Index of Scientific Names of Plants

Total Page:16

File Type:pdf, Size:1020Kb

Index of Scientific Names of Plants Cambridge University Press 0521801834 - The Ecology of Trees in the Tropical Rain Forest I. M. Turner Index More information INDEX OF SCIENTIFIC NAMES OF PLANTS Page numbers in italics indicate relevant entries in figures or tables. Acmopyle, 4 Aquifoliaceae, 4 Acorales, 3 Aquifoliales, 3 Adenanthera, 158 Araceae, 4 Adinandra dumosa, 97 Araliaceae, 2, 4, 61, 76 Aechmea magdalenae, 194 Araucaria, 4,40 Afrocarpus, 4 Araucaria cunninghamii, 106 Agathis, 4 Araucaria hunsteinii, 106 Aglaia, 30, 157 Araucariaceae, 4 Aglaia affinis, 32 Ardisia, 18, 82 Aglaia mackiana, 167, 172 Arecaceae, 4 Agrostistachys,58 Arecales, 3 Alchornea costaricensis, 239 Arenga pinnata, 133 Aleurites moluccana, 185 Argyrodendron peralatum,93 Alismatales, 3 Ascomycotina, 49,52 Allocasuarina,56 Asparagales, 3 Alnus,56 Aspidosperma cruenta, 200 Alocasia, 4 Asterales, 3 Alphitonia petriei, 142 Asterogyne martiana, 143 Alpinia, 4 Astrocaryum jauari, 162 Alseis blackiana, 108, 177, 201 Astrocaryum macrocalyx, 172 Amblyanthopsis,82 Astrocaryum mexicanum, 104, 106, 126 Amblyanthus,82 Astrocaryum standleyanum, 161 Anabaena, 49,57 4 133 149 Anacardiaceae, , , 142, Baccaurea parviflora, 128 Anacardium excelsum, 37, 97 Baccaurea racemosa, 128 Annona sericea , 141 Baccaurea reticulata, 128 Annona spraguei, 84, 97 Bactris bifida, 141 4 Annonaceae, , 74, 75, 141, 142, 158 Bactris gasipaes, 141 Anthonotha macrophylla, 122 Bactris monticola, 141 Antidesma cuspidatum , 220, 223 Bactris porschiana, 141 Antirrhoea trichantha, 97 Balanites wilsoniana, 161 3 Apiales, Barringtonia racemosa, 133 Apocynaceae, 4, 73, 74, 139, 148, 149 Basidiomycotina, 49,52 Beilschmiedia pendula, 223, 239 Currently considered a synonym of Aglaia Bellucia grossularioides, 97 odoratissima. Bernoullia flammea, 136 281 © Cambridge University Press www.cambridge.org Cambridge University Press 0521801834 - The Ecology of Trees in the Tropical Rain Forest I. M. Turner Index More information 282 Index of scientific names of plants Bertholletia excelsa, 175, 172 191, 200, 239, 246 Betulaceae, 56 Celastraceae, 4 Bignoniaceae, 4, 132, 133, 137, 148, 199 Ceratophyllales, 3 Blakea chlorantha, 134 Ceratozamia, 4 Blechnaceae, 4 Ceuthostoma,56 Blechnum, 4 Chamaedora tepejilote, 106, 121 Blighia sapida,73 Chigua, 4 Bocageopsis multiflora, 142 Chionanthus domingensis, 193 Bombacaceae, 4, 22, 125, 132, 133, 147, 148, Chisocheton macranthus, 97 149 Chlorocardium rodiei, 100, 164, 171, 172 Bombax valetonii, 133 Chrysobalanaceae, 4, 139 Boraginaceae, 4 Cibotium,4 Brainea, 4 Cinchona,75 Brassicales, 3 Clethra, 149 Brosimum alicastrum, 106, 164, 172, 173, 175, Clethra occidentalis, 194 239 Clidemia heterophylla,79 Burseraceae, 4, 73, 77, 137 Clidemia sericea, 97 Clusia, 2, 138 Clusiaceae, 4 Cabralea canjerana, 162 Coccothrinax readii, 106 Caesalpinia, 140 Cochlospermum vitifolium, 237 Caesalpinioideae, 49, 52, 56, 132, 134 Cocos nucifera, 26, 133 Calliandra, 136 Coffea,75 Calophyllum,29 Cola,75 Calophyllum longifolium, 125, 126, 127 Cola lizae, 160 Calothrix, 49,57 Combretaceae, 4, 149 Calvaria major, 178 Commelinales, 3 Calyptrogyne ghiesbreghtiana, 121 Copaifera multijuga,89 Camellia sinensis,60 Copaifera pubiflora, 172 Capparidaceae, 4, 139 Cordia, 140 Carapa guianensis, 172 Cordia alliodora, 126, 200 Carica papaya, 123, 190 Cordia bicolor, 239 Cariniana micrantha, 103 Cordia nodosa,79 Caryocaraceae, 132 Cordyline, 4 Caryophyllales, 3 Coriaria,56 Casearia corymbosa, 158 Coriariaceae, 56 Castanopsis fissa,70 Cornales, 3 Castanospermum australe, 93, 184 Croton billbergianus, 117 Castilla elastica, 97, 206 Crotonoideae, 73 Casuarinaceae, 49,56 Cryosophila albida, 141 Cavanillesia,22 Cucurbitales, 3 Cavanillesia platanifolia, 125, 192, 200, 237 Culcita,4 Cecropia, 22, 28, 33, 40, 119, 159, 224, 226, Cunoniaceae, 4 233, 241 Cupressaceae, 4 Cecropia ficifolia, 97 Cyanea, 16, 71 Cecropia insignis, 117, 186, 187, 188, 199, 238, Cyathea,4 239 Cyatheaceae, 4 Cecropia longipes, 97 Cycadaceae, 4 Cecropia obtusa, 100, 194 Cycadales, 3 Cecropia obtusifolia, 105, 106, 113, 186, 187, Cycadopsida, 4, 49 189, 196, 198, 199, 206, 208, 218, 220, Cycas, 4 236, 237, 238, 241 Cycas circinalis,73 Cecropia peltata, 224, 226 Cyclanthaceae, 141 Cecropia schreberiana, 193, 194 Cynometra alexandri, 54 Cecropia sciadophylla, 238 Cyperaceae, 4 Ceiba,22 Ceiba pentandra, 26, 27, 28, 97, 132, 133, 136, Dacrycarpus, 4 © Cambridge University Press www.cambridge.org Cambridge University Press 0521801834 - The Ecology of Trees in the Tropical Rain Forest I. M. Turner Index More information Index of scientific names of plants 283 Dacrydium, 4 Ensete, 4 Dalechampia, 138 Eperua falcata, 100, 148, 164, 172 Dalechampia spathulata, 138 Eperua grandiflora, 172 Daniellia pynaertii, 134 Ericaceae, 4 Darlingia darlingiana, 205 Ericales, 3 Datura, 139 Erythrina, 75, 136 Degeneriaceae, 141 Erythrophleum,75 Delonix, 140 Erythroxylaceae, 4 Dendrocnide,71 Eschweilera sagotiana, 100 Dendrocnide stimulans,71 Eucalyptus, 149 Desmopsis panamensis, 84, 97, 205 Eugenia coloradensis, 239 Dialium pachyphyllum, 97 Euphorbia forbesii,60 Dichapetalaceae, 4 Euphorbia rockii,60 Dicksonia, 4 Euphorbiaceae, 4, 71, 73, 75, 123, 127, 137, Dicksoniaceae, 4 142, 147, 159 Dicorynia guianensis, 43, 203 Eupomatia laurina, 142 Dicymbe altsonii, 100 Eupomatiaceae, 141 Dillenia suffruticosa, 97, 224 Eusideroxylon zwageri, 54 Dilleniaceae, 4 Euterpe edulis, 105, 106 Dioon, 4 Dioscoreales, 3 Fabaceae, 4 Diospyros,22 Fabales, 3 Diospyros apiculata, 128 Fagaceae, 4, 49, 52, 161 Diospyros maingayi, 128 Fagraea,6 Diospyros pentamera, 142 Fagraea racemosa, 132 Dipsacales, 3 Falcatifolium, 4 Dipterocarpaceae, 4, 49, 52, 55, 73, 77, 125, Faramea occidentalis, 47, 173 129, 148, 149, 170 Faramea terryae, 113 Dipterocarpus acutangulus, 172 Ficus, 2, 22, 146, 159 Dipterocarpus caudiferus, 97 Ficus dugandii, 126 Dipterocarpus globosus, 172 Ficus glabrata, 162 Dipterocarpus oblongifolius,34 Ficus insipida, 94, 97, 241 Dipteryx micrantha, 172 Ficus obtusifolia, 97, 126 Dipteryx panamensis, 26, 45, 92, 112, 119, Ficus popenoei, 126 120, 138, 161, 171, 172, 218 Ficus stenophylla, 167 Dracaena, 4 Ficus stupenda, 164 Dracaenaceae, 4 Ficus subtecta, 164 Drimys piperata, 143 Filicopsida, 4 Dryobalanops aromatica, 39, 54, 95, 97, 172 Flacourtiaceae, 4, 75, 137 Dryobalanops lanceolata, 93, 97, 138, 172, Flindersia brayleyana, 142 214, 215, 218 Frankia, 49,56 Drypetes standleyi, 108, 113, 239 Duabanga grandiflora, 133 Durio graveolens, 133 Ganua, 134 Durio zibethinus, 133 Garcinia hombroniana, 138 Dyera costulata,22 Garcinia scortechinii, 125 Gardenia actinocarpa, 141 Garryales, 3 Ebenaceae, 4,22 Gentianales, 3 Elaeagnaceae, 56 Geonoma congesta, 121 Elaeagnus,56 Geonoma macrostachys, 138 Elaeis guineensis, 156 Geraniales, 3 Elaeocarpaceae, 4,75 Gilbertiodendron dewevrei, 54, 55, 169, 172, Elaeocarpus, 157 174 Endogonales, 49,52 Ginkgoales, 3 Endospermum labios, 72, 82 Glochidion rubrum, 97 Endospermum peltatum, 236 Glomales, 49,52 © Cambridge University Press www.cambridge.org Cambridge University Press 0521801834 - The Ecology of Trees in the Tropical Rain Forest I. M. Turner Index More information 284 Index of scientific names of plants Gnetaceae, 4 Leptospermoideae, 49,52 Gnetales, 3 Licania heteromorpha, 97 Gnetopsida, 4 Liliales, 3 Gnetum, 4 Lindenia rivalis, 139 Gnetum costatum, 4 Litsea leefeana, 143 Gnetum gnemon, 4, 140 Lodoicea maldivica, 147 Goethalsia meiantha, 238 Loganiaceae, 4 Goupia glabra, 100 Lonchocarpus pentaphyllus, 164, 200 Gramineae, 4 Lophopetalum wightianum, 148, 149, 151, 164 Guaiacum,20 Luehea seemannii, 97, 108, 239 Guarea, 163 Gustavia superba, 166, 172, 184, 193, 239 Macaranga, 13, 58, 215, 231, 233, 240, 241, Guttiferae, 4, 73, 74, 136, 142 242 Macaranga conifera,93 Hampea appendiculata, 113 Macaranga gigantea, 219, 237 Harmsiopanax, 129 Macaranga heynei, 97, 224 Helianthus annuus, 238 Macaranga hypoleuca, 97, 236 Heliconia, 4, 146 Macaranga trachyphylla, 78 Heliconiaceae, 4 Macoubea guianensis, 172 Heliocarpus appendiculatus, 224 Magnoliaceae, 4 Hevea brasiliensis, 147 Magnoliales, 2, 3 Hibiscus, 136 Magnoliidae, 141 Hirtella triandra, 47 Maieta guianensis,78 Hopea griffithii, 220 Mallotus paniculatus, 97, 190 Hopea nervosa, 216, 217 Mallotus wrayi, 29, 32,34 Hura crepitans, 148 Malpighiaceae, 137 Hybanthus prunifolius, 17, 47, 130, 171 Malpighiales, 3 Hyeronima alchorneoides, 112, 119, 120 Malvaceae, 4 Hymenaea,77 Malvales, 3 Hymenaea courbaril, 162, 172 Mangifera, 158 Hymenolobium mesoamericanum, 112, 119, Mangifera indica, 133 120 Matisia cordata, 134 Maximiliana maripa, 167, 172 Melaleuca cajuputi, 223 Icacinaceae, 4 Melastoma malabathricum, 60, 97, 138, 223, Inga oerstediana, 225 242 Intsia palembanica,28 Melastomataceae, 4, 74, 79, 134, 137, 157, Ixora griffithii, 141 162, 180, 185 Ixora platythyrsa, 139 Memecyleae, 137 Meliaceae, 4, 139, 154, 157, 159 Julbernardia seretii, 54, 172, 174 Mezzettia parviflora, 191 Miconia, 162, 208 Laetia procera,26 Miconia argentea, 46, 162, 186, 187, 239 Lamiales, 3 Miconia mirabilis, 194 Lantana, 140 Microberlinia bisulcata,55 Lasianthus, 157 Microdracoides, 4 Lauraceae, 4, 74, 141, 154, 157 Mimosaceae, 133 Laurales, 2, 3 Mimosoideae, 139 Lecythidaceae, 4, 133, 137, 161 Minquartia glabra, 120 Lecythis ampla, 92, 112, 119, 120 Minquartia guianensis, 24, 92, 112, 119 Lecythis corrugata, 222 Monimiaceae, 4 Lecythis ollaria,73 Montrichardia, 4 Leguminosae, 4, 49, 52, 74, 75, 77, 132, 134, Mora excelsa, 54, 55, 100, 221 137, 139, 147, 148 Mora gonggrijpii, 172, 221 Leonardoxa africana, 78, 80 Moraceae, 4, 73, 76, 144, 146, 154, 206, 241 Lepidozamia, 4 Leptopteris, 4
Recommended publications
  • The Native Vegetation of the Nattai and Bargo Reserves
    The Native Vegetation of the Nattai and Bargo Reserves Project funded under the Central Directorate Parks and Wildlife Division Biodiversity Data Priorities Program Conservation Assessment and Data Unit Conservation Programs and Planning Branch, Metropolitan Environmental Protection and Regulation Division Department of Environment and Conservation ACKNOWLEDGMENTS CADU (Central) Manager Special thanks to: Julie Ravallion Nattai NP Area staff for providing general assistance as well as their knowledge of the CADU (Central) Bioregional Data Group area, especially: Raf Pedroza and Adrian Coordinator Johnstone. Daniel Connolly Citation CADU (Central) Flora Project Officer DEC (2004) The Native Vegetation of the Nattai Nathan Kearnes and Bargo Reserves. Unpublished Report. Department of Environment and Conservation, CADU (Central) GIS, Data Management and Hurstville. Database Coordinator This report was funded by the Central Peter Ewin Directorate Parks and Wildlife Division, Biodiversity Survey Priorities Program. Logistics and Survey Planning All photographs are held by DEC. To obtain a Nathan Kearnes copy please contact the Bioregional Data Group Coordinator, DEC Hurstville Field Surveyors David Thomas Cover Photos Teresa James Nathan Kearnes Feature Photo (Daniel Connolly) Daniel Connolly White-striped Freetail-bat (Michael Todd), Rock Peter Ewin Plate-Heath Mallee (DEC) Black Crevice-skink (David O’Connor) Aerial Photo Interpretation Tall Moist Blue Gum Forest (DEC) Ian Roberts (Nattai and Bargo, this report; Rainforest (DEC) Woronora, 2003; Western Sydney, 1999) Short-beaked Echidna (D. O’Connor) Bob Wilson (Warragamba, 2003) Grey Gum (Daniel Connolly) Pintech (Pty Ltd) Red-crowned Toadlet (Dave Hunter) Data Analysis ISBN 07313 6851 7 Nathan Kearnes Daniel Connolly Report Writing and Map Production Nathan Kearnes Daniel Connolly EXECUTIVE SUMMARY This report describes the distribution and composition of the native vegetation within and immediately surrounding Nattai National Park, Nattai State Conservation Area and Bargo State Conservation Area.
    [Show full text]
  • TML Propagation Protocols
    PROPAGATION PROTOCOLS This document is intended as a guide for Tamborine Mountain Landcare members who wish to assist our regeneration projects by growing some of the plants needed. It is a work in progress so if you have anything to add to the protocols – for example a different but successful way of propagating and growing a particular plant – then please give it to Julie Lake so she can add it to the document. The idea is that our shared knowledge and experience can become a valuable part of TML's intellectual property as well as a useful source of knowledge for members. As there are many hundreds of plants native to Tamborine Mountain, the protocols list will take a long time to complete, with growing information for each plant added alphabetically as time permits. While the list is being compiled by those members with competence in this field, any TML member with a query about propagating a particular plant can post it on the website for other me mb e r s to answer. To date, only protocols for trees and shrubs have been compiled. Vines and ferns will be added later. Fruiting times given are usual for the species but many rainforest plants flower and fruit opportunistically, according to weather and other conditions unknown to us, thus fruit can be produced at any time of year. Finally, if anyone would like a copy of the protocols, contact Julie on [email protected] and she’ll send you one. ………………….. Growing from seed This is the best method for most plants destined for regeneration projects for it is usually fast, easy and ensures genetic diversity in the regenerated landscape.
    [Show full text]
  • The Use of Barcoding Sequences for the Construction of Phylogenetic Relationships in the Euphorbiaceae
    University of Padova Department of Land, Environment Agriculture and Forestry MSc in Mediterranean Forestry and Natural Resources Management The use of barcoding sequences for the construction of phylogenetic relationships in the Euphorbiaceae Supervisor: Alessandro Vannozzi Co-supervisor: Prof. Dr. Oliver Gailing Submitted by: Bikash Kharel Matriculation No. 1177536 ACADEMIC YEAR 2017/2018 Acknowledgments This dissertation has come to this positive end through the collective efforts of several people and organizations: from rural peasants to highly academic personnel and institutions around the world. Without their mental, physical and financial support this research would not have been possible. I would like to express my gratitude to all of them who were involved directly or indirectly in this endeavor. To all of them, I express my deep appreciation. Firstly, I am thankful to Prof. Dr. Oliver Gailing for providing me the opportunity to conduct my thesis on this topic. I greatly appreciate my supervisor Alessandro Vannozzi for providing the vision regarding Forest Genetics and DNA barcoding. My cordial thanks and heartfelt gratitude goes to him whose encouragements, suggestions and comments made this research possible to shape in this form. I am also thankful to Prof. Dr. Konstantin V. Krutovsky for his guidance in each and every step of this research especially helping me with the CodonCode software and reviewing the thesis. I also want to thank Erasmus Mundus Programme for providing me with a scholarship for pursuing Master’s degree in Mediterranean Forestry and Natural Resources Management (MEDFOR) course. Besides this, I would like to thank all my professors who broadened my knowledge during the period of my study in University of Lisbon and University of Padova.
    [Show full text]
  • Impacts of Global Climate Change on the Phenology of African Tropical Ecosystems
    IMPACTS OF GLOBAL CLIMATE CHANGE ON THE PHENOLOGY OF AFRICAN TROPICAL ECOSYSTEMS GABRIELA S. ADAMESCU MSc by Research UNIVERSITY OF YORK Biology October 2016 1 Abstract The climate has been changing at an unprecedented rate, affecting natural systems around the globe. Its impact has been mostly reflected through changes in species’ phenology, which has received extensive attention in the current global-change research, mainly in temperate regions. However, little is known about phenology in African tropical forests. Africa is known to be vulnerable to climate change and filling the gaps is an urgent matter. In this study we assess plant phenology at the individual, site and continental level. We first compare flowering and fruiting events of species shared between multiple sites, accounting for three quantitative indicators, such as frequency, fidelity for conserving a certain frequency and seasonal phase. We complement this analysis by assessing interannual trends of flowering and fruiting frequency and fidelity to their dominant frequency at 11 sites. We complete the bigger picture by analysing flowering and fruiting frequency of African tropical trees at the site and community level. Next, we correlate three climatic indices (ENSO, IOD and NAO) with flowering and fruiting events at the canopy level, at 16 sites. Our results suggest that 30 % of the studied species show plasticity or adaptability to different environments and will most likely be resilient to moderate future climate change. At both site and continental level, we found that annual flowering cycles are dominant, indicating strong seasonality in the case of more than 50% of African tropical species under investigation.
    [Show full text]
  • Tropical Plant-Animal Interactions: Linking Defaunation with Seed Predation, and Resource- Dependent Co-Occurrence
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2021 TROPICAL PLANT-ANIMAL INTERACTIONS: LINKING DEFAUNATION WITH SEED PREDATION, AND RESOURCE- DEPENDENT CO-OCCURRENCE Peter Jeffrey Williams Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Williams, Peter Jeffrey, "TROPICAL PLANT-ANIMAL INTERACTIONS: LINKING DEFAUNATION WITH SEED PREDATION, AND RESOURCE-DEPENDENT CO-OCCURRENCE" (2021). Graduate Student Theses, Dissertations, & Professional Papers. 11777. https://scholarworks.umt.edu/etd/11777 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. TROPICAL PLANT-ANIMAL INTERACTIONS: LINKING DEFAUNATION WITH SEED PREDATION, AND RESOURCE-DEPENDENT CO-OCCURRENCE By PETER JEFFREY WILLIAMS B.S., University of Minnesota, Minneapolis, MN, 2014 Dissertation presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology – Ecology and Evolution The University of Montana Missoula, MT May 2021 Approved by: Scott Whittenburg, Graduate School Dean Jedediah F. Brodie, Chair Division of Biological Sciences Wildlife Biology Program John L. Maron Division of Biological Sciences Joshua J. Millspaugh Wildlife Biology Program Kim R. McConkey School of Environmental and Geographical Sciences University of Nottingham Malaysia Williams, Peter, Ph.D., Spring 2021 Biology Tropical plant-animal interactions: linking defaunation with seed predation, and resource- dependent co-occurrence Chairperson: Jedediah F.
    [Show full text]
  • Tree Species Selection for Buffer Zone Agroforestry: the Case of Budongo Forest in Uganda
    52 International Forestry Review Vol.10(1), 2008 Tree species selection for buffer zone agroforestry: the case of Budongo Forest in Uganda W. K. KASOLO and A. B. TEMU Nyabyeya Forest College, Private Bag Masindi Uganda and World, Agroforestry Centre (ICRAF) P.O Box 30677 Nairobi, Kenya Emails: [email protected] and [email protected] SUMMARY This paper highlights the importance of careful selection of tree species for use in buffer zone agroforestry, as a conservation strategy for threatened forest resources. A case study from the Budongo Forest buffer zone in Uganda is used to elaborate the process, where local communities applied a pair-wise ranking system to establish priority tree species and technologies for agroforestry. Maesopsis eminii, Vernonia amygdalina and Lasiodiscus mildbraedii were the top three species selected for integration into the buffer zone farms. Their selection refl ects the many good attributes experienced by farmers in the area, such as provision of timber, construction poles, and fi rewood. The most popular technologies were woodlots, boundary planting and shade trees (multistrata tree planting), in that order of priority. Areas for further research include an evaluation of the economic aspects of the species and technologies, on farm propagation and management protocols and markets for the tree products. Keywords: Buffer zone, Budongo forest, local communities, Agroforestry technologies, species selection Sélection d’arbres pour l’agroforesterie des zones-tampon: le cas de la forêt Budongo en Ouganda W. K. KASOLO et A. B. TEMU Cet article souligne l’importance d’une sélection précise d’espèces d’arbres en vue de leur utilisation dans l’agroforesterie des zones- tampons.
    [Show full text]
  • Biomimética De Estructuras Vegetales Mejorando La Seguridad En El Ciclismo a Partir De La Olla De Mono
    BIOMIMÉTICA DE ESTRUCTURAS VEGETALES MEJORANDO LA SEGURIDAD EN EL CICLISMO A PARTIR DE LA OLLA DE MONO Lucía Paulina Buelvas Álvarez Jenny Alexandra Ramírez Osorio Universidad Pontificia Bolivariana Escuela de Arquitectura y Diseño Facultad de Diseño Industrial Medellín 2014 Línea de morfología experimental CONTENIDO Resumen – Abstract Introducción Planteamiento del proyecto. Tema general del proyecto. Características generales del proyecto de investigación. Problema identifica. Elementos del problema. Hipótesis o pregunta que se formula frente al tema como planteamiento de la investigación. Justificación del proyecto. Validez del proyecto en el contexto de la investigación en diseño industrial. Oportunidades que representa para el desarrollo de nuevos productos o estrategias. Objetivos. Objetivo general. Objetivos específicos. Alcance. Límites y metas temáticas para el proyecto. Límites y metas metodológicas para el proyecto. Marco de referencia. Antecedentes. Estado del arte. Conceptualización de los elementos del problema. Materiales y métodos Material botánico Métodos Caracterización anatómica y morfológica del fruto del árbol Olla de mono Identificación del tipo de materiales del fruto de la Olla de mono Definición del nivel de desempeño funcional estructural del fruto Resultados y discusión Conclusiones Agradecimientos Glosario Bibliografía Biomimética de estructuras vegetales Mejorando la seguridad en el ciclismo a partir de la Olla de mono Lucía Paulina Buelvas Álvarez – Jenny Alexandra Ramírez Osorio Universidad Pontificia Bolivariana, Medellín, Colombia “El éxito parece ser en buena parte cuestión de perseverar después de que otros hayan abandonado.” William Feather Resumen Actualmente el ciclismo es uno de los deportes con mayor nivel de aceptación en Colombia. Para su práctica se requiere del uso de sistemas de protección personal que garanticen la seguridad del deportista, siendo el casco uno de los objetos más importantes de este equipamiento.
    [Show full text]
  • Title Evolutionary Relationships Between Pollination and Protective Mutualisms in the Genus Macaranga (Euphorbiaceae)( Dissertat
    Evolutionary relationships between pollination and protective Title mutualisms in the genus Macaranga (Euphorbiaceae)( Dissertation_全文 ) Author(s) Yamasaki, Eri Citation 京都大学 Issue Date 2014-03-24 URL https://doi.org/10.14989/doctor.k18113 学位規則第9条第2項により要約公開; 許諾条件により本文 Right は2019-06-25に公開 Type Thesis or Dissertation Textversion ETD Kyoto University Evolutionary relationships between pollination and protective mutualisms in the genus Macaranga (Euphorbiaceae) Eri Yamasaki 2014 1 2 Contents 摘要.…………………………………………………………………………………..5 Summary.……………………………………………………………………………..9 Chapter 1 General introduction……………………………………………………………….14 Chapter 2 Diversity of pollination systems in Macaranga Section 2.1 Diversity of bracteole morphology in Macaranga ………………………….20 Section 2.2 Wind and insect pollination (ambophily) in Mallotus , a sister group of Macaranga …………..…………..……...…………..………………………...31 Section 2.3 Disk-shaped nectaries on bracteoles of Macaranga sinensis provide a reward for pollinators……………………………….………………………………...45 Chapter 3 Interactions among plants, pollinators and guard ants in ant-plant Macaranga Section 3.1 Density of ant guards on inflorescences and their effects on herbivores and pollinators…………………………………………………….......................56 Section 3.2 Anal secretions of pollinator thrips of Macaranga winkleri repel guard ants…….71 Chapter 4 General discussion.………………….……………………………………………...85 Appendix…………………………………………………………………….………89 Acknowledgement…………………………………………………………….…...101 Literature cited……………………………….…………………………………….103
    [Show full text]
  • Diversity and Distributional Patterns of Aroids (Alismatales: Araceae) Along an Elevational Gradient in Darién, Panama
    Webbia Journal of Plant Taxonomy and Geography ISSN: 0083-7792 (Print) 2169-4060 (Online) Journal homepage: https://www.tandfonline.com/loi/tweb20 Diversity and distributional patterns of aroids (Alismatales: Araceae) along an elevational gradient in Darién, Panama Orlando O. Ortiz, María S. de Stapf & Thomas B. Croat To cite this article: Orlando O. Ortiz, María S. de Stapf & Thomas B. Croat (2019): Diversity and distributional patterns of aroids (Alismatales: Araceae) along an elevational gradient in Darién, Panama, Webbia, DOI: 10.1080/00837792.2019.1646465 To link to this article: https://doi.org/10.1080/00837792.2019.1646465 View supplementary material Published online: 28 Aug 2019. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tweb20 WEBBIA https://doi.org/10.1080/00837792.2019.1646465 ARTICLE Diversity and distributional patterns of aroids (Alismatales: Araceae) along an elevational gradient in Darién, Panama Orlando O. Ortiz a, María S. de Stapfa,b and Thomas B. Croatc aHerbario PMA, Universidad de Panamá, Estafeta Universitaria, Panama City, Panama; bDepartamento de Botánica, Universidad de Panamá, Estafeta Universitaria, Panama City, Panama; cDepartment of Research (Monographs Section), Missouri Botanical Garden, St. Louis, MO, USA ABSTRACT ARTICLE HISTORY The family Araceae (aroids) represents an ecologically important and diverse group of plants in Received 24 May 2019 Panama, represented by 25 genera, 615 species, of which 277 (45%) are considered endemic. Accepted 18 July 2019 The aim of this study is to analyse the diversity and distributional patterns of aroids along an KEYWORDS fi elevation gradient in the species-rich forests of Darién, Panama.
    [Show full text]
  • The Diversity of Conservation: Exploring Narratives, Relationships and Ecosystem Services in Melanesian Market-Based Biodiversity Conservation
    THE DIVERSITY OF CONSERVATION: EXPLORING NARRATIVES, RELATIONSHIPS AND ECOSYSTEM SERVICES IN MELANESIAN MARKET-BASED BIODIVERSITY CONSERVATION A DISSERTATION SUBMITTED TO THE FACULTY OF THE UNIVERSITY OF MINNESOTA BY BRIDGET M. HENNING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DR. DAVID LIPSET, CO-ADVISOR & DR. GEORGE WEIBLEN, CO-ADVISOR OCTOBER 2014 © Bridget M. Henning 2014 Acknowledgements I am endlessly grateful to the Sogeram River communities for their cooperation, assistance, and friendship, especially the Wanang community, which took me in as their own. For their hospitality, I would like to thank Filip Damen and Maria Sepu in Wanang, Paul Mansa in Palimul, Paul and Evelyn Hangre in Munge, Catherine and Benny in Manimagi, John and Miagi in Tiklik, and Christina Sepu in Wagai. I would like to thank Clara and Yolli Agigam for helping me to learn Tok Pisin and easing my transition to village life. I appreciate the time and patience Filip Damen, Jepi Rop, Albert and Samuel Mansa, Samson Mareks, Mak Mulau, and Jori Umbang put towards teaching me about conservation. Thank you to Raymond Kuam for looking after me and to Manuel for always making sure I had enough to eat. I am indebted to the women who helped me learn to live in Wanang and taught me what it was to be good kin, especially Clara and Katie Sebo, Mugunas, Joyce, and Clara Filip, Anna Jori, Anna Sothan, Rosa Samson, Doris Samuel, Polina Nambi, and Samaras Ukiem. Special thanks to Maria Sepu for being a truly amazing woman and wonderful friend. I would like to thank the New Guinea Binatang Research Center especially Vojtech Novotny, Marcus Manumbor, Martin Mogia, Gibson Sosanika, Hans Nowatuo, Elvis Tamtiai, and Joanne Kavagu for logistical and moral support and for patiently explaining Melanesian conservation.
    [Show full text]
  • Phylogeny and Historical Biogeography of Lauraceae
    PHYLOGENY Andre'S. Chanderbali,2'3Henk van der AND HISTORICAL Werff,3 and Susanne S. Renner3 BIOGEOGRAPHY OF LAURACEAE: EVIDENCE FROM THE CHLOROPLAST AND NUCLEAR GENOMES1 ABSTRACT Phylogenetic relationships among 122 species of Lauraceae representing 44 of the 55 currentlyrecognized genera are inferredfrom sequence variation in the chloroplast and nuclear genomes. The trnL-trnF,trnT-trnL, psbA-trnH, and rpll6 regions of cpDNA, and the 5' end of 26S rDNA resolved major lineages, while the ITS/5.8S region of rDNA resolved a large terminal lade. The phylogenetic estimate is used to assess morphology-based views of relationships and, with a temporal dimension added, to reconstructthe biogeographic historyof the family.Results suggest Lauraceae radiated when trans-Tethyeanmigration was relatively easy, and basal lineages are established on either Gondwanan or Laurasian terrains by the Late Cretaceous. Most genera with Gondwanan histories place in Cryptocaryeae, but a small group of South American genera, the Chlorocardium-Mezilauruls lade, represent a separate Gondwanan lineage. Caryodaphnopsis and Neocinnamomum may be the only extant representatives of the ancient Lauraceae flora docu- mented in Mid- to Late Cretaceous Laurasian strata. Remaining genera place in a terminal Perseeae-Laureae lade that radiated in Early Eocene Laurasia. Therein, non-cupulate genera associate as the Persea group, and cupuliferous genera sort to Laureae of most classifications or Cinnamomeae sensu Kostermans. Laureae are Laurasian relicts in Asia. The Persea group
    [Show full text]
  • TAXON:Araucaria Hunsteinii K. Schum. SCORE:0.0 RATING:Low Risk
    TAXON: Araucaria hunsteinii K. SCORE: 0.0 RATING: Low Risk Schum. Taxon: Araucaria hunsteinii K. Schum. Family: Araucariaceae Common Name(s): klinki pine Synonym(s): Araucaria klinkii Lauterb. klinkii pine Araucaria schumanniana Warb. Assessor: Chuck Chimera Status: Assessor Approved End Date: 21 Dec 2018 WRA Score: 0.0 Designation: L Rating: Low Risk Keywords: Tropical Tree, Long-Lived, Light Demanding, Wind-Dispersed, Recalcitrant Seeds Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 y Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 y outside its natural range? 301 Naturalized beyond native range 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) n 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) n 304 Environmental weed n=0, y = 2*multiplier (see Appendix 2) n 305 Congeneric weed 401 Produces spines, thorns or burrs y=1, n=0 y 402 Allelopathic 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals 405 Toxic to animals y=1, n=0 n 406 Host for recognized pests and pathogens 407 Causes allergies or is otherwise toxic to humans y=1, n=0 n 408 Creates a fire hazard in natural ecosystems 409 Is a shade tolerant plant at some stage of its life cycle y=1, n=0 n Creation Date: 21 Dec 2018 (Araucaria hunsteinii K.
    [Show full text]