results (down) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN -------------------------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr19 + 34588733 34591732 3000 browser details YourSeq 2653 9 3000 3000 96.1% chr19 + 34613108 34616041 2934 browser details YourSeq 160 2580 2785 3000 90.2% chr10 - 45007820 45008184 365 browser details YourSeq 160 2565 2776 3000 95.0% chr12 + 94408773 94409017 245 browser details YourSeq 158 2486 2776 3000 92.9% chr17 + 75663686 75664310 625 browser details YourSeq 152 2580 2783 3000 94.3% chr10 - 45007897 45008200 304 browser details YourSeq 152 2579 2785 3000 91.7% chr3 + 149745644 149745937 294 browser details YourSeq 150 2579 2776 3000 93.7% chr8 + 65558306 65558673 368 browser details YourSeq 149 2556 2776 3000 95.8% chr2 - 9773347 9774153 807 browser details YourSeq 146 2598 2786 3000 92.1% chr15 - 87206035 87206238 204 browser details YourSeq 144 2580 2776 3000 93.5% chr10 - 50432015 50432401 387 browser details YourSeq 143 2582 2785 3000 92.9% chr7 - 79930902 79931260 359 browser details YourSeq 138 2580 2785 3000 92.5% chr2 - 90416485 90416758 274 browser details YourSeq 137 2588 2776 3000 94.8% chr16 - 55705795 55706182 388 browser details YourSeq 137 2588 2785 3000 93.2% chrX + 152390496 152390752 257 browser details YourSeq 137 2580 2776 3000 90.4% chr6 + 31820921 31821110 190 browser details YourSeq 135 2589 2776 3000 95.4% chr3 - 137745531 137745867 337 browser details YourSeq 135 2579 2776 3000 91.4% chr17 - 44576402 44576593 192 browser details YourSeq 132 2579 2785 3000 93.3% chrX + 152390587 152390816 230 browser details YourSeq 132 2579 2782 3000 86.4% chr3 + 126159060 126159248 189 Note: The 3000 bp section downstream of Exon 2 is BLAT searched against the genome. No significant similarity is found. Page 4 of 7 https://www.alphaknockout.com Gene and protein information: Ifit3 interferon-induced protein with tetratricopeptide repeats 3 [ Mus musculus (house mouse) ] Gene ID: 15959, updated on 12-Aug-2019 Gene summary Official Symbol Ifit3 provided by MGI Official Full Name interferon-induced protein with tetratricopeptide repeats 3 provided by MGI Primary source MGI:MGI:1101055 See related Ensembl:ENSMUSG00000074896 Gene type protein coding RefSeq status VALIDATED Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as P49; Ifi49 Expression Broad expression in bladder adult (RPKM 9.6), liver E18 (RPKM 8.0) and 17 other tissues See more Genomic context Location: 19; 19 C1 See Ifit3 in Genome Data Viewer Exon count: 4 Annotation release Status Assembly Chr Location 108 current GRCm38.p6 (GCF_000001635.26) 19 NC_000085.6 (34583119..34588982) Build 37.2 previous assembly MGSCv37 (GCF_000001635.18) 19 NC_000085.5 (34658019..34663472) Chromosome 19 - NC_000085.6 Page 5 of 7 https://www.alphaknockout.com Transcript information: This gene has 1 transcript Gene: Ifit3 ENSMUSG00000074896 Description interferon-induced protein with tetratricopeptide repeats 3 [Source:MGI Symbol;Acc:MGI:1101055] Gene Synonyms Ifi49 Location Chromosome 19: 34,583,531-34,588,731 forward strand. GRCm38:CM001012.2 About this gene This gene has 1 transcript (splice variant), 451 orthologues, 5 paralogues, is a member of 1 Ensembl protein family and is associated with 1 phenotype. Transcripts Name Transcript ID bp Protein Translation ID Biotype CCDS UniProt Flags Ifit3-201 ENSMUST00000102825.3 1745 403aa ENSMUSP00000099889.3 Protein coding CCDS29762 Q5FW82 Q64345 TSL:1 GENCODE basic APPRIS P1 25.20 kb Forward strand 34.575Mb 34.580Mb 34.585Mb 34.590Mb 34.595Mb Genes (Comprehensive set... Ifit2-201 >protein coding Ifit3-201 >protein coding Contigs AC102249.16 > AC016791.23 > Genes < Ifit1bl1-202protein coding (Comprehensive set... < Ifit1bl1-201protein coding Regulatory Build 34.575Mb 34.580Mb 34.585Mb 34.590Mb 34.595Mb Reverse strand 25.20 kb Regulation Legend CTCF Open Chromatin Promoter Promoter Flank Transcription Factor Binding Site Gene Legend Protein Coding merged Ensembl/Havana Page 6 of 7 https://www.alphaknockout.com Transcript: ENSMUST00000102825 5.20 kb Forward strand Ifit3-201 >protein coding ENSMUSP00000099... Low complexity (Seg) Superfamily Tetratricopeptide-like helical domain superfamily SMART Tetratricopeptide repeat Pfam Tetratricopeptide repeat PF14559 PROSITE profiles Tetratricopeptide repeat-containing domain PANTHER Interferon-induced protein with tetratricopeptide repeats 3 PTHR10271 Gene3D Tetratricopeptide-like helical domain superfamily All sequence SNPs/i... Sequence variants (dbSNP and all other sources) Variant Legend stop gained missense variant synonymous variant Scale bar 0 40 80 120 160 200 240 280 320 360 403 We wish to acknowledge the following valuable scientific information resources: Ensembl, MGI, NCBI, UCSC. Page 7 of 7.
Recommended publications
  • Secretion and LPS-Induced Endotoxin Shock Α Lipopolysaccharide
    IFIT2 Is an Effector Protein of Type I IFN− Mediated Amplification of Lipopolysaccharide (LPS)-Induced TNF- α Secretion and LPS-Induced Endotoxin Shock This information is current as of September 27, 2021. Alexandra Siegfried, Susanne Berchtold, Birgit Manncke, Eva Deuschle, Julia Reber, Thomas Ott, Michaela Weber, Ulrich Kalinke, Markus J. Hofer, Bastian Hatesuer, Klaus Schughart, Valérie Gailus-Durner, Helmut Fuchs, Martin Hrabe de Angelis, Friedemann Weber, Mathias W. Hornef, Ingo B. Autenrieth and Erwin Bohn Downloaded from J Immunol published online 6 September 2013 http://www.jimmunol.org/content/early/2013/09/06/jimmun ol.1203305 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2013/09/06/jimmunol.120330 Material 5.DC1 Why The JI? Submit online. by guest on September 27, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published September 6, 2013, doi:10.4049/jimmunol.1203305 The Journal of Immunology IFIT2 Is an Effector Protein of Type I IFN–Mediated Amplification of Lipopolysaccharide (LPS)-Induced TNF-a Secretion and LPS-Induced Endotoxin Shock Alexandra Siegfried,*,1 Susanne Berchtold,*,1 Birgit Manncke,* Eva Deuschle,* Julia Reber,* Thomas Ott,† Michaela Weber,‡ Ulrich Kalinke,x Markus J.
    [Show full text]
  • TBK1 Antiviral Signaling by Bridging MAVS and IFN-Induced TPR Protein IFIT3 Potentiates
    IFN-Induced TPR Protein IFIT3 Potentiates Antiviral Signaling by Bridging MAVS and TBK1 This information is current as Xin-Yi Liu, Wei Chen, Bo Wei, Yu-Fei Shan and Chen of October 1, 2021. Wang J Immunol published online 3 August 2011 http://www.jimmunol.org/content/early/2011/08/03/jimmun ol.1100963 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2011/08/04/jimmunol.110096 Material 3.DC1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on October 1, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2011 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published August 3, 2011, doi:10.4049/jimmunol.1100963 The Journal of Immunology IFN-Induced TPR Protein IFIT3 Potentiates Antiviral Signaling by Bridging MAVS and TBK1 Xin-Yi Liu,1 Wei Chen,1 Bo Wei, Yu-Fei Shan, and Chen Wang Intracellular RNA viruses are sensed by receptors retinoic acid-inducible gene I/MDA5, which trigger formation of the mitochon- drial antiviral signaling (MAVS) complex on mitochondria.
    [Show full text]
  • Microarray Analysis of Novel Genes Involved in HSV- 2 Infection
    Microarray analysis of novel genes involved in HSV- 2 infection Hao Zhang Nanjing University of Chinese Medicine Tao Liu ( [email protected] ) Nanjing University of Chinese Medicine https://orcid.org/0000-0002-7654-2995 Research Article Keywords: HSV-2 infection,Microarray analysis,Histospecic gene expression Posted Date: May 12th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-517057/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/19 Abstract Background: Herpes simplex virus type 2 infects the body and becomes an incurable and recurring disease. The pathogenesis of HSV-2 infection is not completely clear. Methods: We analyze the GSE18527 dataset in the GEO database in this paper to obtain distinctively displayed genes(DDGs)in the total sequential RNA of the biopsies of normal and lesioned skin groups, healed skin and lesioned skin groups of genital herpes patients, respectively.The related data of 3 cases of normal skin group, 4 cases of lesioned group and 6 cases of healed group were analyzed.The histospecic gene analysis , functional enrichment and protein interaction network analysis of the differential genes were also performed, and the critical components were selected. Results: 40 up-regulated genes and 43 down-regulated genes were isolated by differential performance assay. Histospecic gene analysis of DDGs suggested that the most abundant system for gene expression was the skin, immune system and the nervous system.Through the construction of core gene combinations, protein interaction network analysis and selection of histospecic distribution genes, 17 associated genes were selected CXCL10,MX1,ISG15,IFIT1,IFIT3,IFIT2,OASL,ISG20,RSAD2,GBP1,IFI44L,DDX58,USP18,CXCL11,GBP5,GBP4 and CXCL9.The above genes are mainly located in the skin, immune system, nervous system and reproductive system.
    [Show full text]
  • Mir-19 Regulates the Expression of Interferon-Induced Genes and MHC
    Int. J. Med. Sci. 2020, Vol. 17 953 Ivyspring International Publisher International Journal of Medical Sciences 2020; 17(7): 953-964. doi: 10.7150/ijms.44377 Research Paper miR-19 regulates the expression of interferon-induced genes and MHC class I genes in human cancer cells Jing Li1,5*, Tao-Yan Lin1,4*, Lin Chen1*, Yu Liu1, Mei-Juan Dian1, Wei-Chao Hao1, Xiao-Lin Lin1, Xiao-Yan Li1,3, Yong-Long Li1,3, Mei Lian1,3, Heng-Wei Chen1,3, Jun-Shuang Jia1, Xiao-Ling Zhang6, Sheng-Jun Xiao7, Dong Xiao1,3, Yan Sun2 1. Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China 2. Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China 3. Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China 4. Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China 5. Radiotherapy Center, the First People’s Hospital of Chenzhou, Chenzhou 423000, China 6. Department of Physiology, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin 541004, China 7. Department of Pathology, the Second Affiliated Hospital, Guilin Medical University, Guilin 541199, China *These authors contributed equally to this work. Corresponding authors: Yan Sun, [email protected]; Dong Xiao, [email protected], [email protected]; Sheng-Jun Xiao, [email protected]. © The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.
    [Show full text]
  • Rnaseq Reveals the Contribution of Interferon Stimulated Genes to the Increased Host Defense and Decreased PPR Viral Replication in Cattle
    viruses Article RNAseq Reveals the Contribution of Interferon Stimulated Genes to the Increased Host Defense and Decreased PPR Viral Replication in Cattle 1, 1, Krishnaswamy Gopalan Tirumurugaan y , Rahul Mohanchandra Pawar y, Gopal Dhinakar Raj 2,* , Arthanari Thangavelu 3, John A. Hammond 4 and Satya Parida 4,* 1 Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai 600007, India; [email protected] (K.G.T.); [email protected] (R.M.P.) 2 Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Chennai 600051, India 3 Department of Veterinary Microbiology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai 600007, India; [email protected] 4 The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK; [email protected] * Correspondence: [email protected] (G.D.R.); [email protected] (S.P.) These authors contributed equally. y Received: 7 March 2020; Accepted: 16 April 2020; Published: 20 April 2020 Abstract: Peste des petits ruminants virus (PPRV) is known to replicate in a wide variety of ruminants causing very species-specific clinical symptoms. Small ruminants (goats and sheep) are susceptible to disease while domesticated cattle and buffalo are dead-end hosts and do not display clinical symptoms. Understanding the host factors that influence differential pathogenesis and disease susceptibility could help the development of better diagnostics and control measures. To study this, we generated transcriptome data from goat and cattle peripheral blood mononuclear cells (PBMC) experimentally infected with PPRV in-vitro. After identifying differentially expressed genes, we further analyzed these immune related pathway genes using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and selected candidate genes were validated using in-vitro experiments.
    [Show full text]
  • TBK1 Antiviral Signaling by Bridging MAVS and IFN-Induced TPR
    IFN-Induced TPR Protein IFIT3 Potentiates Antiviral Signaling by Bridging MAVS and TBK1 This information is current as Xin-Yi Liu, Wei Chen, Bo Wei, Yu-Fei Shan and Chen of September 26, 2021. Wang J Immunol 2011; 187:2559-2568; Prepublished online 3 August 2011; doi: 10.4049/jimmunol.1100963 http://www.jimmunol.org/content/187/5/2559 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2011/08/04/jimmunol.110096 Material 3.DC1 http://www.jimmunol.org/ References This article cites 39 articles, 15 of which you can access for free at: http://www.jimmunol.org/content/187/5/2559.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 26, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2011 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology IFN-Induced TPR Protein IFIT3 Potentiates Antiviral Signaling by Bridging MAVS and TBK1 Xin-Yi Liu,1 Wei Chen,1 Bo Wei, Yu-Fei Shan, and Chen Wang Intracellular RNA viruses are sensed by receptors retinoic acid-inducible gene I/MDA5, which trigger formation of the mitochon- drial antiviral signaling (MAVS) complex on mitochondria.
    [Show full text]
  • A Grainyhead-Like 2/Ovo-Like 2 Pathway Regulates Renal Epithelial Barrier Function and Lumen Expansion
    BASIC RESEARCH www.jasn.org A Grainyhead-Like 2/Ovo-Like 2 Pathway Regulates Renal Epithelial Barrier Function and Lumen Expansion † ‡ | Annekatrin Aue,* Christian Hinze,* Katharina Walentin,* Janett Ruffert,* Yesim Yurtdas,*§ | Max Werth,* Wei Chen,* Anja Rabien,§ Ergin Kilic,¶ Jörg-Dieter Schulzke,** †‡ Michael Schumann,** and Kai M. Schmidt-Ott* *Max Delbrueck Center for Molecular Medicine, Berlin, Germany; †Experimental and Clinical Research Center, and Departments of ‡Nephrology, §Urology, ¶Pathology, and **Gastroenterology, Charité Medical University, Berlin, Germany; and |Berlin Institute of Urologic Research, Berlin, Germany ABSTRACT Grainyhead transcription factors control epithelial barriers, tissue morphogenesis, and differentiation, but their role in the kidney is poorly understood. Here, we report that nephric duct, ureteric bud, and collecting duct epithelia express high levels of grainyhead-like homolog 2 (Grhl2) and that nephric duct lumen expansion is defective in Grhl2-deficient mice. In collecting duct epithelial cells, Grhl2 inactivation impaired epithelial barrier formation and inhibited lumen expansion. Molecular analyses showed that GRHL2 acts as a transcrip- tional activator and strongly associates with histone H3 lysine 4 trimethylation. Integrating genome-wide GRHL2 binding as well as H3 lysine 4 trimethylation chromatin immunoprecipitation sequencing and gene expression data allowed us to derive a high-confidence GRHL2 target set. GRHL2 transactivated a group of genes including Ovol2, encoding the ovo-like 2 zinc finger transcription factor, as well as E-cadherin, claudin 4 (Cldn4), and the small GTPase Rab25. Ovol2 induction alone was sufficient to bypass the requirement of Grhl2 for E-cadherin, Cldn4,andRab25 expression. Re-expression of either Ovol2 or a combination of Cldn4 and Rab25 was sufficient to rescue lumen expansion and barrier formation in Grhl2-deficient collecting duct cells.
    [Show full text]
  • Persistent Innate Immune Stimulation Results in IRF3-Mediated but Caspase-Independent Cytostasis
    viruses Article Persistent Innate Immune Stimulation Results in IRF3-Mediated but Caspase-Independent Cytostasis 1, 2,3, 2 2 Christian Urban y , Hendrik Welsch y, Katharina Heine , Sandra Wüst , Darya A. Haas 1 , Christopher Dächert 2,3 , Aparna Pandey 2, Andreas Pichlmair 1,4,* and Marco Binder 2,* 1 Institute of Virology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; [email protected] (C.U.); [email protected] (D.A.H.) 2 Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response”, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; [email protected] (H.W.); [email protected] (K.H.); [email protected] (S.W.); [email protected] (C.D.); [email protected] (A.P.) 3 Faculty of Biosciences, Heidelberg University, 69117 Heidelberg, Germany 4 German Center for Infection Research (DZIF), Munich Partner Site, 81675 Munich, Germany * Correspondence: [email protected] (A.P.); [email protected] (M.B.) These authors contributed equally to this work. y Received: 2 May 2020; Accepted: 9 June 2020; Published: 11 June 2020 Abstract: Persistent virus infection continuously produces non-self nucleic acids that activate cell-intrinsic immune responses. However, the antiviral defense evolved as a transient, acute phase response and the effects of persistently ongoing stimulation onto cellular homeostasis are not well understood. To study the consequences of long-term innate immune activation, we expressed the NS5B polymerase of Hepatitis C virus (HCV), which in absence of viral genomes continuously produces immune-stimulatory RNAs.
    [Show full text]
  • Integrated Transcriptome and in Vitro Analysis Revealed Anti-Proliferative
    www.nature.com/scientificreports OPEN Integrated transcriptome and in vitro analysis revealed anti-proliferative efect of citral Received: 26 November 2018 Accepted: 5 March 2019 in human stomach cancer through Published: xx xx xxxx apoptosis Sri Renukadevi Balusamy1, Sivasubramanian Ramani 1, Sathishkumar Natarajan 2, Yeon Ju Kim3 & Haribalan Perumalsamy3 Cancer is the second leading cause of death globally, particularly stomach cancer is third most common causes of cancer death worldwide. Citral possesses anti-tumor activity in various cancer cell lines, However its efect toward stomach cancer and its mechanism of action is have yet to be elucidated. The goal of the present study is to elucidate the role of citral in stomach cancer using transcriptome and in vitro approaches. We performed transcriptome analysis using RNA-seq and explored its capability to persuade apoptosis in AGS human stomach cancer cell lines in vitro. Furthermore, the enrichment and KEGG pathway results suggested that there are several genes involved to induce apoptosis pathway. Furthermore, our study also demonstrated that citral arrested colony formation and migration of cancer cells signifcantly than that of untreated cells. RNA-seq revealed a total of 125 million trimmed reads obtained from both control and citral treated groups respectively. A total number of 612 diferentially expressed genes (DEGs) were identifed which includes 216 genes up-regulated and 396 genes down- regulated genes after treatment. The enrichment analysis identifed DEGs genes from transcriptome libraries including cell death, cell cycle, apoptosis and cell growth. The present study showed the signifcant inhibition efect upon citral by regulating various genes involved in signaling pathways, inhibits metastasis, colony formation and induced apoptosis both in silico and in vitro.
    [Show full text]
  • Supplementary Materials
    Supplementary Materials 1 Supplementary Figure S1. Expression of BPIFB4 in murine hearts. Representative immunohistochemistry images showing the expression of BPIFB4 in the left ventricle of non-diabetic mice (ND) and diabetic mice (Diab) given vehicle or LAV-BPIFB4. BPIFB4 is shown in green, nuclei are identified by the blue fluorescence of DAPI. Scale bars: 1 mm and 100 μm. 2 Supplementary Table S1 – List of PCR primers. Target gene Primer Sequence NCBI Accession number / Reference Forward AAGTCCCTCACCCTCCCAA Actb [1] Reverse AAGCAATGCTGTCACCTTC Forward TCTAGGCAATGCCGTTCAC Cpt1b [2] Reverse GAGCACATGGGCACCATAC Forward GGAAATGATCAACAAAAAAAGAAGTATTT Acadm (Mcad) [2] Reverse GCCGCCACATCAGA Forward TGATGGTTTGGAGGTTGGGG Acot1 NM_012006.2 Reverse TGAAACTCCATTCCCAGCCC Forward GGTGTCCCGTCTAATGGAGA Hmgcs2 NM_008256.4 Reverse ACACCCAGGATTCACAGAGG Forward CAAGCAGCAACATGGGAAGA Cs [2] Reverse GTCAGGATCAAGAACCGAAGTCT Forward GCCATTGTCAACTGTGCTGA Ucp3 NM_009464.3 Reverse TCCTGAGCCACCATCTTCAG Forward CGTGAGGGCAATGATTTATACCAT Atp5b [2] Reverse TCCTGGTCTCTGAAGTATTCAGCAA Pdk4 Forward CCGCTGTCCATGAAGCA [2] 3 Reverse GCAGAAAAGCAAAGGACGTT Forward AGAGTCCTATGCAGCCCAGA Tomm20 NM_024214.2 Reverse CAAAGCCCCACATCTGTCCT Forward GCCTCAGATCGTCGTAGTGG Drp1 NM_152816.3 Reverse TTCCATGTGGCAGGGTCATT Forward GGGAAGGTGAAGAAGCTTGGA Mfn2 NM_001285920.1 Reverse ACAACTGGAACAGAGGAGAAGTT Forward CGGAAATCATATCCAACCAG [2] Ppargc1a (Pgc1α) Reverse TGAGAACCGCTAGCAAGTTTG Forward AGGCTTGGAAAAATCTGTCTC [2] Tfam Reverse TGCTCTTCCCAAGACTTCATT Forward TGCCCCAGAGCTGTTAATGA Bcl2l1 NM_001289716.1
    [Show full text]
  • The Transcriptome Profile of Human Trisomy 21 Blood Cells
    Antonaros et al. Human Genomics (2021) 15:25 https://doi.org/10.1186/s40246-021-00325-4 PRIMARY RESEARCH Open Access The transcriptome profile of human trisomy 21 blood cells Francesca Antonaros1, Rossella Zenatelli1,2, Giulia Guerri3, Matteo Bertelli3, Chiara Locatelli4, Beatrice Vione1, Francesca Catapano1,5, Alice Gori1, Lorenza Vitale1, Maria Chiara Pelleri1, Giuseppe Ramacieri1, Guido Cocchi6, Pierluigi Strippoli1, Maria Caracausi1* and Allison Piovesan1 Abstract Background: Trisomy 21 (T21) is a genetic alteration characterised by the presence of an extra full or partial human chromosome 21 (Hsa21) leading to Down syndrome (DS), the most common form of intellectual disability (ID). It is broadly agreed that the presence of extra genetic material in T21 gives origin to an altered expression of genes located on Hsa21 leading to DS phenotype. The aim of this study was to analyse T21 and normal control blood cell gene expression profiles obtained by total RNA sequencing (RNA-Seq). Results: The results were elaborated by the TRAM (Transcriptome Mapper) software which generated a differential transcriptome map between human T21 and normal control blood cells providing the gene expression ratios for 17,867 loci. The obtained gene expression profiles were validated through real-time reverse transcription polymerase chain reaction (RT-PCR) assay and compared with previously published data. A post-analysis through transcriptome mapping allowed the identification of the segmental (regional) variation of the expression level across the whole genome (segment-based analysis of expression). Interestingly, the most over-expressed genes encode for interferon-induced proteins, two of them (MX1 and MX2 genes) mapping on Hsa21 (21q22.3).
    [Show full text]
  • Identification and Validation of Key Genes Associated with Systemic Sclerosis-Related Pulmonary Hypertension
    fgene-11-00816 July 23, 2020 Time: 17:24 # 1 ORIGINAL RESEARCH published: 24 July 2020 doi: 10.3389/fgene.2020.00816 Identification and Validation of Key Genes Associated With Systemic Sclerosis-Related Pulmonary Hypertension Ji-Na Zheng1†, Yang Li2†, Yue-Mei Yan1, Hui Shi3, Tian-Tian Zou4,5, Wen-Qi Shao6 and Qiang Wang1* 1 Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China, 2 Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China, 3 Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China, 4 Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China, 5 Cancer Metastasis Institute, Fudan University, Shanghai, China, 6 Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China Systemic sclerosis-associated with pulmonary arterial hypertension (SSc-PAH) is still a major cause of SSc related deaths. Early diagnosis and prompt treatment are crucial to reduce the mortality of patients with SSc-PAH. To screen the candidate biomarkers Edited by: and potential therapeutic targets for SSc-PAH, we analyzed the data set (GSE33463 Juan Caballero, and GSE19617) for confirming key genes in peripheral blood mononuclear cells from Universidad Autónoma de Querétaro, Mexico SSc-PAH patients. A total of 105 SSc patients from gene expression omnibus (GEO) Reviewed by: were included as discovery cohort (n = 69) and duplication cohort (n = 36) for screening Gil Speyer, hub genes by weighted gene co-expression network analysis (WGCNA). Furthermore, Arizona State University, United States Yan Gong, an independent validation cohort (n = 40), including healthy controls, SSc and SSc- Wuhan University, China PAH patients, was used for further validation by quantitative real-time polymerase *Correspondence: chain reaction.
    [Show full text]