Problem of Relative Growth
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Entomology of the Aucklands and Other Islands South of New Zealand: Lepidoptera, Ex Cluding Non-Crambine Pyralidae
Pacific Insects Monograph 27: 55-172 10 November 1971 ENTOMOLOGY OF THE AUCKLANDS AND OTHER ISLANDS SOUTH OF NEW ZEALAND: LEPIDOPTERA, EX CLUDING NON-CRAMBINE PYRALIDAE By J. S. Dugdale1 CONTENTS Introduction 55 Acknowledgements 58 Faunal Composition and Relationships 58 Faunal List 59 Key to Families 68 1. Arctiidae 71 2. Carposinidae 73 Coleophoridae 76 Cosmopterygidae 77 3. Crambinae (pt Pyralidae) 77 4. Elachistidae 79 5. Geometridae 89 Hyponomeutidae 115 6. Nepticulidae 115 7. Noctuidae 117 8. Oecophoridae 131 9. Psychidae 137 10. Pterophoridae 145 11. Tineidae... 148 12. Tortricidae 156 References 169 Note 172 Abstract: This paper deals with all Lepidoptera, excluding the non-crambine Pyralidae, of Auckland, Campbell, Antipodes and Snares Is. The native resident fauna of these islands consists of 42 species of which 21 (50%) are endemic, in 27 genera, of which 3 (11%) are endemic, in 12 families. The endemic fauna is characterised by brachyptery (66%), body size under 10 mm (72%) and concealed, or strictly ground- dwelling larval life. All species can be related to mainland forms; there is a distinctive pre-Pleistocene element as well as some instances of possible Pleistocene introductions, as suggested by the presence of pairs of species, one member of which is endemic but fully winged. A graph and tables are given showing the composition of the fauna, its distribution, habits, and presumed derivations. Host plants or host niches are discussed. An additional 7 species are considered to be non-resident waifs. The taxonomic part includes keys to families (applicable only to the subantarctic fauna), and to genera and species. -
Do Humans Possess the Capability to Regenerate?
The Science Journal of the Lander College of Arts and Sciences Volume 12 Number 2 Spring 2019 - 2019 Do Humans Possess the Capability to Regenerate? Chasha Wuensch Touro College Follow this and additional works at: https://touroscholar.touro.edu/sjlcas Part of the Biology Commons, and the Pharmacology, Toxicology and Environmental Health Commons Recommended Citation Wuensch, C. (2019). Do Humans Possess the Capability to Regenerate?. The Science Journal of the Lander College of Arts and Sciences, 12(2). Retrieved from https://touroscholar.touro.edu/sjlcas/vol12/ iss2/2 This Article is brought to you for free and open access by the Lander College of Arts and Sciences at Touro Scholar. It has been accepted for inclusion in The Science Journal of the Lander College of Arts and Sciences by an authorized editor of Touro Scholar. For more information, please contact [email protected]. Do Humans Possess the Capability to Regenerate? Chasha Wuensch A Chasha Wuensch graduated in May 2018 with a Bachelor of Science degree in Biology and will be attending pharmacy school. Abstract Urodele amphibians, including newts and salamanders, are amongst the most commonly studied research models for regenera- tion .The ability to regenerate, however, is not limited to amphibians, and the regenerative process has been observed in mammals as well .This paper discusses methods by which amphibians and mammals regenerate to lend insights into human regenerative mechanisms and regenerative potential .A focus is placed on the urodele and murine digit tip models, -
Zhang Et Al 2016 Biodiversity
Biodiversity Data Journal 4: e7944 doi: 10.3897/BDJ.4.e7944 Taxonomic Paper A key to the East Palaearctic and Oriental species of the genus Rhysipolis Foerster, and the first host records of Rhysipolis longicaudatus Belokobylskij (Hymenoptera: Braconidae: Rhysipolinae) Ying Zhang‡, Zi-Cheng Xiong§, Kees van Achterberg|,¶, Tao Li ‡ ‡ General Station of Forest Pest Management, State Forestry Administration, Shenyang 110034, China § Forest Pest Control and Quarantine Station of Etuoke, Inner Mongolia Autonomous Region, China | Department of Life Sciences, Northwest University, 229 North Taibai Road, Xi’an, China ¶ Department of Terrestrial Zoology, Naturalis Biodiversity Center, Leiden, Netherlands Corresponding author: Tao Li ([email protected]) Academic editor: Anu Veijalainen Received: 27 Jan 2016 | Accepted: 26 Apr 2016 | Published: 04 May 2016 Citation: Zhang Y, Xiong Z, van Achterberg K, Li T (2016) A key to the East Palaearctic and Oriental species of the genus Rhysipolis Foerster, and the first host records of Rhysipolis longicaudatus Belokobylskij (Hymenoptera: Braconidae: Rhysipolinae). Biodiversity Data Journal 4: e7944. doi: 10.3897/BDJ.4.e7944 Abstract Background A key to the East Palaearctic and northern Oriental species of Rhysipolis Foerster, 1862 (Hymenoptera: Braconidae: Rhysipolinae) is presented. Rhysipolis longicaudatus Belokobylskij, 1994 (stat. nov.) is redescribed, the first host records are given and it is reported new for China. New information Rhysipolis longicaudatus was reared from Taleporia sp. (Lepidoptera: Psychidae) in Inner Mongolia Autonomous Region and from Bazaria turensis Ragonot (Lepidoptera: Pyralidae) in Qinghai Province. © Zhang Y et al.. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. -
Repair, Regeneration, and Fibrosis Gregory C
91731_ch03 12/8/06 7:33 PM Page 71 3 Repair, Regeneration, and Fibrosis Gregory C. Sephel Stephen C. Woodward The Basic Processes of Healing Regeneration Migration of Cells Stem cells Extracellular Matrix Cell Proliferation Remodeling Conditions That Modify Repair Cell Proliferation Local Factors Repair Repair Patterns Repair and Regeneration Suboptimal Wound Repair Wound Healing bservations regarding the repair of wounds (i.e., wound architecture are unaltered. Thus, wounds that do not heal may re- healing) date to physicians in ancient Egypt and battle flect excess proteinase activity, decreased matrix accumulation, Osurgeons in classic Greece. The liver’s ability to regenerate or altered matrix assembly. Conversely, fibrosis and scarring forms the basis of the Greek myth involving Prometheus. The may result from reduced proteinase activity or increased matrix clotting of blood to prevent exsanguination was recognized as accumulation. Whereas the formation of new collagen during the first necessary event in wound healing. At the time of the repair is required for increased strength of the healing site, American Civil War, the development of “laudable pus” in chronic fibrosis is a major component of diseases that involve wounds was thought to be necessary, and its emergence was not chronic injury. appreciated as a symptom of infection but considered a positive sign in the healing process. Later studies of wound infection led The Basic Processes of Healing to the discovery that inflammatory cells are primary actors in the repair process. Although scurvy (see Chapter 8) was described in Many of the basic cellular and molecular mechanisms necessary the 16th century by the British navy, it was not until the 20th for wound healing are found in other processes involving dynamic century that vitamin C (ascorbic acid) was found to be necessary tissue changes, such as development and tumor growth. -
Wound Healing: a Paradigm for Regeneration
SYMPOSIUM ON REGENERATIVE MEDICINE Wound Healing: A Paradigm for Regeneration Victor W. Wong, MD; Geoffrey C. Gurtner, MD; and Michael T. Longaker, MD, MBA From the Hagey Laboratory for Pediatric Regenerative Medi- CME Activity cine, Department of Surgery, Stanford University, Stanford, Target Audience: The target audience for Mayo Clinic Proceedings is primar- relationships with any commercial interest related to the subject matter ily internal medicine physicians and other clinicians who wish to advance of the educational activity. Safeguards against commercial bias have been CA. their current knowledge of clinical medicine and who wish to stay abreast put in place. Faculty also will disclose any off-label and/or investigational of advances in medical research. use of pharmaceuticals or instruments discussed in their presentation. Statement of Need: General internists and primary care physicians must Disclosure of this information will be published in course materials so maintain an extensive knowledge base on a wide variety of topics covering that those participants in the activity may formulate their own judgments all body systems as well as common and uncommon disorders. Mayo Clinic regarding the presentation. Proceedings aims to leverage the expertise of its authors to help physicians In their editorial and administrative roles, William L. Lanier, Jr, MD, Terry L. understand best practices in diagnosis and management of conditions Jopke, Kimberly D. Sankey, and Nicki M. Smith, MPA, have control of the encountered in the clinical setting. content of this program but have no relevant financial relationship(s) with Accreditation: College of Medicine, Mayo Clinic is accredited by the Accred- industry. itation Council for Continuing Medical Education to provide continuing med- The authors report no competing interests. -
Live Imaging and Computational Modelling of Tissue Growth and Tissue Regeneration in Drosophila
Live Imaging and Computational Modelling of Tissue Growth and Tissue Regeneration in Drosophila Jamie Rickman 19th January 2015 Abstract Wound healing in the epithelium of the Drosophila wing imaginal disc is a regenerative process which is known to proceed via the assembly of a contractile actin cable that circumscribes the wound drawing the leading edge cells together in a characterstic rosette formation. Here we computation- ally explore various other biological and mechanical processes that are involved in tissue repair in Drosophila; the formation of dynamic actin protrusions that pull each other forward to close the wound; the active extrusion of dead cells from the wound site; and the effect of a global tension force operating on the tissue. In silico simulation results, using the vertex model of epithelial tissue, and in vivo data are compared. It is found that patterning of line tensions in wounded cells and cells neighbouring the wound can drive rosette formation and wound closure. Results from simulating a global tension force indicate this could recapitulate the initial expansion phase of wound healing seen in experiment. Contents 1 Introduction 2 1.1 Tissue regeneration . 2 1.2 Regenerative healing in Drosophila wing imaginal discs . 2 1.3 The mechanical drivers of epithelial wound healing in Drosophila . 3 2 The Vertex Model 4 3 Current work and results 5 3.1 Wound closure in vivo ...................................... 5 3.1.1 Wound closure rate . 5 3.1.2 Rosette formation . 5 3.1.3 Inital expansion of wound following ablation . 6 3.2 Wound Closure in silico ..................................... 7 3.2.1 Implementation of the vertex model . -
Serotonin Signaling Regulates Insulin-Like Peptides for Growth, Reproduction, and Metabolism in the Disease Vector Aedes Aegypti
Serotonin signaling regulates insulin-like peptides for growth, reproduction, and metabolism in the disease vector Aedes aegypti Lin Linga,b and Alexander S. Raikhela,b,1 aDepartment of Entomology, University of California, Riverside, CA 92521; and bInstitute for Integrative Genome Biology, University of California, Riverside, CA 92521 Contributed by Alexander S. Raikhel, September 6, 2018 (sent for review May 15, 2018; reviewed by Christen Mirth, Michael R. Strand, and Marc Tatar) Disease-transmitting female mosquitoes require a vertebrate individuals have completed adequate growth to enter the next de- blood meal to produce their eggs. An obligatory hematophagous velopmental stage (5, 6). Although other DILPs promote growth, lifestyle, rapid reproduction, and existence of a large number of their specific expression patterns suggest that they might carry out transmittable diseases make mosquitoes the world’s deadliest an- distinct physiological functions (2). In Drosophila larvae, dilps1,-2, imals. Attaining optimal body size and nutritional status is critical -3,and-5 are expressed predominantly in neurosecretory cells for mosquitoes to become reproductively competent and effective (IPCs, insulin producing cells) of the brain; ablation of larval IPCs disease vectors. We report that blood feeding boosts serotonin reduces body size with delayed metamorphosis (7). These DILPs concentration and elevates the serotonin receptor Aa5HT2B regulate growth by means of the canonical insulin/insulin-like (Aedes aegypti 5-hydroxytryptamine receptor, type 2B) transcript growth factor (IGF) pathway. Single gene mutations in insulin/ level in the fat-body, an insect analog of the vertebrate liver and IGF components have been shown to cause a reduction in growth adipose tissue. -
Particular Reference to the Development of Theneural
The role of embryology in teratological research, with particular reference to the development of the neural tube and heart M. H. Kaufman Department ofAnatomy, University of Cambridge, Cambridge CB2 3DY, U.K. Introduction There are many intriguing questions that the experimental embryologist can attempt to answer which could provide insight into the pathogenesis of many of the commoner types of congenital abnormalities that affect the human population. I should like to draw attention to certain areas of embryological interest, and make some general and personal observations on teratological research. I shall concentrate on two particular areas of interest, namely studies into the pathogenesis of neural tube closure defects and cardiovascular anomalies because these are the topics of my special interests. Two quite different, but complementary approaches may be employed in experimental teratological research to investigate how certain agents act on specific organs or tissues of the embryo or fetus to induce their abnormal development. The first approach takes cognizance of the nature and chemical structure of the agent under investigation, in order to determine at the biochemical level what the underlying mechanism and principal sites of action are likely to be. The primary effect of the agent may be to disrupt maternal metabolism, and the effect on the embryo or fetus may be secondary to the effect on the mother. In these latter circumstances it is not uncommon for an embryotoxic effect to be produced before any toxic manifestation becomes apparent in the mother. The second approach takes cognizance of the morphological abnormalities which may be induced by embryonic exposure to a teratogenic agent, in order to determine in the first instance at which stage of gestation the teratogenic insult is likely to have occurred, and, also, its site of action at the cellular and tissue level. -
Monitoring Report Spring/Summer 2015 Contents
Wimbledon and Putney Commons Monitoring Report Spring/Summer 2015 Contents CONTEXT 1 A. SYSTEMATIC RECORDING 3 METHODS 3 OUTCOMES 6 REFLECTIONS AND RECOMMENDATIONS 18 B. BIOBLITZ 19 REFLECTIONS AND LESSONS LEARNT 21 C. REFERENCES 22 LIST OF FIGURES Figure 1 Location of The Plain on Wimbledon and Putney Commons 2 Figure 2 Experimental Reptile Refuge near the Junction of Centre Path and Somerset Ride 5 Figure 3 Contrasting Cut and Uncut Areas in the Conservation Zone of The Plain, Spring 2015 6/7 Figure 4 Notable Plant Species Recorded on The Plain, Summer 2015 8 Figure 5 Meadow Brown and white Admiral Butterflies 14 Figure 6 Hairy Dragonfly and Willow Emerald Damselfly 14 Figure 7 The BioBlitz Route 15 Figure 8 Vestal and European Corn-borer moths 16 LIST OF TABLES Table 1 Mowing Dates for the Conservation Area of The Plain 3 Table 2 Dates for General Observational Records of The Plain, 2015 10 Table 3 Birds of The Plain, Spring - Summer 2015 11 Table 4 Summary of Insect Recording in 2015 12/13 Table 5 Rare Beetles Living in the Vicinity of The Plain 15 LIST OF APPENDICES A1 The Wildlife and Conservation Forum and Volunteer Recorders 23 A2 Sward Height Data Spring 2015 24 A3 Floral Records for The Plain : Wimbledon and Putney Commons 2015 26 A4 The Plain Spring and Summer 2015 – John Weir’s General Reports 30 A5 a Birds on The Plain March to September 2015; 41 B Birds on The Plain - summary of frequencies 42 A6 ai Butterflies on The Plain (DW) 43 aii Butterfly long-term transect including The Plain (SR) 44 aiii New woodland butterfly transect -
Cambridgeshire & Essex Butterfly Conservation
Butterfly Conservation Regional Action Plan For Anglia (Cambridgeshire, Essex, Suffolk & Norfolk) This action plan was produced in response to the Action for Butterflies project funded by WWF, EN, SNH and CCW This regional project has been supported by Action for Biodiversity Cambridgeshire and Essex Branch Suffolk branch BC Norfolk branch BC Acknowledgements The Cambridgeshire and Essex branch, Norfolk branch and Suffolk branch constitute Butterfly Conservation’s Anglia region. This regional plan has been compiled from individual branch plans which are initially drawn up from 1997-1999. As the majority of the information included in this action plan has been directly lifted from these original plans, credit for this material should go to the authors of these reports. They were John Dawson (Cambridgeshire & Essex Plan, 1997), James Mann and Tony Prichard (Suffolk Plan, 1998), and Jane Harris (Norfolk Plan, 1999). County butterfly updates have largely been provided by Iris Newbery and Dr Val Perrin (Cambridgeshire and Essex), Roland Rogers and Brian Mcllwrath (Norfolk) and Richard Stewart (Suffolk). Some of the moth information included in the plan has been provided by Dr Paul Waring, David Green and Mark Parsons (BC Moth Conservation Officers) with additional county moth data obtained from John Dawson (Cambridgeshire), Brian Goodey and Robin Field (Essex), Barry Dickerson (Huntingdon Moth and Butterfly Group), Michael Hall and Ken Saul (Norfolk Moth Survey) and Tony Prichard (Suffolk Moth Group). Some of the micro-moth information included in the plan was kindly provided by A. M. Emmet. Other individuals targeted with specific requests include Graham Bailey (BC Cambs. & Essex), Ruth Edwards, Dr Chris Gibson (EN), Dr Andrew Pullin (Birmingham University), Estella Roberts (BC, Assistant Conservation Officer, Wareham), Matthew Shardlow (RSPB) and Ken Ulrich (BC Cambs. -
Database of Irish Lepidoptera. 1 - Macrohabitats, Microsites and Traits of Noctuidae and Butterflies
Database of Irish Lepidoptera. 1 - Macrohabitats, microsites and traits of Noctuidae and butterflies Irish Wildlife Manuals No. 35 Database of Irish Lepidoptera. 1 - Macrohabitats, microsites and traits of Noctuidae and butterflies Ken G.M. Bond and Tom Gittings Department of Zoology, Ecology and Plant Science University College Cork Citation: Bond, K.G.M. and Gittings, T. (2008) Database of Irish Lepidoptera. 1 - Macrohabitats, microsites and traits of Noctuidae and butterflies. Irish Wildlife Manual s, No. 35. National Parks and Wildlife Service, Department of the Environment, Heritage and Local Government, Dublin, Ireland. Cover photo: Merveille du Jour ( Dichonia aprilina ) © Veronica French Irish Wildlife Manuals Series Editors: F. Marnell & N. Kingston © National Parks and Wildlife Service 2008 ISSN 1393 – 6670 Database of Irish Lepidoptera ____________________________ CONTENTS CONTENTS ........................................................................................................................................................1 ACKNOWLEDGEMENTS ....................................................................................................................................1 INTRODUCTION ................................................................................................................................................2 The concept of the database.....................................................................................................................2 The structure of the database...................................................................................................................2 -
Microlepidoptera.Hu Redigit: Fazekas Imre
Microlepidoptera.hu Redigit: Fazekas Imre 5 2012 Microlepidoptera.hu A magyar Microlepidoptera kutatások hírei Hungarian Microlepidoptera News A journal focussed on Hungarian Microlepidopterology Kiadó—Publisher: Regiograf Intézet – Regiograf Institute Szerkesztő – Editor: Fazekas Imre, e‐mail: [email protected] Társszerkesztők – Co‐editors: Pastorális Gábor, e‐mail: [email protected]; Szeőke Kálmán, e‐mail: [email protected] HU ISSN 2062–6738 Microlepidoptera.hu 5: 1–146. http://www.microlepidoptera.hu 2012.12.20. Tartalom – Contents Elterjedés, biológia, Magyarország – Distribution, biology, Hungary Buschmann F.: Kiegészítő adatok Magyarország Zygaenidae faunájához – Additional data Zygaenidae fauna of Hungary (Lepidoptera: Zygaenidae) ............................... 3–7 Buschmann F.: Két új Tineidae faj Magyarországról – Two new Tineidae from Hungary (Lepidoptera: Tineidae) ......................................................... 9–12 Buschmann F.: Új adatok az Asalebria geminella (Eversmann, 1844) magyarországi előfordulásához – New data Asalebria geminella (Eversmann, 1844) the occurrence of Hungary (Lepidoptera: Pyralidae, Phycitinae) .................................................................................................. 13–18 Fazekas I.: Adatok Magyarország Pterophoridae faunájának ismeretéhez (12.) Capperia, Gillmeria és Stenoptila fajok új adatai – Data to knowledge of Hungary Pterophoridae Fauna, No. 12. New occurrence of Capperia, Gillmeria and Stenoptilia species (Lepidoptera: Pterophoridae) ……………………….