William F. Friedman, Notes And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Mathemathics of Secrets.Pdf
THE MATHEMATICS OF SECRETS THE MATHEMATICS OF SECRETS CRYPTOGRAPHY FROM CAESAR CIPHERS TO DIGITAL ENCRYPTION JOSHUA HOLDEN PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD Copyright c 2017 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TR press.princeton.edu Jacket image courtesy of Shutterstock; design by Lorraine Betz Doneker All Rights Reserved Library of Congress Cataloging-in-Publication Data Names: Holden, Joshua, 1970– author. Title: The mathematics of secrets : cryptography from Caesar ciphers to digital encryption / Joshua Holden. Description: Princeton : Princeton University Press, [2017] | Includes bibliographical references and index. Identifiers: LCCN 2016014840 | ISBN 9780691141756 (hardcover : alk. paper) Subjects: LCSH: Cryptography—Mathematics. | Ciphers. | Computer security. Classification: LCC Z103 .H664 2017 | DDC 005.8/2—dc23 LC record available at https://lccn.loc.gov/2016014840 British Library Cataloging-in-Publication Data is available This book has been composed in Linux Libertine Printed on acid-free paper. ∞ Printed in the United States of America 13579108642 To Lana and Richard for their love and support CONTENTS Preface xi Acknowledgments xiii Introduction to Ciphers and Substitution 1 1.1 Alice and Bob and Carl and Julius: Terminology and Caesar Cipher 1 1.2 The Key to the Matter: Generalizing the Caesar Cipher 4 1.3 Multiplicative Ciphers 6 -
An Archeology of Cryptography: Rewriting Plaintext, Encryption, and Ciphertext
An Archeology of Cryptography: Rewriting Plaintext, Encryption, and Ciphertext By Isaac Quinn DuPont A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Faculty of Information University of Toronto © Copyright by Isaac Quinn DuPont 2017 ii An Archeology of Cryptography: Rewriting Plaintext, Encryption, and Ciphertext Isaac Quinn DuPont Doctor of Philosophy Faculty of Information University of Toronto 2017 Abstract Tis dissertation is an archeological study of cryptography. It questions the validity of thinking about cryptography in familiar, instrumentalist terms, and instead reveals the ways that cryptography can been understood as writing, media, and computation. In this dissertation, I ofer a critique of the prevailing views of cryptography by tracing a number of long overlooked themes in its history, including the development of artifcial languages, machine translation, media, code, notation, silence, and order. Using an archeological method, I detail historical conditions of possibility and the technical a priori of cryptography. Te conditions of possibility are explored in three parts, where I rhetorically rewrite the conventional terms of art, namely, plaintext, encryption, and ciphertext. I argue that plaintext has historically been understood as kind of inscription or form of writing, and has been associated with the development of artifcial languages, and used to analyze and investigate the natural world. I argue that the technical a priori of plaintext, encryption, and ciphertext is constitutive of the syntactic iii and semantic properties detailed in Nelson Goodman’s theory of notation, as described in his Languages of Art. I argue that encryption (and its reverse, decryption) are deterministic modes of transcription, which have historically been thought of as the medium between plaintext and ciphertext. -
The the Enigma Enigma Machinemachine
TheThe EnigmaEnigma MachineMachine History of Computing December 6, 2006 Mike Koss Invention of Enigma ! Invented by Arthur Scherbius, 1918 ! Adopted by German Navy, 1926 ! Modified military version, 1930 ! Two Additional rotors added, 1938 How Enigma Works Scrambling Letters ! Each letter on the keyboard is connected to a lamp letter that depends on the wiring and position of the rotors in the machine. ! Right rotor turns before each letter. How to Use an Enigma ! Daily Setup – Secret settings distributed in code books. ! Encoding/Decoding a Message Setup: Select (3) Rotors ! We’ll use I-II-III Setup: Rotor Ring Settings ! We’ll use A-A-A (or 1-1-1). Rotor Construction Setup: Plugboard Settings ! We won’t use any for our example (6 to 10 plugs were typical). Setup: Initial Rotor Position ! We’ll use “M-I-T” (or 13-9-20). Encoding: Pick a “Message Key” ! Select a 3-letter key (or indicator) “at random” (left to the operator) for this message only. ! Say, I choose “M-C-K” (or 13-3-11 if wheels are printed with numbers rather than letters). Encoding: Transmit the Indicator ! Germans would transmit the indicator by encoding it using the initial (daily) rotor position…and they sent it TWICE to make sure it was received properly. ! E.g., I would begin my message with “MCK MCK”. ! Encoded with the daily setting, this becomes: “NWD SHE”. Encoding: Reset Rotors ! Now set our rotors do our chosen message key “M-C-K” (13-3-11). ! Type body of message: “ENIGMA REVEALED” encodes to “QMJIDO MZWZJFJR”. -
Practical Aspects of Modern Cryptography
University of Washington CSEP 590TU – Practical Aspects of Modern Cryptography Instructors: Josh Benaloh, Brian LaMacchia, John Manferdelli Tuesdays: 6:30-9:30, Allen Center 305 Webpage: http://www.cs.washington.edu/education/courses/csep590/06wi/ Recommended texts: Stinson, Cryptography, Theory and Practice. 2nd Edition, CRC Press, 2002. Menezes, vanOrtshot, Vanstone. Handbook of Applied Cryptography. Ferguson and Schneier, Practical Cryptography. JLM 20060107 22:16 1 New Lecture Schedule Date Topic Lecturer 1 1/3 Practical Aspects of Cryptography Josh 2 1/10 Symmetric Key Ciphers and Hashes John 3 1/17 Public Key Ciphers Josh 4 1/24 Cryptographic Protocols I Brian 5 1/31 Cryptographic Protocols II Brian 6 2/7 Security of Block Ciphers John 7 2/14 AES and Cryptographic Hashes John 8 2/21 Trust, PKI, Key Management [Last HW Brian Assignment) 9 3/1 Random Numbers/Elliptic Curve Crypto Josh 10 3/8 Three topics: Elections, ITAR/Politics, Side All Channels/Timing Attacks, DRM, BigNum Implementation JLM 20060107 22:16 2 Symmetric Key Cryptography and Cryptographic Hashes - I John Manferdelli [email protected] [email protected] Portions © 2004-2005, John Manferdelli. This material is provided without warranty of any kind including, without limitation, warranty of non-infringement or suitability for any purpose. This material is not guaranteed to be error free and is intended for instructional use only. JLM 20060107 22:16 3 Communications Engineers Coat of Arms The Source Sender: Alice Noisy insecure channel Plaintext Compress Encrypt Encode (P) (to save space) (for confidentiality) (to correct errors) The Sink Receiver:Bob Noisy insecure channel Decode Decrypt Decompress Plaintext (for confidentiality) (to correct errors) (to save space) (P) JLM 20060107 22:16 4 Symmetric Encryption Plaintext (P) Encrypt Ciphertext (C) E (P) Key (k) k Ciphertext (C) Decrypt Plaintext (P) D (P) Key (k) k • Symmetric Key cryptographic algorithms use a secret known to the authorized parties called a “key”. -
ISA 562 Information Security Theory & Practice
ISA 562 Information Security Theory & Practice Introduction to Cryptography Agenda • Basics & Definitions • Classical Cryptography • Symmetric (Secret Key) Cryptography • DES (Data Encryption Standard) • Multiple Encryptions • Modes of Block Cipher Operations • Math Essential • Asymmetric (Public Key) Cryptography 2 1 Basics & Definitions Security Concepts (I) • Confidentiality – Prevent information from being exposed to unintended party – Ex: An employee should not come to know the salary of his manager • Integrity – Assure that the information has not been tempered – Ex: An employee should not be able to modify the employee's own salary • Identity – Assure that the party of concern is authentic - it is what it claims to be – Ex: An employee should be able to uniquely identify and authenticate himself/herself 4 2 Security Concepts (II) • Availability – Assure that unused service or resource is available to legitimate users – Ex: Paychecks should be printed on time as stipulated by law • Anonymity – Assure that the identity of some party is remain anonymous – Ex: The manager should not know who had a critical review of him • Non-Repudiation – Assure that authenticated party has indeed done something that cannot be denied – Ex: Once the employee has cashed his paycheck, he can’t deny it. 5 Cryptography • Crypt = secret • Graph = writing • Cryptography is the science / art of transforming meaningful information into unintelligible text Becoming a science that relies on mathematics (number theory, algebra) • Cryptanalysis is the science / art of breaking cryptographic codes • Cryptology is the science / art / study of both cryptography and cryptanalysis 6 3 Applications of Cryptography • Assuring document integrity • Assuring document confidentiality • Authenticating parties • Document signature • Non-repudiation • Secure transactions • Exchanging keys • Sharing Secrets • Digital cash • Preserving anonymity • Copyright protection • More . -
Golden Fish an Intelligent Stream Cipher Fuse Memory Modules
Golden Fish: An Intelligent Stream Cipher Fuse Memory Modules Lan Luo 1,2,QiongHai Dai 1,ZhiGuang Qin 2 ,ChunXiang Xu 2 1Broadband Networks & Digital Media Lab School of Information Science & Technology Automation Dep. Tsinghua University ,BeiJing, China,100084 2 School of Computer Science and Technology University of Electronic Science Technology of China, ChengDu, China, 610054 E-mail: [email protected] Abstract Furthermore, we can intelligent design the ciphers according to different network environments [4-5]. In In this paper, we use a high-order iterated function order to demonstrate our approach, we construct a generated by block cipher as the nonlinear filter to simple synchronous stream cipher, which provides a improve the security of stream cipher. Moreover, by significant flexibility for hardware implementations, combining the published rounds function in block with many desirable cryptographic advantages. The cipher and OFB as the nonlinear functional mode with security of the encryption and decryption are based on an extra memory module, we enable to control the the computational complexity, which is demonstrated nonlinear complexity of the design. This new approach by AES and NESSIE competition recently, where all fuses the block cipher operation mode with two the finalists fall into the category “no attack or memory modules in one stream cipher. The security of weakness demonstrated”, in which people can go for this design is proven by the both periodic and the simplest, and most elegant design comparing an nonlinear evaluation. The periods of this structure is more complicate and non-transparent one. To guaranteed by the traditional Linear Feedback Shift implement the idea above, we take output feedback Register design and the security of nonlinear mode (OFB) of the block cipher as the nonlinear filter characteristic is demonstrated by block cipher in stream cipher design. -
Communication Intelligence and Security, William F Friedman
UNCLASSIFIED DATE: 26 April 1960 NAME: Friedman, William F. PLACE: Breckinridge Hall, Marine Corp School TITLE: Communications Intelligence and Security Presentation Given to Staff and Students; Introduction by probably General MILLER (NFI) Miller: ((TR NOTE: Introductory remarks are probably made by General Miller (NFI).)) Gentleman, I…as we’ve grown up, there have been many times, I suppose, when we’ve been inquisitive about means of communication, means of finding out what’s going on. Some of us who grew up out in the country used to tap in on a country telephone line and we could find out what was going on that way—at least in the neighborhood. And then, of course, there were always a few that you’d read about in the newspaper who would carry this a little bit further and read some of your neighbor’s mail by getting at it at the right time, and reading it and putting it back. Of course, a good many of those people ended up at a place called Fort Leavenworth. This problem of security of information is with us in the military on a [sic] hour-to-hour basis because it’s our bread and butter. It’s what we focus on in the development of our combat plans in an attempt to project these plans onto an enemy and defeat him. And so, we use a good many devices. We spend a tremendous amount of effort and money in attempting to keep our secrets in fact secret—at least at the echelon where we feel this is necessary. -
A Review Analysis of Two Fish Algorithm Cryptography Quantum Computing
IJCSN International Journal of Computer Science and Network, Volume 6, Issue 1, February 2017 ISSN (Online) : 2277-5420 www.IJCSN.org Impact Factor: 1.5 A Review Analysis of Two Fish Algorithm Cryptography Quantum Computing 1 Sukhvandna Abhi, 2 Umesh Sehgal 1, 2 GNA University Phagwara Abstract - In this analysis paper we tend to describe the evolution of cryptography ranging from the start of the twentieth century and continued into this day. Last 10 years quantum computing can begin to trounce everyday computers, resulting in breakthroughs in computer science. Specifically within the cryptography used from 1900 till the tip of war II.Quantum technologies supply immoderate secure communication sensors of unprecedented exactness and computers that square measure exponentially a lot of powerful than any mainframe for a given task. We compare the performance of the 5 AES finalists one kind of common software package platforms current 32-bit CPUs and high finish sixty four bit CPUs. Our intent is to indicate roughly however the algorithm’s speeds compare across a range of CPUs.The future of cryptography primarily based within the field of natural philosophy and by analyzing the hope to supply a allot of complete image of headed the 2 mail algorithms utilized in cryptography world. Keywords - Cryptography ancient secret writing system 1. Introduction regulated wherever the primary letter is substituted by the last letter, the second letter by the second to last letter then ryptography may be a subject that has been studied on. as a result of it's a monoalphabetic cipher and may and applied since ancient Roman times, and have only 1 doable key, this cipher is comparatively weak; Canalysis into higher coding ways continues to the but this wasn't a viable concern throughout its time as current day. -
A Complete Bibliography of Publications in Cryptologia
A Complete Bibliography of Publications in Cryptologia Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 04 September 2021 Version 3.64 Title word cross-reference 10016-8810 [?, ?]. 1221 [?]. 125 [?]. 15.00/$23.60.0 [?]. 15th [?, ?]. 16th [?]. 17-18 [?]. 18 [?]. 180-4 [?]. 1812 [?]. 18th (t; m)[?]. (t; n)[?, ?]. $10.00 [?]. $12.00 [?, ?, ?, ?, ?]. 18th-Century [?]. 1930s [?]. [?]. 128 [?]. $139.99 [?]. $15.00 [?]. $16.95 1939 [?]. 1940 [?, ?]. 1940s [?]. 1941 [?]. [?]. $16.96 [?]. $18.95 [?]. $24.00 [?]. 1942 [?]. 1943 [?]. 1945 [?, ?, ?, ?, ?]. $24.00/$34 [?]. $24.95 [?, ?]. $26.95 [?]. 1946 [?, ?]. 1950s [?]. 1970s [?]. 1980s [?]. $29.95 [?]. $30.95 [?]. $39 [?]. $43.39 [?]. 1989 [?]. 19th [?, ?]. $45.00 [?]. $5.95 [?]. $54.00 [?]. $54.95 [?]. $54.99 [?]. $6.50 [?]. $6.95 [?]. $69.00 2 [?, ?]. 200/220 [?]. 2000 [?]. 2004 [?, ?]. [?]. $69.95 [?]. $75.00 [?]. $89.95 [?]. th 2008 [?]. 2009 [?]. 2011 [?]. 2013 [?, ?]. [?]. A [?]. A3 [?, ?]. χ [?]. H [?]. k [?, ?]. M 2014 [?]. 2017 [?]. 2019 [?]. 20755-6886 [?, ?]. M 3 [?]. n [?, ?, ?]. [?]. 209 [?, ?, ?, ?, ?, ?]. 20th [?]. 21 [?]. 22 [?]. 220 [?]. 24-Hour [?, ?, ?]. 25 [?, ?]. -Bit [?]. -out-of- [?, ?]. -tests [?]. 25.00/$39.30 [?]. 25.00/839.30 [?]. 25A1 [?]. 25B [?]. 26 [?, ?]. 28147 [?]. 28147-89 000 [?]. 01Q [?, ?]. [?]. 285 [?]. 294 [?]. 2in [?, ?]. 2nd [?, ?, ?, ?]. 1 [?, ?, ?, ?]. 1-4398-1763-4 [?]. 1/2in [?, ?]. 10 [?]. 100 [?]. 10011-4211 [?]. 3 [?, ?, ?, ?]. 3/4in [?, ?]. 30 [?]. 310 1 2 [?, ?, ?, ?, ?, ?, ?]. 312 [?]. 325 [?]. 3336 [?, ?, ?, ?, ?, ?]. affine [?]. [?]. 35 [?]. 36 [?]. 3rd [?]. Afluisterstation [?, ?]. After [?]. Aftermath [?]. Again [?, ?]. Against 4 [?]. 40 [?]. 44 [?]. 45 [?]. 45th [?]. 47 [?]. [?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?]. Age 4in [?, ?]. [?, ?]. Agencies [?]. Agency [?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?]. -
Cryptography
CS 419: Computer Security Week 6: Cryptography © 2020 Paul Krzyzanowski. No part of this Paul Krzyzanowski content, may be reproduced or reposted in whole or in part in any manner without the permission of the copyright owner. cryptography κρυπός γραφία hidden writing A secret manner of writing, … Generally, the art of writing or solving ciphers. — Oxford English Dictionary October 16, 2020 CS 419 © 2020 Paul Krzyzanowski 2 cryptanalysis κρυπός ἀνάλυσις hidden action of loosing, solution of a problem, undo The analysis and decryption of encrypted text or information without prior knowledge of the keys. — Oxford English Dictionary October 16, 2020 CS 419 © 2020 Paul Krzyzanowski 3 cryptology κρυπός λογια hidden speaking (knowledge) 1967 D. Kahn, Codebreakers p. xvi, Cryptology is the science that embraces cryptography and cryptanalysis, but the term ‘cryptology’ sometimes loosely designates the entire dual field of both rendering signals secure and extracting information from them. — Oxford English Dictionary October 16, 2020 CS 419 © 2020 Paul Krzyzanowski 4 Cryptography ¹ Security Cryptography may be a component of a secure system Just adding cryptography may not make a system secure October 16, 2020 CS 419 © 2020 Paul Krzyzanowski 5 Cryptography: what is it good for? • Confidentiality – Others cannot read contents of the message • Authentication – Determine origin of message • Integrity – Verify that message has not been modified • Nonrepudiation – Sender should not be able to falsely deny that a message was sent October 16, 2020 CS -
Cryptography
Cryptography © André Zúquete / João Paulo Barraca Security 1 Cryptography: terminology (1/2) w Cryptography ® Art or science of hidden writing • from Gr. kryptós , hidden + graph , r. of graphein , to write ® It was initially used to maintain the confidentiality of information ® Steganography • from Gr. steganós , hidden + graph , r. of graphein , to write w Cryptanalysis ® Art or science of breaking cryptographic systems or encrypted information w Cryptology ® Cryptography + cryptanalysis © André Zúquete / João Paulo Barraca Security 2 1 Cryptography: terminology (2/2) w Cipher ® Specific cryptographic technique w Cipher operation Encryption : plaintext ( or cleartext ) ciphertext ( or cryptogram ) Decryption : ciphertext plaintext Algorithm : way of transforming data Key : algorithm parameter encrypt() plaintext ciphertext decrypt() © André Zúquete / João Paulo Barraca Security 3 Use cases (symmetric cryptography) w Self-protection with key K ® Alice encrypts plaintext P with key K A: C = {P} K ® Alice decrypts cryptogram C with key K A: P’ = {C} K ® P’ should be equal to P (requires checking) w Secure communication with key K ® Alice encrypts plaintext P with key K A: C = {P} K ® Bob decrypts C with key K B: P’ = {C} K ® P’ should be equal to P (requires checking) © André Zúquete / João Paulo Barraca Security 4 2 Cryptanalysis: goals w Discover original plaintext ® Which originated a given ciphertext w Discover a cipher key ® Allows the decryption of ciphertexts created with the same key w Discover the cipher algorithm ® Or an equivalent -
Assessing the Viability of the Rotor Cipher in the Modern World
Assessing the Viability of the Rotor Cipher in the Modern World by Jordan Zink Gahanna Lincoln High School 140 S Hamilton Road Gahanna, Ohio 43230 [email protected] (614) 307-3669 Prepared for GLHS Science Academy Symposium February 5, 2010 2 ASSESSING THE VIABILITY OF THE ROTOR CIPHER IN THE MODERN WORLD Jordan Zink Gahanna Lincoln High School, 140 S Hamilton Road, Gahanna, Ohio 43230 The purpose of this project is to determine the viability of the rotor cipher in the modern world of computer cryptography. This project consists of two phases: modifying the cipher to increase its security and running a simulation to assess the effectiveness of a brute force attack. While many modifications were made, one modification involved shortening the plaintext before encryption by removing unnecessary letters and replacing words with symbols. An experiment was run to determine the level of shortening that would not distort meaning. 20 subjects participated and it was found that a conservative level of shortening did not significantly distort meaning, while a liberal level of shortening did distortion meaning slightly. It was also found that there was no significant difference between youth and adult subjects, or between subjects familiar and unfamiliar with texting and online lingo. To simulate a brute force attack, a computer program was written in Visual Basic. Initial testing found household computers could not break a message encrypted with 3 or more rotors. A regression equation was found to predict the key search speed based on plaintext length (R2 = 0.9988). Also, the equation t = 2562n/s was created to showed the relation of time to run a brute force attack to the number of rotors and the key search speed.