PDF Download
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CURRENT Essentials of Nephrology & Hypertension
a LANGE medical book CURRENT ESSENTIALS: NEPHROLOGY & HYPERTENSION Edited by Edgar V. Lerma, MD Clinical Associate Professor of Medicine Section of Nephrology Department of Internal Medicine University of Illinois at Chicago College of Medicine Associates in Nephrology, SC Chicago, Illinois Jeffrey S. Berns, MD Professor of Medicine and Pediatrics Associate Dean for Graduate Medical Education The Perelman School of Medicine at the University of Pennsylvania Philadelphia, Pennsylvania Allen R. Nissenson, MD Emeritus Professor of Medicine David Geffen School of Medicine at UCLA Los Angeles, California Chief Medical Offi cer DaVita Inc. El Segundo, California New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto Lerma_FM_p00i-xvi.indd i 4/27/12 10:33 AM Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher. ISBN: 978-0-07-180858-3 MHID: 0-07-180858-2 The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-144903-8, MHID: 0-07-144903-5. All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefi t of the trademark owner, with no intention of infringement of the trademark. -
1 Fluid and Elect. Disorders of Serum Sodium Concentration
DISORDERS OF SERUM SODIUM CONCENTRATION Bruce M. Tune, M.D. Stanford, California Regulation of Sodium and Water Excretion Sodium: glomerular filtration, aldosterone, atrial natriuretic factors, in response to the following stimuli. 1. Reabsorption: hypovolemia, decreased cardiac output, decreased renal blood flow. 2. Excretion: hypervolemia (Also caused by adrenal insufficiency, renal tubular disease, and diuretic drugs.) Water: antidiuretic honnone (serum osmolality, effective vascular volume), renal solute excretion. 1. Antidiuresis: hyperosmolality, hypovolemia, decreased cardiac output. 2. Diuresis: hypoosmolality, hypervolemia ~ natriuresis. Physiologic changes in renal salt and water excretion are more likely to favor conservation of normal vascular volume than nonnal osmolality, and may therefore lead to abnormalities of serum sodium concentration. Most commonly, 1. Hypovolemia -7 salt and water retention. 2. Hypervolemia -7 salt and water excretion. • HYFERNATREMIA Clinical Senini:: Sodium excess: salt-poisoning, hypertonic saline enemas Primary water deficit: chronic dehydration (as in diabetes insipidus) Mechanism: Dehydration ~ renal sodium retention, even during hypernatremia Rapid correction of hypernatremia can cause brain swelling - Management: Slow correction -- without rapid administration of free water (except in nephrogenic or untreated central diabetes insipidus) HYPONA1REMIAS Isosmolar A. Factitious: hyperlipidemia (lriglyceride-plus-plasma water volume). B. Other solutes: hyperglycemia, radiocontrast agents,. mannitol. -
Study Guide Medical Terminology by Thea Liza Batan About the Author
Study Guide Medical Terminology By Thea Liza Batan About the Author Thea Liza Batan earned a Master of Science in Nursing Administration in 2007 from Xavier University in Cincinnati, Ohio. She has worked as a staff nurse, nurse instructor, and level department head. She currently works as a simulation coordinator and a free- lance writer specializing in nursing and healthcare. All terms mentioned in this text that are known to be trademarks or service marks have been appropriately capitalized. Use of a term in this text shouldn’t be regarded as affecting the validity of any trademark or service mark. Copyright © 2017 by Penn Foster, Inc. All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the copyright owner. Requests for permission to make copies of any part of the work should be mailed to Copyright Permissions, Penn Foster, 925 Oak Street, Scranton, Pennsylvania 18515. Printed in the United States of America CONTENTS INSTRUCTIONS 1 READING ASSIGNMENTS 3 LESSON 1: THE FUNDAMENTALS OF MEDICAL TERMINOLOGY 5 LESSON 2: DIAGNOSIS, INTERVENTION, AND HUMAN BODY TERMS 28 LESSON 3: MUSCULOSKELETAL, CIRCULATORY, AND RESPIRATORY SYSTEM TERMS 44 LESSON 4: DIGESTIVE, URINARY, AND REPRODUCTIVE SYSTEM TERMS 69 LESSON 5: INTEGUMENTARY, NERVOUS, AND ENDOCRINE S YSTEM TERMS 96 SELF-CHECK ANSWERS 134 © PENN FOSTER, INC. 2017 MEDICAL TERMINOLOGY PAGE III Contents INSTRUCTIONS INTRODUCTION Welcome to your course on medical terminology. You’re taking this course because you’re most likely interested in pursuing a health and science career, which entails proficiencyincommunicatingwithhealthcareprofessionalssuchasphysicians,nurses, or dentists. -
Cerebral Salt Wasting Syndrome and Systemic Lupus Erythematosus: Case Report
Elmer ress Case Report J Med Cases. 2016;7(9):399-402 Cerebral Salt Wasting Syndrome and Systemic Lupus Erythematosus: Case Report Filipe Martinsa, c, Carolina Ouriquea, Jose Faria da Costaa, Joao Nuakb, Vitor Braza, Edite Pereiraa, Antonio Sarmentob, Jorge Almeidaa Abstract disorders, that results in hyponatremia and a decrease in ex- tracellular fluid volume. It is characterized by a hypotonic hy- Cerebral salt wasting (CSW) is a rare cause of hypoosmolar hypona- ponatremia with inappropriately elevated urine sodium con- tremia usually associated with acute intracranial disease character- centration in the setting of a normal kidney function [1-3]. ized by extracellular volume depletion due to inappropriate sodium The onset of this disorder is typically seen within the first wasting in the urine. We report a case of a 46-year-old male with 10 days following a neurological insult and usually lasts no recently diagnosed systemic lupus erythematosus (SLE) initially pre- more than 1 week [1, 2]. Pathophysiology is not completely senting with neurological involvement and an antiphospholipid syn- understood but the major mechanism might be the inappropri- drome (APS) who was admitted because of chronic asymptomatic ate and excessive release of natriuretic peptides which would hyponatremia previously assumed as secondary to syndrome of inap- result in natriuresis and volume depletion. A secondary neu- propriate antidiuretic hormone secretion (SIADH). Initial evaluation rohormonal response would result in an increase in the renin- revealed a hypoosmolar hyponatremia with high urine osmolality angiotensin system and consequently in antidiuretic hormone and elevated urinary sodium concentration. Clinically, the patient’s (ADH) production. Since the volume stimulus is more potent extracellular volume status was difficult to define accurately. -
Electrolyte and Acid-Base
Special Feature American Society of Nephrology Quiz and Questionnaire 2013: Electrolyte and Acid-Base Biff F. Palmer,* Mark A. Perazella,† and Michael J. Choi‡ Abstract The Nephrology Quiz and Questionnaire (NQ&Q) remains an extremely popular session for attendees of the annual meeting of the American Society of Nephrology. As in past years, the conference hall was overflowing with interested audience members. Topics covered by expert discussants included electrolyte and acid-base disorders, *Department of Internal Medicine, glomerular disease, ESRD/dialysis, and transplantation. Complex cases representing each of these categories University of Texas along with single-best-answer questions were prepared by a panel of experts. Prior to the meeting, program Southwestern Medical directors of United States nephrology training programs answered questions through an Internet-based ques- Center, Dallas, Texas; † tionnaire. A new addition to the NQ&Q was participation in the questionnaire by nephrology fellows. To review Department of Internal Medicine, the process, members of the audience test their knowledge and judgment on a series of case-oriented questions Yale University School prepared and discussed by experts. Their answers are compared in real time using audience response devices with of Medicine, New the answers of nephrology fellows and training program directors. The correct and incorrect answers are then Haven, Connecticut; ‡ briefly discussed after the audience responses, and the results of the questionnaire are displayed. This article and Division of recapitulates the session and reproduces its educational value for the readers of CJASN. Enjoy the clinical cases Nephrology, Department of and expert discussions. Medicine, Johns Clin J Am Soc Nephrol 9: 1132–1137, 2014. -
Hyperkalemia Masked by Pseudo-Stemi Infarct Pattern and Cardiac Arrest Shareez Peerbhai1 , Luke Masha2, Adrian Dasilva-Deabreu1 and Abhijeet Dhoble1,2*
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Peerbhai et al. International Journal of Emergency Medicine (2017) 10:3 International Journal of DOI 10.1186/s12245-017-0132-0 Emergency Medicine CASEREPORT Open Access Hyperkalemia masked by pseudo-stemi infarct pattern and cardiac arrest Shareez Peerbhai1 , Luke Masha2, Adrian DaSilva-DeAbreu1 and Abhijeet Dhoble1,2* Abstract Background: Hyperkalemia is a common electrolyte abnormality and has well-recognized early electrocardiographic manifestations including PR prolongation and symmetric T wave peaking. With severe increase in serum potassium, dysrhythmias and atrioventricular and bundle branch blocks can be seen on electrocardiogram. Although cardiac arrest is a worrisome consequence of untreated hyperkalemia, rarely does hyperkalemia electrocardiographically manifest as acute ischemia. Case presentation: We present a case of acute renal failure complicated by malignant hyperkalemia and eventual ventricular fibrillation cardiac arrest. Recognition of this disorder was delayed secondary to an initial ECG pattern suggesting an acute ST segment elevation myocardial infarction (STEMI). Emergent coronary angiography performed showed no evidence of coronary artery disease. Conclusions: Pseudo-STEMI patterns are rarely seen in association with acute hyperkalemia and are most commonly described with patient without acute cardiac symptomatology. This is the first such case presenting concurrently with cardiac arrest. A brief review of this rare pseudo-infarct pattern is also given. Keywords: Cardiac arrest, Hyperkalemia, Myocardial infarction, STEMI, ECG Background Case presentation Hyperkalemia that manifests with electrocardiographic A 27-year-old Caucasian male with a past medical his- findings of an ST segment elevation myocardial infarc- tory of hypertension presented to the emergency room tion (STEMI) is very rare. -
Parenteral Nutrition Primer: Balance Acid-Base, Fluid and Electrolytes
Parenteral Nutrition Primer: Balancing Acid-Base, Fluids and Electrolytes Phil Ayers, PharmD, BCNSP, FASHP Todd W. Canada, PharmD, BCNSP, FASHP, FTSHP Michael Kraft, PharmD, BCNSP Gordon S. Sacks, Pharm.D., BCNSP, FCCP Disclosure . The program chair and presenters for this continuing education activity have reported no relevant financial relationships, except: . Phil Ayers - ASPEN: Board Member/Advisory Panel; B Braun: Consultant; Baxter: Consultant; Fresenius Kabi: Consultant; Janssen: Consultant; Mallinckrodt: Consultant . Todd Canada - Fresenius Kabi: Board Member/Advisory Panel, Consultant, Speaker's Bureau • Michael Kraft - Rockwell Medical: Consultant; Fresenius Kabi: Advisory Board; B. Braun: Advisory Board; Takeda Pharmaceuticals: Speaker’s Bureau (spouse) . Gordon Sacks - Grant Support: Fresenius Kabi Sodium Disorders and Fluid Balance Gordon S. Sacks, Pharm.D., BCNSP Professor and Department Head Department of Pharmacy Practice Harrison School of Pharmacy Auburn University Learning Objectives Upon completion of this session, the learner will be able to: 1. Differentiate between hypovolemic, euvolemic, and hypervolemic hyponatremia 2. Recommend appropriate changes in nutrition support formulations when hyponatremia occurs 3. Identify drug-induced causes of hypo- and hypernatremia No sodium for you! Presentation Outline . Overview of sodium and water . Dehydration vs. Volume Depletion . Water requirements & Equations . Hyponatremia • Hypotonic o Hypovolemic o Euvolemic o Hypervolemic . Hypernatremia • Hypovolemic • Euvolemic • Hypervolemic Sodium and Fluid Balance . Helpful hint: total body sodium determines volume status, not sodium status . Examples of this concept • Hypervolemic – too much volume • Hypovolemic – too little volume • Euvolemic – normal volume Water Distribution . Total body water content varies from 50-70% of body weight • Dependent on lean body mass: fat ratio o Fat water content is ~10% compared to ~75% for muscle mass . -
ACP NATIONAL ABSTRACTS COMPETITIONS MEDICAL STUDENTS 2019 Table of Contents
ACP NATIONAL ABSTRACTS COMPETITIONS MEDICAL STUDENTS 2019 Table of Contents MEDICAL STUDENT RESEARCH PODIUM PRESENTATIONS ...................................................................... 8 COLOMBIA RESEARCH PODIUM PRESENTATION - Andrey Sanko ........................................................ 9 Clinical Factors Associated with High Glycemic Variability Defined by the Variation Coefficient in Patients with Type 2 Diabetes .......................................................................................................... 9 MARYLAND RESEARCH PODIUM PRESENTATION - Asmi Panigrahi ................................................... 11 Influence of Individual-Level Neighborhood Factors on Health Promoting and Risk Behaviors in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL) ........................................... 11 NEW YORK RESEARCH PODIUM PRESENTATION - Kathryn M Linder ................................................ 13 Implementation of a Medical Student-Led Emergency Absentee Ballot Voting Initiative at an Urban Tertiary Care University Hospital ......................................................................................... 13 OREGON RESEARCH PODIUM PRESENTATION - Sherry Liang ............................................................ 15 A Novel Student-Led Improvement Science Curriculum for Pre-Clinical Medical Students .......... 15 TENNESSEE RESEARCH PODIUM PRESENTATION - Zara Latif ............................................................. 17 Impaired Brain Cells Response in Obesity -
Severe Hyponatremia in a COVID-19 Patient
http://crim.sciedupress.com Case Reports in Internal Medicine 2020, Vol. 7, No. 3 CASE REPORTS Severe hyponatremia in a COVID-19 patient Waqar Haider Gaba∗1, Sara Al Hebsi2, Rania Abu Rahma3 1Consultant Physician Internal Medicine, Sheikh Khalifa Medical, Abu Dhabi, United Arab Emirates 2Medical Resident Internal Medicine, Sheikh Khalifa Medical, Abu Dhabi, United Arab Emirates 3Nephrology Specialist, Sheikh Khalifa Medical, Abu Dhabi, United Arab Emirates Received: August 13, 2020 Accepted: August 31, 2020 Online Published: September 23, 2020 DOI: 10.5430/crim.v7n3p15 URL: https://doi.org/10.5430/crim.v7n3p15 ABSTRACT Hyponatremia is one of the most common electrolyte abnormalities found in hospitalized patients. The diagnosis of the underlying cause of hyponatremia could be challenging. However, common causes include the syndrome of inappropriate anti-diuretic hormone (SIADH), diuretic use, polydipsia, adrenal insufficiency, hypovolemia, heart failure, and liver cirrhosis. The ongoing pandemic of coronavirus disease 2019 (COVID-19) can present with severe hyponatremia. The association of hyponatremia and COVID-19 infection has been described, though pathophysiology is not clear. Here we describe a case of a 61-year-old male who presented with severe hyponatremia (Na+ 100 mmol/L) thought to be secondary to SIADH associated with COVID-19 pneumonia. Key Words: Hyponatremia, COVID-19, Syndrome of Inappropriate Antidiuretic Hormone (SIADH) 1.I NTRODUCTION sense RNA virus. It causes mild respiratory symptoms simi- lar to a common cold. Around 50% of COVID-19 positive Hyponatremia is defined as a serum sodium concentration patients were found to have hyponatremia on admission.[2] < 135 mEq/L. Clinical presentation could vary from mild to severe or life-threatening. -
Electrolyte Disorders and Arrhythmogenesis
Cardiology Journal 2011, Vol. 18, No. 3, pp. 233–245 Copyright © 2011 Via Medica REVIEW ARTICLE ISSN 1897–5593 Electrolyte disorders and arrhythmogenesis Nabil El-Sherif1, Gioia Turitto2 1State University of NY, Downstate Medical Center and NY Harbor VA Healthcare System, Brooklyn, NY, USA 2Methodist University Hospital, Brooklyn, NY, USA Abstract Electrolyte disorders can alter cardiac ionic currents kinetics and depending on the changes can promote proarrhythmic or antiarrhythmic effects. The present report reviews the mecha- nisms, electrophysiolgical (EP), electrocardiographic (ECG), and clinical consequences of elec- trolyte disorders. Potassium (K+) is the most abundent intracellular cation and hypokalemia is the most commont electrolyte abnormality encountered in clinical practice. The most signifcant ECG manifestation of hypokalemia is a prominent U wave. Several cardiac and + non cardiac drugs are known to suppress the HERG K channel and hence the IK, and especially in the presence of hypokalemia, can result in prolonged action potential duration and QT interval, QTU alternans, early afterdepolarizations, and torsade de pointes ventricu- lar tachyarrythmia (TdP VT). Hyperkalemia affects up to 8% of hospitalized patients mainly in the setting of compromised renal function. The ECG manifestation of hyperkalemia de- pends on serum K+ level. At 5.5–7.0 mmol/L K+, tall peaked, narrow-based T waves are seen. At > 10.0 mmol/L K+, sinus arrest, marked intraventricular conduction delay, ventricular techycardia, and ventricular fibrillation can develop. Isolated abnormalities of extracellular calcium (Ca++) produce clinically significant EP effects only when they are extreme in either direction. Hypocalcemia, frequently seen in the setting of chronic renal insufficiency, results in prolonged ST segment and QT interval while hypercalcemia, usually seen with hyperparathy- roidism, results in shortening of both intervals. -
Hypercalcemia and Hyponatremia
Hypercalcemia and Hyponatremia Santosh Reddy MD FACP Assistant Professor Scott & White/Texas A&M Etiology of Hypercalcemia Hypercalcemia results when the entry of calcium into the circulation exceeds the excretion of calcium into the urine or deposition in bone. Sources of calcium are most commonly the bone or the gastrointestinal tract Etiology Hypercalcemia is a relatively common clinical problem. Elevation in the physiologically important ionized (or free) calcium concentration. However, 40 to 45 percent of the calcium in serum is bound to protein, principally albumin; , increased protein binding causes elevation in the serum total calcium. Increased bone resorption Primary and secondary hyperparathyroidism Malignancy Hyperthyroidism Other - Paget's disease, estrogens or antiestrogens in metastatic breast cancer, hypervitaminosis A, retinoic acid Increased intestinal calcium absorption Increased calcium intake Renal failure (often with vitamin D supplementation) Milk-alkali syndrome Hypervitaminosis D Enhanced intake of vitamin D or metabolites Chronic granulomatous diseases (eg, sarcoidosis) Malignant lymphoma Acromegaly Pseudocalcemia Hyperalbuminemia 1) severe dehydration 2) multiple myeloma who have a calcium- binding paraprotein. This phenomenon is called pseudohypercalcemia (or factitious hypercalcemia) Other causes Familial hypocalciuric hypercalcemia Chronic lithium intake Thiazide diuretics Pheochromocytoma Adrenal insufficiency Rhabdomyolysis and acute renal failure Theophylline toxicity Immobilization -
Medical Term Lay Term(S)
MEDICAL TERM LAY TERM(S) ABDOMINAL Pertaining to body cavity below diaphragm which contains stomach, intestines, liver, and other organs ABSORB Take up fluids, take in ACIDOSIS Condition when blood contains more acid than normal ACUITY Clearness, keenness, esp. of vision - airways ACUTE New, recent, sudden ADENOPATHY Swollen lymph nodes (glands) ADJUVANT Helpful, assisting, aiding ADJUVANT Added treatment TREATMENT ANTIBIOTIC Drug that kills bacteria and other germs ANTIMICROBIAL Drug that kills bacteria and other germs ANTIRETROVIRAL Drug that inhibits certain viruses ADVERSE EFFECT Negative side effect ALLERGIC REACTION Rash, trouble breathing AMBULATE Walk, able to walk -ATION -ORY ANAPHYLAXIS Serious, potentially life threatening allergic reaction ANEMIA Decreased red blood cells; low red blood cell count ANESTHETIC A drug or agent used to decrease the feeling of pain or eliminate the feeling of pain by general putting you to sleep ANESTHETIC A drug or agent used to decrease the feeling of pain or by numbing an area of your body, local without putting you to sleep ANGINA Pain resulting from insufficient blood to the heart (ANGINA PECTORIS) ANOREXIA Condition in which person will not eat; lack of appetite ANTECUBITAL Area inside the elbow ANTIBODY Protein made in the body in response to foreign substance; attacks foreign substance and protects against infection ANTICONVULSANT Drug used to prevent seizures ANTILIPIDEMIC A drug that decreases the level of fat(s) in the blood ANTITUSSIVE A drug used to relieve coughing ARRHYTHMIA Any change from the normal heartbeat (abnormal heartbeat) ASPIRATION Fluid entering lungs ASSAY Lab test ASSESS To learn about ASTHMA A lung disease associated with tightening of the air passages ASYMPTOMATIC Without symptoms AXILLA Armpit BENIGN Not malignant, usually without serious consequences, but with some exceptions e.g.