Pair Instability Supernovae: Evolution, Explosion, Nucleosynthesis

Total Page:16

File Type:pdf, Size:1020Kb

Pair Instability Supernovae: Evolution, Explosion, Nucleosynthesis Pair instability supernovae: Evolution, explosion, nucleosynthesis Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakult¨at der Rheinischen Friedrich-Wilhelms-Universit¨atBonn vorgelegt von Alexandra Kozyreva aus Moskau, Russland Bonn 2014 Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakult¨atder Rheinischen Friedrich-Wilhelms-Universit¨atBonn. 1. Referent: Prof. Dr. Norbert Langer 2. Referent: Prof. Dr. Robert Izzard Tag der Promotion: 28 April 2014 Erscheinungsjahr 2014 Abstract Supernova explosions are among the most impressive events in the Universe. Tens of supernovae are exploding in the visible Universe each second, and at present there are a few of them discovered every day. The average peak luminosity of a supernova competes with that of entire galaxies. Supernovae are the main contributor of heavy elements, energy and momentum to the interstellar medium, and thus play a crucial role for the evolution of galaxies. Stars with initial masses above 10 solar masses produce core-collapse supernovae at the end of their lives, which comprise about two-third of all supernovae. These events produce neutron stars or black holes as compact remnants. It has since long been predicted that very massive star, i.e., stars above 140 solar masses, undergo a dynamical collapse due to electron-positron pair creation before core oxygen ignition. The explosive ignition can then disrupt the whole star, leading to so called \pair instability supernovae" (PISNe). Since many of them are believed to explode in the early Universe, so far there were only zero and extremely low metallicity evolutionary models computed for this particular supernovae type. The recent discovery of so called super-luminous supernovae in the local Universe revealed the need for corresponding models at higher metallicity. This thesis is based on the self-consistent evolutionary calculations of 150 M and 250 M models including rotation and magnetic fields from the zero-age main sequence up to the collapse due to pair creation. In this thesis, using an extended and improved nuclear reaction network, these evolutionary models are evolved through their PISN explosions. In this way, the first detailed nucleosynthetic yields of finite metallicity pair instability supernovae are produced, which allows to identify routes to constrain their number based on the elemental abundances of metal poor low mass stars in our Galaxy. In a second step, the post-explosion expansion of the pair instability supernova ejecta is calculated with a multigroup radiation transport-hydro code in order to describe the visual display of such events. The results of these calculations enabled us to compare the models to observed supernovae. We found the appearance of our low mass PISN model to be similar to that of several observed Type II-Plateau supernovae, while our high mass model shows striking coincidence with the observations of the superluminous supernova SN 2007bi. We suggest criteria to distinguish PISNe from ordinary ones, and conclude that PISNe in the local Universe may occur more frequent than previously thought. 1 Dedicated to my little angel Galina Kozyreva 2 Contents Contents 1 List of Figures6 List of Tables 10 1 Introduction and thesis outline 13 1.1 Massive stars.................................. 13 1.2 Evolution and final fates of massive stars................... 18 1.2.1 10 { 100 M stars............................ 18 1.2.2 100 { 260 M stars........................... 24 4 1.2.3 260 { 5 × 10 M stars........................ 29 4 5 1.2.4 5 × 10 − 10 M stars........................ 30 1.2.5 Beyond stability............................. 31 1.3 Superluminous supernovae........................... 31 1.3.1 Nickel-powered SLSNe......................... 33 1.3.2 Interaction-powered SLSNe...................... 33 1.3.3 Magnetar-powered SLSNe....................... 34 1.4 Motivation for the thesis work......................... 35 1.5 Thesis content.................................. 37 2 Nuclear networks 39 2.1 Thermonuclear fusion in stars......................... 39 2.2 Nuclear networks for stellar evolution..................... 40 2.2.1 Nuclear networks and silicon burning................. 41 2.2.2 Implementation of silicon burning in the Binary Evolution Code.. 43 2.2.3 Quasi-statistical equilibrium and energy generation rate table... 49 2.3 Applications of the α−chain network..................... 56 2.3.1 Helium star models........................... 56 2.3.2 Supercollapsar progenitors....................... 60 3 Explosion and nucleosynthesis of low redshift pair instability supernovae 65 3.1 Overview..................................... 65 4 CONTENTS 3.2 Introduction................................... 66 3.3 Numerical method and input physics..................... 67 3.4 Results...................................... 69 3.4.1 Explosion................................ 69 3.4.2 Nucleosynthesis............................. 71 3.5 Implications for chemical evolution...................... 77 3.6 Conclusions................................... 79 4 Observational properties of low redshift pair instability supernovae 89 4.1 Overview..................................... 89 4.2 Introduction................................... 90 4.3 Evolutionary models and light curves modeling................ 92 4.3.1 Description of the evolutionary models................ 92 4.3.2 Simulation of light curves and SEDs................. 94 4.4 Results...................................... 98 4.4.1 The 150 M model........................... 101 4.4.2 The 250 M model........................... 103 4.5 Discussion.................................... 104 4.5.1 Comparison with other theoretical PISN light curves........ 104 4.5.2 The chemical structure during the coasting phase.......... 110 4.5.3 Comparison with observed SNe.................... 112 4.6 Conclusions................................... 117 5 Summary and concluding remarks 125 5.1 Improvement of the nuclear network...................... 125 5.2 Pair instability supernovae in the local Universe............... 126 5.3 Observational properties of low redshift pair instability supernovae..... 127 A Basic stellar structure equations 129 B Integration SN yields over the IMF 131 B.1 Integration over the IMF............................ 131 B.1.1 Isotopic production factor....................... 131 B.2 Elemental production factor.......................... 132 B.2.1 The sum details............................. 132 B.2.2 The imprint of pair instability supernovae on the yield from one generation of stars........................... 134 Bibliography 151 Acknowledgments 153 List of publications 155 CONTENTS 5 Curriculum Vitae 157 6 CONTENTS List of Figures 1.1 Massive stars in the Orion constellation observed with the naked eye.... 14 1.2 Massive stars in our Galaxy and in the Large Magellanic Cloud...... 16 1.3 Schematic illustration of the sequence of nuclear burning stages with final onion-like chemical structure of the evolved massive star........... 19 1.4 Schematic illustration of supernova light curves............... 21 1.5 Observed examples of light curves of core-collapse supernovae........ 22 1.6 The dominant contributors to the pressure.................. 26 1.7 Transition between two polytropes with γ = 4=3............... 27 1.8 Schematic illustration of the fate of massive, very massive and supermassive stars....................................... 32 2.1 Illustration of α− and proton flows in the α-chain nuclear network..... 47 2.2 Demonstration of the improvement of the nuclear network solver...... 48 2.3 Illustration of QSE for two QSE-groups of isotopes.............. 50 2.4 Evolution of energy generation rate during silicon burning for different initial compositions................................... 51 2.5 Energy generation rate during silicon burning for different initial compositions 52 2.6 Schematic flow chart of the BEC....................... 53 2.7 Dependence of nuclear energy generation rate on electron number Ye .... 54 2.8 Helium star models of solar metallicity in the Hertzsprung-Russel diagram 57 2.9 Helium star models in the central ρ − T diagram............... 58 2.10 Helium star models in the central ρ − T diagram. Latest stages....... 59 2.11 Density{temperature diagram for 15 M helium star model, 25 M and 40 M hydrogen star models.......................... 60 2.12 Chemical structure in the rotating 500 M model at the pre-collapse stage. 61 2.13 Angular momentum distribution in the rotating 500 M model....... 63 3.1 Evolutionary tracks of our 150 M and 250 M models in central density { temperature diagram............................... 70 3.2 The energetics of the PISN explosions for our 150 M and 250 M models. 80 3.3 Total energy evolution for our 1500 M and 250 M models......... 81 3.4 The final chemical structure of our models................... 82 3.5 Kippenhahn diagram for 250 M PISN model................. 83 8 LIST OF FIGURES 3.6 Production factors of major elements from our 150 M and 250 M PISN models with those of comparable Population III helium star models..... 84 3.7 Isotopic production factors for the indicated nuclei for our 150 M and 250 M PISN models for those of comparable Population III helium star models...................................... 85 3.8 The total metal yields of core-collapse SN models at Z = 0:002 and of PISNe at Z = 0:001 from the one generation of stars................. 86 3.9 Production factors of major elements from core-collapse SNe and
Recommended publications
  • Limits from the Hubble Space Telescope on a Point Source in SN 1987A
    Limits from the Hubble Space Telescope on a Point Source in SN 1987A The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Graves, Genevieve J. M., Peter M. Challis, Roger A. Chevalier, Arlin Crotts, Alexei V. Filippenko, Claes Fransson, Peter Garnavich, et al. 2005. “Limits from the Hubble Space Telescopeon a Point Source in SN 1987A.” The Astrophysical Journal 629 (2): 944–59. https:// doi.org/10.1086/431422. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:41399924 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA The Astrophysical Journal, 629:944–959, 2005 August 20 # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. LIMITS FROM THE HUBBLE SPACE TELESCOPE ON A POINT SOURCE IN SN 1987A Genevieve J. M. Graves,1, 2 Peter M. Challis,2 Roger A. Chevalier,3 Arlin Crotts,4 Alexei V. Filippenko,5 Claes Fransson,6 Peter Garnavich,7 Robert P. Kirshner,2 Weidong Li,5 Peter Lundqvist,6 Richard McCray,8 Nino Panagia,9 Mark M. Phillips,10 Chun J. S. Pun,11,12 Brian P. Schmidt,13 George Sonneborn,11 Nicholas B. Suntzeff,14 Lifan Wang,15 and J. Craig Wheeler16 Received 2005 January 27; accepted 2005 April 26 ABSTRACT We observed supernova 1987A (SN 1987A) with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST ) in 1999 September and again with the Advanced Camera for Surveys (ACS) on the HST in 2003 November.
    [Show full text]
  • A Dozen Colliding Wind X-Ray Binaries in the Star Cluster R 136 in the 30 Doradus Region
    A dozen colliding wind X-ray binaries in the star cluster R 136 in the 30 Doradus region Simon F. Portegies Zwart?,DavidPooley,Walter,H.G.Lewin Massachusetts Institute of Technology, Cambridge, MA 02139, USA ? Hubble Fellow Subject headings: stars: early-type — tars: Wolf-Rayet — galaxies:) Magellanic Clouds — X-rays: stars — X-rays: binaries — globular clusters: individual (R136) –2– ABSTRACT We analyzed archival Chandra X-ray observations of the central portion of the 30 Doradus region in the Large Magellanic Cloud. The image contains 20 32 35 1 X-ray point sources with luminosities between 5 10 and 2 10 erg s− (0.2 × × — 3.5 keV). A dozen sources have bright WN Wolf-Rayet or spectral type O stars as optical counterparts. Nine of these are within 3:4 pc of R 136, the ∼ central star cluster of NGC 2070. We derive an empirical relation between the X-ray luminosity and the parameters for the stellar wind of the optical counterpart. The relation gives good agreement for known colliding wind binaries in the Milky Way Galaxy and for the identified X-ray sources in NGC 2070. We conclude that probably all identified X-ray sources in NGC 2070 are colliding wind binaries and that they are not associated with compact objects. This conclusion contradicts Wang (1995) who argued, using ROSAT data, that two earlier discovered X-ray sources are accreting black-hole binaries. Five early type stars in R 136 are not bright in X-rays, possibly indicating that they are either: single stars or have a low mass companion or a wide orbit.
    [Show full text]
  • 1 NASA Goddard Space Flight Center
    Source of Acquisition 1 NASA Goddard Space Flight Center \> SN 1987A AFTER 18 YEARS: MID-INFRARED GEMINI and SPITZER OBSERVATIONS OF THE REMNANT Patrice Bouchet1,2, Eli Dwek3, John Danziger4, Richard G. Arendt 5, I. James M. De Buizer', Sangwook Park7, Nicholas B. SuntzefF2, Robert P. Kirshners, and Peter Challis ABSTRACT We present high resolution 11.7 and 18.3 pm mid-IR images of SN 1987A obtained on day 6526 since the explosion with the Thermal-Region Camera and Spectrograph (T-ReCS) attached to the Gemini South 8m telescope. The 11.7 pm flux has increased significantly since our last observations on day 6067. The images clearly show that all the emission arises from the equatorial ring (ER). Nearly contemporaneous spectra obtained on day 6184 with the MIPS at 24 pm, on day 6130 with the IRAC in 3.6- 8 pm region, and on day 6190 with the IRS in the 12-37 ,urn instruments on board the Spitzer Space Telescope's show that the emission consists of thermal emission from silicate dust that condensed out in the red giant wind of the progenitor star. The dust temperature is 1662:; K, and the emitting dust mass is (2.6:;;:) x MB.Lines of [Ne 111 12.82 pm and [Ne 1111 15.56 pm are clearly present in the Spitzer spectrum, as well as a weak [Si 113 34.8 pm line. We also detect two lines near 26 pm which we tentatively ascribe to [Fe 117 25.99 pm and [0 IV] 25.91 pm. Comparison of the mid-IR Gemini 11.7 pm image with X-ray images obtained by Chandra, UV- optical images obtained by HST, and radio synchrotron images obtained by the ATCA show generally good correlation of the images across all wavelengths.
    [Show full text]
  • A Stripped Helium Star in the Potential Black Hole Binary LB-1 A
    A&A 633, L5 (2020) Astronomy https://doi.org/10.1051/0004-6361/201937343 & c ESO 2020 Astrophysics LETTER TO THE EDITOR A stripped helium star in the potential black hole binary LB-1 A. Irrgang1, S. Geier2, S. Kreuzer1, I. Pelisoli2, and U. Heber1 1 Dr. Karl Remeis-Observatory & ECAP, Astronomical Institute, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Sternwartstr. 7, 96049 Bamberg, Germany e-mail: [email protected] 2 Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany Received 18 December 2019 / Accepted 1 January 2020 ABSTRACT +11 Context. The recently claimed discovery of a massive (MBH = 68−13 M ) black hole in the Galactic solar neighborhood has led to controversial discussions because it severely challenges our current view of stellar evolution. Aims. A crucial aspect for the determination of the mass of the unseen black hole is the precise nature of its visible companion, the B-type star LS V+22 25. Because stars of different mass can exhibit B-type spectra during the course of their evolution, it is essential to obtain a comprehensive picture of the star to unravel its nature and, thus, its mass. Methods. To this end, we study the spectral energy distribution of LS V+22 25 and perform a quantitative spectroscopic analysis that includes the determination of chemical abundances for He, C, N, O, Ne, Mg, Al, Si, S, Ar, and Fe. Results. Our analysis clearly shows that LS V+22 25 is not an ordinary main sequence B-type star. The derived abundance pattern exhibits heavy imprints of the CNO bi-cycle of hydrogen burning, that is, He and N are strongly enriched at the expense of C and O.
    [Show full text]
  • A Fuse Survey of the Rotation Rates of Very Massive Stars in the Small and Large Magellanic Clouds
    The Astrophysical Journal, 700:844–858, 2009 July 20 doi:10.1088/0004-637X/700/1/844 C 2009. The American Astronomical Society. All rights reserved. Printed in the U.S.A. A FUSE SURVEY OF THE ROTATION RATES OF VERY MASSIVE STARS IN THE SMALL AND LARGE MAGELLANIC CLOUDS Laura R. Penny1 and Douglas R. Gies2 1 Department of Physics and Astronomy, The College of Charleston, Charleston, SC 29424, USA; [email protected] 2 Center for High Angular Resolution Astronomy and Department of Physics and Astronomy, Georgia State University, P.O. Box 4106, Atlanta, GA 30302-4106, USA; [email protected] Received 2009 February 3; accepted 2009 May 26; published 2009 July 6 ABSTRACT We present projected rotational velocity values for 97 Galactic, 55 SMC, and 106 LMC O-B type stars from archival FUSE observations. The evolved and unevolved samples from each environment are compared through the Kolmogorov–Smirnov test to determine if the distribution of equatorial rotational velocities is metallicity dependent for these massive objects. Stellar interior models predict that massive stars with SMC metallicity will have significantly reduced angular momentum loss on the main sequence compared to their Galactic counterparts. Our results find some support for this prediction but also show that even at Galactic metallicity, evolved and unevolved massive stars have fairly similar fractions of stars with large V sin i values. Macroturbulent broadening that is present in the spectral features of Galactic evolved massive stars is lower in the LMC and SMC samples. This suggests the processes that lead to macroturbulence are dependent upon metallicity.
    [Show full text]
  • The Distance to the Large Magellanic Cloud
    Proceedings Astronomy from 4 perspectives 1. Cosmology The distance to the large magellanic cloud Stefan V¨olker (Jena) In the era of modern cosmology it is necessary to determine the Hubble constant as precise as possible. Therefore it is important to know the distance to the Large Mag- ellanic Cloud (LMC), because this distance forms the fundament of the cosmological distance ladder. The determination of the LMC's distance is an suitable project for highschool students and will be presented in what follows. Calculating the distance to the LMC using the supernova SN 1987 A [1, 2] By combining the angular size α of an object with its absolute size R, one can calculate the distance d (at least for our cosmological neighborhood) using the equation R R d = ≈ (1) tan α α and the approximation d R. In the case of the SN 1987 A students can measure the angular size of the circumstellar ring on the Hubble Space Telescope (HST) image (Figure 1). The absolute size of the ring can be derived from the delay time due to light-travel effects seen in the emission light curve (also Figure 1). Once the supernova exploded, the UV-flash started 1,00 0,75 0,50 intensity (normalized) 0,25 0 0 500 1000 time t/d ESA/Hubble tP1' tP2' Figure 1: left: HST picture of the SN 1987 A; right: emission light curve of the circumstellar [2, 3] propagating and reached the whole ring at the same time, which started emitting immediately. The additional distance x is linked to the delay time by the equation x = c · ∆t = c · (t 0 − t 0 ).
    [Show full text]
  • Evolution of Helium Star Plus Carbon-Oxygen White Dwarf Binary Systems and Implications for Diverse Stellar Transients and Hypervelocity Stars
    A&A 627, A14 (2019) https://doi.org/10.1051/0004-6361/201935322 Astronomy c ESO 2019 & Astrophysics Evolution of helium star plus carbon-oxygen white dwarf binary systems and implications for diverse stellar transients and hypervelocity stars P. Neunteufel1, S.-C. Yoon2, and N. Langer1 1 Argelander Institut für Astronomy (AIfA), University of Bonn, Auf dem Hügel 71, 53121 Bonn, Germany e-mail: [email protected] 2 Department of Physics and Astronomy, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea Received 20 February 2019 / Accepted 28 April 2019 ABSTRACT Context. Helium accretion induced explosions in CO white dwarfs (WDs) are considered promising candidates for a number of observed types of stellar transients, including supernovae (SNe) of Type Ia and Type Iax. However, a clear favorite outcome has not yet emerged. Aims. We explore the conditions of helium ignition in the WD and the final fates of helium star-WD binaries as functions of their initial orbital periods and component masses. Methods. We computed 274 model binary systems with the Binary Evolution Code, in which both components are fully resolved. Both stellar and orbital evolution were computed including mass and angular momentum transfer, tides, gravitational wave emission, differential rotation, and internal hydrodynamic and magnetic angular momentum transport. We worked out the parts of the parameter space leading to detonations of the accreted helium layer on the WD, likely resulting in the complete disruption of the WD to deflagrations, where the CO core of the WD may remain intact and where helium ignition in the WD is avoided.
    [Show full text]
  • The Messenger
    THE MESSENGER No, 40 - June 1985 Radial Veloeities of Stars in Globular Clusters: a Look into CD Cen and 47 Tue M. Mayor and G. Meylan, Geneva Observatory, Switzerland Subjected to dynamical investigations since the beginning photometry of several clusters reveals a cusp in the luminosity of the century, globular clusters still provide astrophysicists function of the central region, which could be the first evidence with theoretical and observational problems, wh ich so far have for collapsed cores. only been partly solved. The development of photoelectric cross-corelation tech­ If for a long time the star density projected on the sky was niques for the determination of stellar radial velocities opened fairly weil represented by simple dynamical models, recent the door to kinematical investigations (Gunn and Griffin, 1979, N .~- .", '. '.'., .' 1 '&307 w E ,. 1~ S Fig. 1: Left: 47 Tue (NGC 104) from the Deep Blue Survey - SRC-(J). Right: Centre of 47 Tue from a near-infrared photometrie study of Lioyd Evans. The diameter ofthe large eirele eorresponds to the disk ofthe left photograph. The maximum ofthe rotation appears inside the eircle; the linear part of the rotation eurve (solid-body rotation) affeets only stars inside one areminute of the eentre. 1 Rlre J 250r;.' .;r2' -i4.:...__.....;6;.;.. .;rB. ,;.;10::....--. Tentative Time-table of Council Sessions (J lkm/5] and Committee Meetings in 1985 (.) Gen x =2. November 12 Scientific Technical Committee November 13-14 Finance Committee December 11 -12 Observing Programmes Committee December 16 Committee of Council December 17 Council 10. All meetings will take place at ESO in Garching.
    [Show full text]
  • Lecture 7 Evolution of Massive Stars on the Main Sequence and During
    Massive Stars Generalities: Because of the general tendency of the interior temperature of main sequence stars to increase with mass*, stars of over two Lecture 7 solar mass are chiefly powered by the CNO cycle(s) rather than the pp cycle(s). The high temperature sensitivity of the CNO cycle (n = 17 instead of 4 for pp-cycle) makes the energy Evolution of Massive generation very centrally concentrated. This, plus the increasing Stars on the Main Sequence fraction of pressure due to radiation, makes their cores convective. Because of the greater temperature, the opacity in and During Helium Burning - their interiors is dominantly due to electron scattering. Basics Despite their convective cores, the overall main sequence structure can be crudely represented as an n = 3 polytrope. This is especially true of the outer radiative part of the star that typically includes the majority of the mass. * To provide a luminosity that increases as M3 s15 3233 2.19951015502790E+14 c12( 1)= 7.5000E+10 R = 4.3561E+11 Teff = 2.9729E+04 L = 1.0560E+38 Iter = 37 Zb = 61 inv = 66 Dc = 5.9847E+00 Tc = 3.5466E+07 Ln = 6.9735E+36 Jm = 1048 Etot = -9.741E+49 B star 10,000 – 30,000 K 1 HHHHH 15 Solar mass He He HeH Convective history HH He He He He He .1 15 M half way ⊙ through hydrogen burning Elemental Mass Fraction .01 N N N O OOOO N C C N C Fe Fe Fe Fe Fe Fe Fe Fe IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIINeIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII NeIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII!,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Ne,,I,,,,,,,,,,Ii,,,,,,,,,,,,,,,,,,,,,,,,,I,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Ne,,,,,,,,,,,,...........................................................................................................
    [Show full text]
  • Gas and Dust in the Magellanic Clouds
    Gas and dust in the Magellanic clouds A Thesis Submitted for the Award of the Degree of Doctor of Philosophy in Physics To Mangalore University by Ananta Charan Pradhan Under the Supervision of Prof. Jayant Murthy Indian Institute of Astrophysics Bangalore - 560 034 India April 2011 Declaration of Authorship I hereby declare that the matter contained in this thesis is the result of the inves- tigations carried out by me at Indian Institute of Astrophysics, Bangalore, under the supervision of Professor Jayant Murthy. This work has not been submitted for the award of any degree, diploma, associateship, fellowship, etc. of any university or institute. Signed: Date: ii Certificate This is to certify that the thesis entitled ‘Gas and Dust in the Magellanic clouds’ submitted to the Mangalore University by Mr. Ananta Charan Pradhan for the award of the degree of Doctor of Philosophy in the faculty of Science, is based on the results of the investigations carried out by him under my supervi- sion and guidance, at Indian Institute of Astrophysics. This thesis has not been submitted for the award of any degree, diploma, associateship, fellowship, etc. of any university or institute. Signed: Date: iii Dedicated to my parents ========================================= Sri. Pandab Pradhan and Smt. Kanak Pradhan ========================================= Acknowledgements It has been a pleasure to work under Prof. Jayant Murthy. I am grateful to him for giving me full freedom in research and for his guidance and attention throughout my doctoral work inspite of his hectic schedules. I am indebted to him for his patience in countless reviews and for his contribution of time and energy as my guide in this project.
    [Show full text]
  • Atlas Menor Was Objects to Slowly Change Over Time
    C h a r t Atlas Charts s O b by j Objects e c t Constellation s Objects by Number 64 Objects by Type 71 Objects by Name 76 Messier Objects 78 Caldwell Objects 81 Orion & Stars by Name 84 Lepus, circa , Brightest Stars 86 1720 , Closest Stars 87 Mythology 88 Bimonthly Sky Charts 92 Meteor Showers 105 Sun, Moon and Planets 106 Observing Considerations 113 Expanded Glossary 115 Th e 88 Constellations, plus 126 Chart Reference BACK PAGE Introduction he night sky was charted by western civilization a few thou - N 1,370 deep sky objects and 360 double stars (two stars—one sands years ago to bring order to the random splatter of stars, often orbits the other) plotted with observing information for T and in the hopes, as a piece of the puzzle, to help “understand” every object. the forces of nature. The stars and their constellations were imbued with N Inclusion of many “famous” celestial objects, even though the beliefs of those times, which have become mythology. they are beyond the reach of a 6 to 8-inch diameter telescope. The oldest known celestial atlas is in the book, Almagest , by N Expanded glossary to define and/or explain terms and Claudius Ptolemy, a Greco-Egyptian with Roman citizenship who lived concepts. in Alexandria from 90 to 160 AD. The Almagest is the earliest surviving astronomical treatise—a 600-page tome. The star charts are in tabular N Black stars on a white background, a preferred format for star form, by constellation, and the locations of the stars are described by charts.
    [Show full text]
  • The VLT-FLAMES Tarantula Survey
    Astronomy & Astrophysics manuscript no. msOrevfinalcorr c ESO 2019 May 8, 2019 The VLT-FLAMES Tarantula Survey XIV. The O-Type Stellar Content of 30 Doradus N. R. Walborn1, H. Sana1,2, S. Sim´on-D´ıaz3,4, J. Ma´ız Apell´aniz5, W. D. Taylor6,7, C. J. Evans7, N. Markova8, D. J. Lennon9, and A. de Koter2,10 1 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 2 Astronomical Institute Anton Pannekoek, University of Amsterdam, Kruislaan 403, 1098 SJ, Amsterdam, The Netherlands 3 Instituto de Astrof´ısica de Canarias, E-38200 La Laguna, Tenerife, Spain 4 Departamento de Astrof´ısica, Universidad de La Laguna, E-38205 La Laguna, Tenerife, Spain 5 Instituto de Astrof´ısica de Andaluc´ıa-CSIC, Glorieta de la Astronom´ıa s/n, E-18008 Granada, Spain 6 Scottish Universities Physics Alliance, Institute for Astronomy, University of Edinburgh, Royal Observatory Edinburgh, Blackford Hill, Edinburgh, EH9 3HJ, UK 7 UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK 8 Institute of Astronomy, National Astronomical Observatory, Bulgarian Academy of Sciences, PO Box 136, 4700 Smoljan, Bulgaria 9 European Space Agency, European Space Astronomy Centre, Camino Bajo del Castillo s/n, Urbanizaci´on Villafranca del Castillo, E-28691 Villanueva de la Ca˜nada, Madrid, Spain 10 Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium ABSTRACT Detailed spectral classifications are presented for 352 O–B0 stars in the VLT-FLAMES Tarantula Survey ESO Large Programme, of which 213 O-type are judged of sufficiently high quality for further morphological analysis.
    [Show full text]