Determining Relative Magma and Host Rock Xenolith Rheology During Magmatic Fabric Formation in Plutons: Examples from the Middle and Upper Crust

Total Page:16

File Type:pdf, Size:1020Kb

Determining Relative Magma and Host Rock Xenolith Rheology During Magmatic Fabric Formation in Plutons: Examples from the Middle and Upper Crust Determining relative magma and host rock xenolith rheology during magmatic fabric formation in plutons: Examples from the middle and upper crust Aaron S. Yoshinobu* Jeannette M. Wolak*† Department of Geosciences, Texas Tech University, Lubbock, Texas 79409-1053, USA Scott R. Paterson* Geoffrey S. Pignotta*§ Department of Earth Sciences, University of Southern California, Los Angeles, California 90089-0740, USA Heather S. Anderson* Department of Geosciences, Texas Tech University, Lubbock, Texas 79409-1053, USA ABSTRACT tilely at presumably fast strain rates. Axial- to arrest the xenoliths in their fi nal position planar magmatic foliations within folded and allow deformation. Estimated effective Field observations, structural analysis, and granodioritic dikes within xenoliths are par- viscosities considering magma yield strength analytical calculations are utilized to evaluate allel to magmatic foliations throughout the and measured density variables (melt and the strength of intermediate magmas during Jackass Lakes pluton and metamorphic foli- solid) are ~1013 Pa s. crystallization in a regional strain fi eld. Two ations within the host rocks, indicating that plutons are examined, the subvolcanic 98 Ma the xenolith deformation occurred within the INTRODUCTION old Jackass Lakes pluton, central Sierra regional 98 Ma old strain fi eld that affected Nevada, California, and the voluminous mid- the pluton. The strength of magmas as they crystallize dle crustal 442 Ma old Andalshatten pluton, The behavior of these xenoliths suggests remains poorly constrained in natural environ- central Norway. The Andalshatten example that late in the crystallization history, mag- ments. However, the rheological transitions that contains millimeter- to kilometer-scale xeno- mas in both middle crustal and subvolcanic occur during crystallization (and melting) must liths that display evidence for synmagmatic settings behaved as a high-strength crystal- play a pivotal role in the mechanical evolution deformation, including fold reactivation melt mush capable of transmitting deviatoric of the lithosphere, the segregation and migra- and boudinage, after being isolated in the stresses, which drove both elastic and plastic tion of magma, and the eventual solidifi cation magma. Fabrics within the pluton adjacent deformation in the enclosed xenoliths. Simul- and thus emplacement of igneous bodies. In this to the xenoliths are usually magmatic, with taneously, intercrystalline melt, and in some article we explore how magma-xenolith rela- only local, discontinuous zones of crystal- cases magma, was drained from the host tions in plutons may provide information on the plastic deformation <1 m from the xenolith intrusions into the xenoliths. Rheological viscosity of partially molten systems and the contact. Examination of particularly well modeling based on geochemical data yields strength of magmas as they crystallize. Many exposed mafi c metavolcanic xenoliths in the an effective viscosity of a crystal-free melt of experimental and theoretical investigations have Jackass Lakes pluton indicates that all were ~104 Pa s and increased to ~107 Pa s as cool- demonstrated the complexity and diffi culty in strained prior to incorporation and then ing proceeded to 758 °C and crystal content quantifying the rheology of magmas because of separated from the remaining host rock by approached 40% for the Jackass Lakes plu- their multiphase nature across a range of tem- brittle cracking. Once isolated from the host ton. Such viscosities are too low to impart or peratures, pressures, ambient deviatoric stresses, rocks, some of these xenoliths were intruded transmit deformation into the xenoliths. The and fl uid compositions and/or concentrations by veins fed by the in situ draining of melt and preservation of xenoliths in both plutons is (e.g., Arzi, 1978; Van der Molen and Paterson, magma from the surrounding crystal mush compatible with higher crystallinities and/ 1979; McBirney, 1993; Lejeune and Richet, zone. The xenoliths continued to deform duc- or magma yield strengths as an explanation 1995; Rutter and Neumann, 1995; Barboza *Emails: Yoshinobu: [email protected]; Wolak: [email protected]; Paterson: [email protected]; Pignotta: [email protected]; Anderson: [email protected]. †Present address: Department of Earth Sciences, Montana State University, Bozeman, Montana 59717, USA. §Present address: Department of Geology, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin 54702, USA. Geosphere; June 2009; v. 5; no. 3; p. 270–285; doi: 10.1130/GES00191.1; 12 fi gures. 270 For permission to copy, contact [email protected] © 2009 Geological Society of America Downloaded from http://pubs.geoscienceworld.org/gsa/geosphere/article-pdf/5/3/270/3338380/i1553-040X-5-3-270.pdf by guest on 30 September 2021 Relative magma and host rock xenolith rheology during fabric formation and Bergantz, 1998; Renner et al., 2000; Rosen- ination of xenoliths in both plutons indicates includes diorite, quartz diorite, biotite ± horn- berg, 2001; Petford, 2003). Our approach is to that they were all pervasively deformed during blende granodiorite, granite, leucogranite, and utilize fi eld relations, structural analysis, and magmatic fabric formation. While this ductile additional hybrid phases (McNulty et al., 1996; geochemistry to place constraints on the rheol- deformation was ongoing, the xenoliths were Coyne et al., 2004). Generally these various ogy of magmas during xenolith incorporation brittlely cracked, sometimes injected by melts phases form north-northwest–trending, steeply and deformation in shallow crustal and middle and magmas from the surrounding magma, and dipping sheet-like bodies ranging in width from crustal environments. Our results may bear in some cases these veins were boudinaged and/ meters to kilometers with variable contacts on the effi cacy of magma emplacement pro- or folded at relatively fast strain rates. ranging from gradational to locally sharp. How- cesses such as diking and stoping, as well as The above observations are interpreted to ever, the central and western portions of the plu- provide constraints on magma viscosity at high indicate that late in the crystallization history ton contain distinct compositional units several crystal fractions. of both plutons, the magma behaved as a high- kilometers in width with quite variable shapes, In this paper we use the term xenolith to strength crystal-melt mush capable of trans- although generally elongate in the north- describe any body of rock that is foreign to and mitting deviatoric stresses, which drove both west direction. Mafi c microgranitoid enclave entirely surrounded by the host igneous rock elastic and plastic deformation in the xenoliths, swarms of dioritic composition as wide as 50 m in contact with the xenolith. This may include while intercrystalline melt drained from the host occur in the more felsic units and are often stoped blocks from the roof, walls, or fl oor of the magma into the xenoliths. Furthermore, com- northwest trending. Textures vary considerably, magma chamber, cognate xenoliths (autoliths) parison of structures in the host pluton and in from aphanitic to coarse grained, and from equi- derived from earlier crystallized portions of the the xenoliths indicates that the strength of the granular to porphyritic. magma system, and screens (kilometric-scale crystal-melt mush during magmatic fabric for- Numerous metavolcanic and metasedimen- xenoliths, sometimes referred to as pendants), mation was equal to or greater than that of the tary xenoliths occur throughout the Jackass or raft trains of xenoliths (e.g., Pitcher, 1970). metavolcanic xenoliths in the Jackass Lakes Lakes pluton and vary from kilometer-scale We differentiate xenoliths from mafi c magmatic pluton. The magmatic foliations and lineations screens to millimeter-scale xenoliths (Figs. 1 enclaves or microgranitoid enclaves (e.g., Didier in both plutons are interpreted to refl ect regional and 2). The largest screens resemble lithologies and Barbarin, 1991). Xenocrysts are defi ned as strain. Thus, both plutons preserve evidence for exposed in the Minarets caldera sequence to mineral fragments that are encapsulated in the the orientation of the regional strain fi eld during the east (Fig. 1) and include both metavolcanic host igneous rock and have no direct chemical magma emplacement. and metasedimentary rocks. Some pendants are relationship with the host magma. The study of also intruded by a porphyritic leucogranite with such xenoliths may provide information about XENOLITHS IN THE JACKASS LAKES miarolitic cavities called the Post Peak phase, magma compositional changes due to assimila- PLUTON, CENTRAL SIERRA NEVADA, which probably is a slightly earlier, subvolcanic tion (e.g., Barnes et al., 2004), the paleohori- CALIFORNIA leucogranitic phase of the Jackass Lakes pluton zontal at the time of fi nal chamber construction, (Peck, 1980). Individual xenoliths and/or raft timing of formation of structures in plutons, The Jackass Lakes pluton (Fig. 1) in map view trains of xenoliths are particularly common near kinematics of magma fl ow, and the rheology is an ~13 × 17 km rectangular body that intruded the large pendants, but occur throughout the plu- of magmas at the time of xenolith capture (e.g., slightly older metavolcanic and plutonic pen- ton with variable sizes (meters to several hun- Paterson and Miller, 1998). Xenoliths also may dants and screens (Peck, 1980; McNulty et dred meters) and rock types (metavolcanic, leu-
Recommended publications
  • Mantle Peridotite Xenoliths
    Earth and Planetary Science Letters 260 (2007) 37–55 www.elsevier.com/locate/epsl Mantle peridotite xenoliths in andesite lava at El Peñon, central Mexican Volcanic Belt: Isotopic and trace element evidence for melting and metasomatism in the mantle wedge beneath an active arc ⁎ Samuel B. Mukasa a, , Dawnika L. Blatter b, Alexandre V. Andronikov a a Department of Geological Sciences, University of Michigan, Ann Arbor, MI 48109-1005, USA b Department of Earth and Planetary Science, University of California, Berkeley, CA 94720, USA Received 6 July 2006; received in revised form 3 May 2007; accepted 7 May 2007 Available online 13 May 2007 Editor: R.W. Carlson Abstract Peridotites in the mantle wedge and components added to them from the subducting slab are thought to be the source of most arc magmas. However, direct sampling of these materials, which provides a glimpse into the upper mantle beneath an active margin, is exceedingly rare. In the few arc localities where found, peridotite xenoliths are usually brought to the surface by basaltic magmas. Remarkably, the hornblende-bearing ultramafic xenoliths and clinopyroxene megaxenocrysts from El Peñon in the central Mexican Volcanic Belt were brought to the surface by a Quaternary high-Mg siliceous andesite, a rock type usually considered too evolved to be a direct product of mantle melting. The xenoliths and megaxenocrysts from El Peñon represent lithospheric mantle affected by significant subduction of oceanic lithosphere since as early as the Permian. Trace element and radiogenic isotope data we report here on these materials suggest a history of depletion by melt extraction, metasomatism involving a fluid phase, and finally, limited reaction between the ultramafic materials and the host andesite, probably during transport.
    [Show full text]
  • Depleted Spinel Harzburgite Xenoliths in Tertiary Dykes from East Greenland: Restites from High Degree Melting
    Earth and Planetary Science Letters 154Ž. 1998 221±235 Depleted spinel harzburgite xenoliths in Tertiary dykes from East Greenland: Restites from high degree melting Stefan Bernstein a,), Peter B. Kelemen b,1, C. Kent Brooks a,c,2 a Danish Lithosphere Centre, éster Voldgade 10, DK-1350 Copenhagen K, Denmark b Woods Hole Oceanographic Institution, Woods Hole, City, MA 02543, USA c Geological Institute, UniÕersity of Copenhagen, éster Voldgade 10, DK-1350 Copenhagen K, Denmark Received 28 April 1997; revised 19 September 1997; accepted 4 October 1997 Abstract A new collection of mantle xenoliths in Tertiary dykes from the Wiedemann Fjord area in Southeast Greenland shows that this part of the central Greenland craton is underlain by highly depleted peridotites. The samples are mostly spinel harzburgites with highly forsteritic olivinesŽ. Fo87± 94 , average Fo 92.7 . This, together with unusually high modal olivine contentsŽ. 70±)95% , places the Wiedemann harzburgites in a unique compositional field. Relative to depleted Kaapvaal harzburgites with comparable Fo in olivine, the Wiedemann samples have considerably lower bulk SiO2 Ž average 42.6 wt% versus 44±49 wt%. Spinel compositions are similar to those in other sub-cratonic harzburgites. Pyroxene equilibrium temperatures average 8508C, which is above an Archaean cratonic geotherm at an inferred pressure of 1±2 GPa, but low enough so that it is unlikely that the xenoliths represent residual peridotites created during Tertiary magmatism. Among mantle samples, the Wiedemann harzburgites are, in terms of their bulk composition, most similar to harzburgites from the ophiolites of Papua New GuineaŽ. PNG and New Caledonia Ž.
    [Show full text]
  • Mantle Origin and Flow Sorting of Megacryst-Xenolith Inclusions in Mafic Dikes of Black Canyon, Arizona
    Mantle Origin and Flow Sorting of Megacryst-Xenolith Inclusions in Mafic Dikes of Black Canyon, Arizona U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1541 AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOLOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with prices of the last offerings, are given in the current- year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Survey publications released prior to the current year are listed in the most recent annual "Price and Availability List." Publications that are listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" are no longer available. Reports released through the NTIS may be obtained by writing to the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161; please include NTIS report number with inquiry. Order U.S. Geological Survey publications by mail or over the counter from the offices given below. BY MAIL OVER THE COUNTER Books Books and Maps Professional Papers, Bulletins, Water-Supply Papers, Tech­ Books and maps of the U.S. Geological Survey are available niques of Water-Resources Investigations, Circulars, publications over the counter at the following U.S. Geological Survey offices, of general interest (such as leaflets, pamphlets, booklets), single all of which are authorized agents of the Superintendent of Docu­ copies of Earthquakes & Volcanoes, Preliminary Determination of ments. Epicenters, and some miscellaneous reports, including some of the foregoing series that have gone out of print at the Superin­ • ANCHORAGE, Alaska—4230 University Dr., Rm.
    [Show full text]
  • Geology of the Saline County Xenolith and Surrounding Area
    A.G.E.S. Brochure Series 005 State of Arkansas Arkansas Geological Survey Bekki White, State Geologist Geology of the Saline County Xenolith and surrounding area By J. Michael Howard Illustrations and photos by Angela Chandler _______________________________________________________ _______________________________________________________ Xenolith – “ a foreign inclusion in an igneous rock.” Glossary of Geology American Geological Institute 1987 (from the Greek words Xenos, meaning guest or stranger, and Lithos, meaning stone.) _______________________________________________________ _______________________________________________________ Introduction Located in Saline County, Arkansas, at the south edge of the community of Bauxite, this natural outcrop of nepheline syenite contains several geologically interesting features, including a xenolith. Sloping west, the outcrop encompasses about one-quarter acre near the center of section 21, Township 2 South, Range 14 West. In early 1990, the Aluminum Company of America (ALCOA) donated the outcrop along with approximately five surrounding acres of land to the Arkansas Geological Commission so that the site can be preserved for educational purposes. Outcrop of nepheline syenite at xenolith locality. History of the site The outcrop and its geologic features were first described by J. Francis Williams in 1891 in The Igneous Rocks of Arkansas, Arkansas Geological Survey Annual Report for 1890, Volume II. Williams discussed the outcrop and xenolith in some detail and included a sketch of the xenolith (see title page). However, for many years the outcrop location remained unknown to most scientists. In the late 2 1960’s employees in the mining division of ALCOA, suspecting that the site was on their property, began a concerted search. Soon afterward the outcrop was rediscovered and was visited by a staff member of the Arkansas Geological Commission, who in turn told Dr.
    [Show full text]
  • Title of Thesis
    Additions and Modifications to the Igneous Rock Classification Scheme Senior Thesis Submitted in partial fulfillment of the requirements for the Bachelor of Science Degree in Geological Sciences At The Ohio State University By Matthew R. H. Dugan The Ohio State University 2010 Approved by Anne E. Carey, Advisor School of Earth Sciences T ABLE OF C ONTENTS Abstract………………………………………………………………………....3 Acknowledgements……………………………………………………….…….4 Introduction……………………………………………………………………..5 Discussion……………….………………………………………………………5 Application……………….……………………………………………………..10 References Cited….……….……………………………………………………18 2 Abstract Igneous rocks as they are currently defined are in a sloppy state. Vague wording is throughout the whole of the definition, and there is not even any clear consensus on what it should be defined as. In this paper, I redefine igneous rocks in such a way as to remove a great deal of imprecision, and I go through some of the logical implications of the refined definition. I do not seek to change the intent of the definition, and I do not believe that I have. The most interesting implication of this change is that water, as it occurs on Earth, is an igneous rock, and I construct a basic classification scheme for it. 3 Acknowledgements I wish to thank Dr. Anne Carey for her intense support of the writing of this thesis, her wonderful edits and her dedication to keeping me on this. I also wish to acknowledge my lab group, also lead by Dr. Steve Goldsmith, for their wonderful feedback and encouragement. Dr. Fritz Graf, Professor and chair of the Department of Greek and Latin, was a great asset to me and he deserves recognition for his help in coining neologisms.
    [Show full text]
  • Zeolites in Tasmania
    Mineral Resources Tasmania Tasmanian Geological Survey Record 1997/07 Tasmania Zeolites in Tasmania by R. S. Bottrill and J. L. Everard CONTENTS INTRODUCTION ……………………………………………………………………… 2 USES …………………………………………………………………………………… 2 ECONOMIC SIGNIFICANCE …………………………………………………………… 2 GEOLOGICAL OCCURRENCES ………………………………………………………… 2 TASMANIAN OCCURRENCES ………………………………………………………… 4 Devonian ………………………………………………………………………… 4 Permo-Triassic …………………………………………………………………… 4 Jurassic …………………………………………………………………………… 4 Cretaceous ………………………………………………………………………… 5 Tertiary …………………………………………………………………………… 5 EXPLORATION FOR ZEOLITES IN TASMANIA ………………………………………… 6 RESOURCE POTENTIAL ……………………………………………………………… 6 MINERAL OCCURRENCES …………………………………………………………… 7 Analcime (Analcite) NaAlSi2O6.H2O ……………………………………………… 7 Chabazite (Ca,Na2,K2)Al2Si4O12.6H2O …………………………………………… 7 Clinoptilolite (Ca,Na2,K2)2-3Al5Si13O36.12H2O ……………………………………… 7 Gismondine Ca2Al4Si4O16.9H2O …………………………………………………… 7 Gmelinite (Na2Ca)Al2Si4O12.6H2O7 ……………………………………………… 7 Gonnardite Na2CaAl5Si5O20.6H2O ………………………………………………… 10 Herschelite (Na,Ca,K)Al2Si4O12.6H2O……………………………………………… 10 Heulandite (Ca,Na2,K2)2-3Al5Si13O36.12H2O ……………………………………… 10 Laumontite CaAl2Si4O12.4H2O …………………………………………………… 10 Levyne (Ca2.5,Na)Al6Si12O36.6H2O ………………………………………………… 10 Mesolite Na2Ca2(Al6Si9O30).8H2O ………………………………………………… 10 Mordenite K2.8Na1.5Ca2(Al9Si39O96).29H2O ………………………………………… 10 Natrolite Na2(Al2Si3O10).2H2O …………………………………………………… 10 Phillipsite (Ca,Na,K)3Al3Si5O16.6H2O ……………………………………………… 11 Scolecite CaAl2Si3O10.3H20 ………………………………………………………
    [Show full text]
  • Komatiites of the Weltevreden Formation, Barberton Greenstone
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2005 Komatiites of the Weltevreden Formation, Barberton Greenstone Belt, South Africa: implications for the chemistry and temperature of the Archean mantle Keena Kareem Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Earth Sciences Commons Recommended Citation Kareem, Keena, "Komatiites of the Weltevreden Formation, Barberton Greenstone Belt, South Africa: implications for the chemistry and temperature of the Archean mantle" (2005). LSU Doctoral Dissertations. 3249. https://digitalcommons.lsu.edu/gradschool_dissertations/3249 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. KOMATIITES OF THE WELTEVREDEN FORMATION, BARBERTON GREENSTONE BELT, SOUTH AFRICA: IMPLICATIONS FOR THE CHEMISTRY AND TEMPERATURE OF THE ARCHEAN MANTLE A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Geology and Geophysics by Keena Kareem B.S., Tulane University, 1999 May 2005 ACKNOWLEDGMENTS The author wishes to thank, Dr. Gary Byerly, the author’s major advisor for guidance and support in defining the project, technical assistance with instrumentation, and practical advice concerning non-dissertation related issues. Appreciation goes out to the other members of the advisory committee: Drs. Huiming Bao, Lui-Heung Chan, Ray Ferrell, Darrell Henry, of the Department of Geology and Geophysics, and Dr.
    [Show full text]
  • Crystallization History of a Pyroxenite Xenolith in a Granulite Inferred from Chemical and Single-Crystal X-Ray Data
    Fluid-Mineral Interactions: A Tribute to H. P. Eugster © The Geochemical Society, Special Publication No.2, 1990 Editors: R. J. Spencer and I-Ming Chou Crystallization history of a pyroxenite xenolith in a granulite inferred from chemical and single-crystal X-ray data JrRI FRYDA Geological Survey, Malostranske namesti 19, 11821 Praha 1, Czechoslovakia and MILANRIEDER Institute of Geological Sciences, Charles University, Albertov 6, 12843 Praha 2, Czechoslovakia Abstract-Porphyroclasts of orthopyroxene and clinopyroxene in the pyroxenite have bulk com- positions corresponding to an equilibrium at about 1260°C and their content of Fe3+ indicates a relatively high oxygen fugacity during their crystallization. Later they were corroded during recrys- tallization by a reaction with olivine that yielded spinel grains and pyroxene neoblasts. This reaction proceeded in the subsolidus, under increasingly reducing conditions, and produced spinel of pro- gressively smaller grain size and increasing Al content. Finally, at about 910°C, the recrystallization ceased, at approximately the same time as the porphyroclasts underwent exsolution. Orthopyroxene porphyroclasts exsolved clinopyroxene and spinel lamellae, crystallographically oriented in the host. Clinopyroxene porphyroclasts probably exsolved enstatite first and then spinel, as a result of a strong reduction probably caused by the diffusion of hydrogen. Oxygen, thus freed, combined with hydrogen, yielding about 2.5 OR per seven R2+in the exsolved enstatite and converted it into an orthoamphibole- like phase that is perfectly crystallographically aligned in the host. It appears that the unmixing of spinel lamellae may be viewed as a redox reaction and that concomitantly forming hydrated phases may serve as a proof of the role of hydrogen during the evolution of mantle xenoliths.
    [Show full text]
  • A Diamondiferous Lherzolite from the Premier Diamond Mine, South Africa
    A DIAMONDIFEROUS LHERZOLITE FROM THE PREMIER DIAMOND MINE, SOUTH AFRICA K.S. (Fanus) Viljoen and Rene Dobbe GeoScience Centre, De Beers Consolidated Mines, South Africa INTRODUCTION PETROGRAPHY This paper reports on the discovery of a diamondiferous The xenolith is altered with pervasive serpentinisation peridotite from the Premier diamond mine. Such of constituent minerals (Figure 1). Garnets are generally xenoliths are surprisingly rare on the Kaapvaal Craton, partially kelyphitised. They range in size up to 2mm. with 4 specimens having been decribed from Finsch These occur interstitially with serpentine pseudomorphs (Shee et al 1982; Viljoen et al 1992), 8 from Roberts after possible olivine and/or orthopyroxene. The Victor (Viljoen et al 1994), and one from Mothae in pervasive alteration complicates petrography and it is Lesotho (Dawson and Smith 1975). A number of not possible to accurately determine volume diamond-bearing peridotitic garnet macrocrysts have percentages of these two minerals, assuming that both also been recognised at the Newlands kimberlite are present. Other minerals typical of peridotites such (Daniels et al 1995). as clinopyroxene and accessory spinel are not seen. The The x-ray diamond recovery circuit (the Sortex Plant) at xenolith texture is coarse (i.e. not sheared). the Premier diamond mine in South Africa typically Inclusions in Diamond 16 generates about 3 specimens of diamond partially Premier Xenolith enclosed in kimberlite each day. These are sent to the Other Xenoliths sorthouse at the mine where a small press is used to 14 liberate the diamonds from the kimberlite matrix. Maggie Mahlase, a diamond sorter, recognised the 12 importance of the specimen when crushing revealed numerous diamonds.
    [Show full text]
  • Oxygen Fugacity of Hotspot Xenoliths: a Window Into the Earth's Mantle
    Oxygen fugacity of hotspot xenoliths: A window into the Earth’s mantle Kellie Wall1,2, Fred Davis1, and Elizabeth Cottrell1 1Department of Mineral Sciences, Smithsonian National Museum of Natural History, Washington, DC 2School of Earth and Environmental Sciences, Washington State University, Pullman, WA Introduction Results Discussion Mantle xenoliths—chunks of the Earth’s Peridotite xenoliths recorded fO2 ranges of -1.4 to 0.9 (Savai’i), 0.6 to 0.7 (Tahiti), and -1.0 to 0.2 We observe an intriguing dichotomy in apparent fO2 between spinels of different habit interior carried to the surface by volcanic (Tubuai) log units relative to the quartz-fayalite-magnetite (QFM) buffer (Fig. 9). These values are within a single sample. In these samples, there is no indication that melt has interacted eruptions—provide a rare glimpse into the within the range of oxygen fugacities for peridotites from other tectonic settings: more oxidized than with the rock. We hypothesize that an increase in temperature induced by lithosphere- those from ridges but more reduced than those from subduction zones. Within some samples we plume interaction has resulted in major element diffusion and an apparent shift in fO . We chemistry of the deep Earth (Fig. 1). Of 2 observe two trends: TiO2 increasing with fO2, and a link between fO2 and spinel habit, such that fine, suggest that these xenoliths erupted before the interiors of large spinels could diffusively particular interest is the oxygen fugacity “wispy” spinel records higher apparent fO2 than large blocky grains. reequilibrate. O (f 2; the effective ‘partial pressure’ of An outstanding mystery in the fO2 realm is that ridge peridotites are an order of xenoliths’ magnitude more reduced than lavas erupted at ridges.
    [Show full text]
  • Glossary of Geological Terms
    GLOSSARY OF GEOLOGICAL TERMS These terms relate to prospecting and exploration, to the regional geology of Newfoundland and Labrador, and to some of the geological environments and mineral occurrences preserved in the province. Some common rocks, textures and structural terms are also defined. You may come across some of these terms when reading company assessment files, government reports or papers from journals. Underlined words in definitions are explained elsewhere in the glossary. New material will be added as needed - check back often. - A - A-HORIZON SOIL: the uppermost layer of soil also referred to as topsoil. This is the layer of mineral soil with the most organic matter accumulation and soil life. This layer is not usually selected in soil surveys. ADIT: an opening that is driven horizontally (into the side of a mountain or hill) to access a mineral deposit. AIRBORNE SURVEY: a geophysical survey done from the air by systematically crossing an area or mineral property using aircraft outfitted with a variety of sensitive instruments designed to measure variations in the earth=s magnetic, gravitational, electro-magnetic fields, and/or the radiation (Radiometric Surveys) emitted by rocks at or near the surface. These surveys detect anomalies. AIRBORNE MAGNETIC (or AEROMAG) SURVEYS: regional or local magnetic surveys that measures deviations in the earth=s magnetic field and carried out by flying a magnetometer along flight lines on a pre-determined grid pattern. The lower the aircraft and the closer the flight lines, the more sensitive is the survey and the more detail in the resultant maps. Aeromag maps produced from these surveys are important exploration tools and have played a major role in many major discoveries (e.g., the Olympic Dam deposit in Australia).
    [Show full text]
  • A Partial Glossary of Spanish Geological Terms Exclusive of Most Cognates
    U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY A Partial Glossary of Spanish Geological Terms Exclusive of Most Cognates by Keith R. Long Open-File Report 91-0579 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1991 Preface In recent years, almost all countries in Latin America have adopted democratic political systems and liberal economic policies. The resulting favorable investment climate has spurred a new wave of North American investment in Latin American mineral resources and has improved cooperation between geoscience organizations on both continents. The U.S. Geological Survey (USGS) has responded to the new situation through cooperative mineral resource investigations with a number of countries in Latin America. These activities are now being coordinated by the USGS's Center for Inter-American Mineral Resource Investigations (CIMRI), recently established in Tucson, Arizona. In the course of CIMRI's work, we have found a need for a compilation of Spanish geological and mining terminology that goes beyond the few Spanish-English geological dictionaries available. Even geologists who are fluent in Spanish often encounter local terminology oijerga that is unfamiliar. These terms, which have grown out of five centuries of mining tradition in Latin America, and frequently draw on native languages, usually cannot be found in standard dictionaries. There are, of course, many geological terms which can be recognized even by geologists who speak little or no Spanish.
    [Show full text]