Impact of Key Factors on Expected Development of Onshore Wind Energy Sector in Poland and Development Scenarios
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Questions About Wind Power and Answers from Us
Questions about wind power and answers from us Click on a question to see the answer What does the Energy Agreement 2016 mean? ................................................................... 3 What proposals did the Energy Commission make? ............................................................. 3 What environmental objectives did the Parliamentary Environmental Assessment Committee propose? ............................................................................................................. 4 What does the Paris agreement mean? ................................................................................ 5 What does the proposal for the EU Renewable Energy Directive 2020 – 2030 involve? ..... 6 What is the EU’s renewable energy target? .......................................................................... 7 What is EU 20-20-20? ............................................................................................................ 7 Does Sweden have an action plan for renewable energy? ................................................... 8 What are the planning and development goals? .................................................................. 8 What do TWh, GWh, MWh and kWh stand for? ................................................................... 9 What is the electricity certificate system? ............................................................................ 9 What does the electricity certificate cost – and who pays? ................................................ 10 Why does Sweden have -
MSP-LSI – Maritime Spatial Planning and Land-Sea Interactions
MSP-LSI – Maritime Spatial Planning and Land-Sea Interactions Targeted Analysis Version 20/02/2020 Final Case Study Report: Pomeranian Bight This targeted analysis activity is conducted within the framework of the ESPON 2020 Cooperation Programme, partly financed by the European Regional Development Fund. The ESPON EGTC is the Single Beneficiary of the ESPON 2020 Cooperation Programme. The Single Operation within the programme is implemented by the ESPON EGTC and co-financed by the European Regional Development Fund, the EU Member States and the Partner States, Iceland, Liechtenstein, Norway and Switzerland. This delivery does not necessarily reflect the opinion of the members of the ESPON 2020 Monitoring Committee. Authors Sue Kidd, Stephen Jay, Leonnie Robinson, Dave Shaw, Hannah Jones – University of Liverpool (UK) Marta Pascual, Diletta Zonta, Ecorys (Belgium) Katrina Abhold, Ina Kruger , Katriona McGlade, Ecologic Institute (Germany) Dania Abdhul Malak, Antonio Sanchez, University of Malaga (Spain) Advisory Group Project Steering Group: Holger Janssen, Ministry of Energy, Infrastructure and Digitalization Mecklenburg-Vorpommern, Germany (Lead Stakeholder); Lenca Humerca-Solar,Ministry of the Environment and Spatial Planning, Directorate Spatial Planning, Construction and Housing, Slovenia, Katarzyna Krzwda & Agata Zablocka, Ministry of Maritime Economy and Inland Navigation, Department for Maritime Economy, Poland, Sandra Momcilovic, Ministry of Construction and Physical Planning, Croatia, Katharina Ermenger and Gregor Forschbach, Federal Ministry of the Interior, Building and Community, Germany, Lodewijk Abspoel, Ministry for Infrastructure and Water Management, Netherlands. ESPON EGTC Michaela Gensheimer, Senior Project Expert, Johannes Kiersch, Financial Expert Version 20/02//2020 Information on ESPON and its projects can be found on www.espon.eu. The web site provides the possibility to download and examine the most recent documents produced by finalised and ongoing ESPON projects. -
Wind Power Payback Assessment Scenarios
ISRN LUTMDN/TMHP—07/5160—SE ISSN 0282-1990 Wind Power Payback Assessment Scenarios Kristin Backström & Elin Ersson Thesis for the Degree of Master of Science Division of Efficient Energy Engineering Department of Energy Sciences Faculty of Engineering Lund University P.O. Box 118 SE-221 00 Lund Sweden ISRN LUTMDN/TMHP—07/5160—SE ISSN 0282-1990 Wind Power Payback Assessment Scenarios Thesis for the Degree of Master of Science Division of Efficient Energy Systems Department of Energy Sciences Faculty of Engineering, LTH by Kristin Backström and Elin Ersson Environmental Engineering Supervisor Examiner Professor Lennart Thörnqvist Professor Svend Frederiksen © Kristin Backström and Elin Ersson 2008 ISRN LUTMDN/TMHP—07/5160—SE ISSN 0282-1990 Printed in Sweden Lund 2008 ABSTRACT This thesis investigates the energy flow for a Vestas V90, 3 MW wind turbine, and provides a proper consideration of all the important input energy values in all their complexity. An analysis of the Energy Payback Ratio (EPR) has been conducted, with special attention being paid to what happens when a wind turbine is placed in different environments (i.e. the open field vs. the forest), and what happens to these scenarios when recycling is applied to the energy balance. The results of the research demonstrate that the EPR values are highly dependent on the prerequisites chosen. It was found that the wind turbine placed in the open field had more favourable EPR values than the wind turbine in the forest, a result that is dependent upon the road being shorter and this scenario being placed closer to the existing electrical infrastructure. -
CE Delft Mid-Term Evaluation of the Renewable Energy Directive
Mid- term evaluation of the Renewable Energy Directive A study in the context of the REFIT programme Prepared for: European Commission DG ENER Report Delft, April 2015 Main a uthors: Bettina Kampman (CE Delft) Stephan Sina, Christine Lucha (Ecologic Institute) Stephanie Cesbron (Ricardo-AEA) Zsuzsanna Pato (REKK) Ole Flörcken (E-Bridge) Co-authors : Anouk van Grinsven, Sebastiaan Hers, Marit van Lieshout (CE Delft) Andreas Prahl, Lena Donat (Ecologic Institute) Anna-Liisa Kaar, Oliver Edberg, Lisa Groves (Ricardo-AEA) Lajos Kerekes (REKK) Marzena Chodor, Diana Parusheva (associates) Publication Data Bibliographical data: CE Delft, Ecologic Institute, Ricardo-AEA, REKK, E-Bridge Mid-term evaluation of the Renewable Energy Directive A study in the context of the REFIT programme Delft, CE Delft, April 2015 Renewable energy / Policy / EU directive / Regulation / Measures / Evaluation Publication code: 15.3D59.28 CE publications are available from www.cedelft.eu Commissioned by: European Commission. Further information on this study can be obtained from the contact person, Bettina Kampman. © copyright, CE Delft, Delft CE Delft Committed to the Environment Through its independent research and consultancy work CE Delft is helping build a sustainable world. In the fields of energy, transport and resources our expertise is leading-edge. With our wealth of know-how on technologies, policies and economic issues we support government agencies, NGOs and industries in pursuit of structural change. For 35 years now, the skills and enthusiasm of CE Delft’s -
100% Renewable Electricity: a Roadmap to 2050 for Europe
100% renewable electricity A roadmap to 2050 for Europe and North Africa Available online at: www.pwc.com/sustainability Acknowledgements This report was written by a team comprising individuals from PricewaterhouseCoopers LLP (PwC), the Potsdam Institute for Climate Impact Research (PIK), the International Institute for Applied Systems Analysis (IIASA) and the European Climate Forum (ECF). During the development of the report, the authors were provided with information and comments from a wide range of individuals working in the renewable energy industry and other experts. These individuals are too numerous to mention, however the project team would like to thank all of them for their support and input throughout the writing of this report. Contents 1. Foreword 1 2. Executive summary 5 3. 2010 to 2050: Today’s situation, tomorrow’s vision 13 3.1. Electricity demand 15 3.2. Power grids 15 3.3. Electricity supply 18 3.4. Policy 26 3.5. Market 30 3.6. Costs 32 4. Getting there: The 2050 roadmap 39 4.1. The Europe - North Africa power market model 39 4.2. Roadmap planning horizons 41 4.3. Introducing the roadmap 43 4.4. Roadmap enabling area 1: Policy 46 4.5. Roadmap enabling area 2: Market structure 51 4.6. Roadmap enabling area 3: Investment and finance 54 4.7. Roadmap enabling area 4: Infrastructure 58 5. Opportunities and consequences 65 5.1. Security of supply 65 5.2. Costs 67 5.3. Environmental concerns 69 5.4. Sustainable development 70 5.5. Addressing the global climate problem 71 6. Conclusions and next steps 75 PricewaterhouseCoopers LLP Appendices Appendix 1: Acronyms and Glossary 79 Appendix 2: The 2050 roadmap in detail 83 Appendix 3: Cost calculations and assumptions 114 Appendix 4: Case studies 117 Appendix 5: Taking the roadmap forward – additional study areas 131 Appendix 6: References 133 Appendix 7: Contact information 138 PricewaterhouseCoopers LLPP Chapter one: Foreword 1. -
GWEC – Global Wind Report | Annual Market Update 2014
GLOBAL WIND REPORT ANNUAL MARKET UPDATE 2014 Navigating the global wind power market The Global Wind Energy Council is the international trade association for the wind power industry – communicating the benefits of wind power to national governments, policy makers and international institutions. GWEC provides authoritative research and analysis on the wind power industry in more than 80 countries around the world. Keep up to date with the most recent market insights: Global Wind Statistics 2014 February 2015 Global Wind Report 2014 March 2015 Global Wind Energy Outlook 2014 October 2014 Offshore Wind Policy and Market Assessment – A Global Outlook February 2015 Our mission is to ensure that wind power establishes itself as the answer to today‘s energy challenges, providing substantial venvironmental and economic benefits. GWEC represents the industry with or at the UNFCCC, the IEA, international financial institutions, the IPCC and IRENA. GWEC – opening up the frontiers follow us on TABLE OF CONTENTS Foreword. 4 Making the Commitment to Renewable Energy. 5 Global Status of Wind Power in 2014 . 6 Market Forecast for 2015 – 2019. 16 Green bonds offer exciting opportunities for the wind sector . .22 Emerging Africa . .26 Australia . .30 Brazil . 32 Canada. .34 Chile . .36 PR China . .38 Denmark . .42 The European Union . .44 France . .46 Germany. .48 Global offshore . 52 India . .58 Italy . .60 Japan . .62 Mexico . .64 Poland . .66 South Africa . .68 Sweden . 70 Turkey . 72 United Kingdom. 74 United States . 76 About GWEC . 78 GWEC – Global Wind 2014 Report 3 FOREWORD 014 was a great year for the wind industry, setting a The two big stories in 2014 and going forward continue 2new record of more than 51 GW installed in a single to be the precipitous drop in the price of oil, and growing year, bringing the global total close to 370 GW. -
Global Wind Report Annual Market Update 2012 T Able of Contents
GLOBAL WIND REPORT ANNUAL MARKET UPDATE 2012 T able of contents Local Content Requirements: Cost competitiveness vs. ‘green growth’? . 4 The Global Status of Wind Power in 2012 . 8 Market Forecast for 2013-2017 . 18 Australia . .24 Brazil . .26 Canada. .28 PR China . .30 Denmark . .34 European Union . .36 Germany. .38 Global offshore . .40 India . .44 Japan . .46 Mexico . .48 Pakistan . 50 Romania . 52 South Africa . 54 South Korea . 56 Sweden . .58 Turkey . 60 Ukraine . .62 United Kingdom. .64 United States . 66 About GWEC . 70 GWEC – Global Wind 2012 Report FOREWORD 2012 was full of surprises for the global wind industry. Most As the market broadens, however, we face new challenges, surprising, of course, was the astonishing 8.4 GW installed in or rather old challenges, but in new markets. Our special the United States during the fourth quarter, as well as the fact focus chapter looks at the impact of increasing local content that the US eked out China to regain the top spot among global requirements and trade restrictions in some of the most markets for the first time since 2009. This, in combination with promising new markets, and the consequences of that a very strong year in Europe, meant that the annual market trend for an industry which is still grappling with significant grew by about 10% to just under 45 GW, and the cumulative overcapacity and the downward pressure on turbine prices market growth of almost 19% means we ended 2012 with that result. 282.5 GW of wind power globally. For the first time in three years, the majority of installations were inside the OECD. -
News Release from Vestas Wind Systems A/S Home Furnishing Giant IKEA Invests in 90 MW of Vestas Wind Power
News release from Vestas Wind Systems A/S Aarhus, 27 June 2012 Page 1 of 2 Home furnishing giant IKEA invests in 90 MW of Vestas wind power Project of 30 V90-3.0 MW turbines is IKEA’s biggest investment in wind to date. The deal testifies that carbon conscious companies such as IKEA increasingly achieve their financial objectives while at the same time reducing their carbon footprint and securing a sustainable energy supply. Vestas has received an order for 30 units of the V90-3.0 MW wind turbine for the Glötesvålen project in the municipality of Härjedalen, Sweden. The order is placed by Swedish developer and long standing Vestas customer, O2. Delivery and installation of the turbines is scheduled to be completed in January 2015. Whereas O2 will be responsible for the development, construction and operation of the wind farm, it will be owned by Swedish home furnishing giant IKEA. The Glötesvålen project is IKEA’s largest, single investment in wind to date, bringing the company’s fleet of Vestas turbines to more than 115 MWs across Sweden, France, UK, and Denmark. It is IKEA’s goal to get all of its energy from renewable sources and the 30 Vestas turbines is a major step on that journey: When in operation in 2015, IKEA expects renewable energy to amount to 70-80 per cent of the Group’s global energy usage. In Sweden alone, the investment will make IKEA self-sufficient with electricity. Carbon conscious companies-segment is long-term focus area for Vestas The Glötesvålen project is yet another example of how carbon conscious companies are stepping up their active involvement in wind energy. -
2018-12-21 Eolus Annual Report 2017/2018
ANNUAL REPORT 2017/2018 EOLUS VIND AB ANNUAL REPORT 2017/2018 EOLUS VIND AB ANNUAL REPORT Eolus Vind is a leading Nordic wind power developer. Eolus creates value at every level of project develop- ment, establishment and operation of renewable energy facilities. We offer attractive and competitive investment opportunities in the Nordic region, Baltic countries and the US to both local and international investors. Since the company’s inception in 1990, Eolus has been involved in the construction of more than 540 wind turbines with a capacity of nearly 930 MW. The Eolus Group currently has customer contracts for asset management services with an installed capacity of more than 400 MW. Eolus Vind AB has approximately 8,200 shareholders. Eolus’s Class B share is traded on Nasdaq Stockholm, Small Cap. Eolus Vind AB Box 95, SE-281 21 Hässleholm, Sweden Street address: Tredje Avenyen 3 Tel: +46 (0)10-199 88 00 E-mail: [email protected] www.eolusvind.com THE PAST YEAR SIGNIFICANT EVENTS DURING THE FISCAL YEAR 232 MW OF WIND POWER TO AQUILA CAPITAL In December 2017, Eolus signed an agreement with Aquila Capital regarding the divestment of Kråktorpet and Nylandsbergen wind farms, comprising 61 wind turbines and a total installed capacity of 232 MW. Kråktorpet will comprise 43 Vestas V136-3.8 MW wind turbines, and Nylandsbergen will comprise 18 Vestas V136-3.8 MW wind turbines. Both wind farms are scheduled KGAL RE-SELECTED EOLUS for handover to Aquila Capital in the second half of 2019. Eolus In December 2017, Eolus signed an agreement with the German will provide asset management services for both of the farms. -
Developing Offshore Wind Power in Poland
Developing offshore wind power in Poland Outlook and assessment of local economic impact 2016 Developing offshore wind power in Poland Contents Acknowledgments 2 Introduction – Transformation of the energy system in Europe 3 The European offshore wind-farm market – Current situation and outlook to 2020 4 Characteristics of offshore wind power 8 The value chain for offshore wind farms 10 Financing offshore wind power 18 Offshore wind farms in Poland 19 The impact of offshore wind power on the Polish economy – Introduction 19 Required investment for 6 GW of wind-farm capacity 20 GDP and employment in Poland 21 The real cost of technology 22 Tax impact 23 Local benefits 23 Value chain benefits 24 Innovation 25 Exploiting opportunities – Development of the supply chain 25 Summary 27 About the authors 28 Endnotes 29 1 Developing offshore wind power in Poland Acknowledgments In this report we present the possible development of offshore wind power in Poland and assess the impact it may have on the economy. Many companies operating in Poland are already active players in the industry, or have the potential to become such. The development of offshore wind power therefore has significant potential in terms of localizing the supply chain within Poland. In this report we describe the current situation and outlook for offshore wind power in Europe and investigate how the development of this sector could impact the Polish economy. We have discussed our assumptions and conclusions in detail with experts, and the methodology that we used to calculate the potential economic impact – an input-output model – is that generally used around the world in studies of this type. -
Wind Power a Victim of Policy and Politics
NNoottee ddee ll’’IIffrrii Wind Power A Victim of Policy and Politics ______________________________________________________________________ Maïté Jauréguy-Naudin October 2010 . Gouvernance européenne et géopolitique de l’énergie The Institut français des relations internationales (Ifri) is a research center and a forum for debate on major international political and economic issues. Headed by Thierry de Montbrial since its founding in 1979, Ifri is a non- governmental and a non-profit organization. As an independent think tank, Ifri sets its own research agenda, publishing its findings regularly for a global audience. Using an interdisciplinary approach, Ifri brings together political and economic decision-makers, researchers and internationally renowned experts to animate its debate and research activities. With offices in Paris and Brussels, Ifri stands out as one of the rare French think tanks to have positioned itself at the very heart of European debate. The opinions expressed in this text are the responsibility of the author alone. ISBN: 978-2-86592-780-7 © All rights reserved, Ifri, 2010 IFRI IFRI-BRUXELLES 27, RUE DE LA PROCESSION RUE MARIE-THERESE, 21 75740 PARIS CEDEX 15 – FRANCE 1000 – BRUXELLES – BELGIQUE Tel: +33 (0)1 40 61 60 00 Tel: +32 (0)2 238 51 10 Fax: +33 (0)1 40 61 60 60 Fax: +32 (0)2 238 51 15 Email: [email protected] Email: [email protected] WEBSITE: Ifri.org Executive Summary In December 2008, as part of the fight against climate change, the European Union adopted the Energy and Climate package that endorsed three objectives toward 2020: a 20% increase in energy efficiency, a 20% reduction in GHG emissions (compared to 1990), and a 20% share of renewables in final energy consumption. -
The Benefits of Flexibility: the Value of Wind Energy with Hydropower
Applied Energy 181 (2016) 210–223 Contents lists available at ScienceDirect Applied Energy journal homepage: www.elsevier.com/locate/apenergy The benefits of flexibility: The value of wind energy with hydropower q ⇑ Lion Hirth Neon Neue Energieökonomik GmbH (Neon), Germany Mercator Research Institute on Global Commons and Climate Change (MCC), Germany Potsdam Institute for Climate Impact Research (PIK), Germany highlights We assess the market value of wind power in power systems with hydropower. When moving from 0% to 30% wind penetration, hydropower mitigates the value drop by a third. 1 MWh of electricity from wind is worth 18% more in Sweden than in Germany. Sensitivity analysis indicates high robustness. article info abstract Article history: Several studies have shown that the revenue of wind power generators on spot markets (‘‘market value”) Received 3 March 2016 diminishes with increasing deployment. This ‘‘value drop” is mostly observed in power markets that are Received in revised form 10 June 2016 dominated by thermal power plants, such as in Germany. This paper assesses the wind market value in Accepted 11 July 2016 power systems where hydroelectric stations with large reservoirs prevail, such as in Sweden. Due to their dispatch flexibility, such hydropower compensates for wind power output variability and thereby miti- gates the wind power value drop. The market value of electricity from wind declines with penetration in Keywords: both types of power systems, but it tends to decline at a slower rate if hydropower is present. This paper Wind power presents empirical evidence on the relevance of this effect derived from market data and numerical Hydropower System integration model results.