Cetacean Ears Hearing by Whales &N'u Edirors: Richard R

Total Page:16

File Type:pdf, Size:1020Kb

Cetacean Ears Hearing by Whales &N'u Edirors: Richard R Whitlow WL. Au Whitlow w.l. Au Arthw N. Popper Arthur N. Popper Marine Mammal Research Program Department of Biology and Richard R. Fay Hawaii Inslitule of Marine Biology Newoscienc:e and Cognitive Science Un..iv~rsity of Hawa'i Program Editors Kailua, HI 96734, USA University of Maryland Richard R. Fay CoUege Park, MD 20742, USA 2 Parmly Hearing In,titute and Deparlment or P,ychoLogy LoyoLa University of Olicago Chicago, IL 60626, USA Cetacean Ears Hearing by Whales &n'u Edirors: Richard R. Fay and Arthur N. Popper and Dolphins DARLENE R. KETIEN Cov.er:: The image i; a 3D reconstruction (rom cr scans of a left inner ear of an adllkmaJe Cuvier's beaked w:h lie (Ziph,us CQ'Vitostrisj. The image shows the ear from -I. !alen'll ....:iew wich Ibe facial :nerve an the- fOTeground, The auditory nerve caDa] Bod cochlear canals arejust above and ~hind che faciaJ nerve. Phbto courtesy Df Darlene: R. Kenco. With 152 ILlustralions Libra.ry of Cong:ress CatalogiJlg-in-Publication Data He.a.ring by whales and dolphins' [edited by] 'Whitlow Au, Arthur N. Popper, Richard R. Fay. p. cm.-(Springer fJ8t1dbook 01 auditory research) Jodudes- bibliottspbical (·dereoces.. ISDN 0-387·94\106.2 (bardcmer ,oIt. pape<) I. Dolphi Pby>iology. 2. Whales-PhysioLogy. 3. H"rin~ :v.~~tlo W.L. Ii. Popper, Arthur N. Ill. Fay, Richard R. QL737.C432H42S 2000 S73.1r9L9.5-dc21 9'1-40947 Printed on. acid-free paper. 1. Introduction €;I 20(0 Springer.Vertag New York IDe.. AU righ IS resen:ed. Th.!- work may oct be translated or copied in whole or in part without the Whales and dolphins are majestic elusive, charismatic creatures that couple written penniSSJOD oC Ib<: publli;her (Springer.VerJag New YOfk, Inc.. 175 FrClh A\'enue. New t ':ork.~ .0010.U?A), ~:l'Cept {<If brief ~-cerpts i~ connedion wifh review3 orscholarly analy. Si~ Use m connection waLlI any fonn (If mformatlon ItOTa,g.e and reCrieval. e1ectronK: adap'a­ exceptional grace with enormous power. These features may account for tWll, computer softwaTe., or by simUar Qr dissimilar lJlC:thodol.C)gy now known -or here-uter developed is forbidden. much of humanity's enduring fascination with whales, but they are terrible ~e use 01 g.eneral descriptiy-e na.mes,. .lnd.c .Dames., Uademarks,. etc.. In this. publication. even If the former are. not espeaaUy idellhfl..ed. lIS not to be taken as a sign lbal such names. as understood bf tbe Tt3dc Mara a.rtd Me.rclandi.se Marks Act. may acoordincJlr be used fred,.­ reasons for studying their auditory systems.The principal reason whale ears byanyo-ne. are worth investigating is ... Ginger Rogers. Ginger Rogers and Fred ProouctlOI\ managed boy Terry Komak; maDufacturing npervised by Erica B~1e.r. Typeset by Dest-set ~pesetter Ltd., Hong Kon~ P~nted ~nd bound by Maple-Vail Book ManUfacturing Group, York, PA. Astaire were a famous dance team. Mr. Astaire was renowned for his grace Printed m l:he Uni(ed S1ates (Jf America. Springe, and agility. What people rarely note is that Ms. Rogers not only matched 9876 S ~ 32 l i her partl\er step for step, she did it wearing a cumbersome gown, in high ISBN 0-387-94906-2 Sprln:eer-V-eflil,£. New Y(Jlk Berlin HeideU:JCJ~ SPIN mS:581D4 heels, and backwards. Just as Ginger kept pace with Fred but in a different orientation and with added burdens, whales hear as well as land mammals but in a different medium with special acoustic burdens. This chapter provides an overview of the anatomical foundation of whale hearing. It takes a functional, comparative approach, emphasizing how structures unique to peripheral auditory systems in the two extant subor­ ders of Cetacea, the Odontoceti (toothed whales, porpoises, and dolphins) and Mysticeti (rorqualsand baleen whales) relate to the ability of a mam­ malian ear to hear in water. Commonalities with land mammal ears are dis­ cussed in terms of their significance for fundamental hearing mechanisms. Anatomical specializations found across land mammal, odontocete, and mysticete ears are discussed in terms of the role they play in determining species-specific frequency ranges as adaptations to cross-media behaviors and niche substructure. The primary task of this chapter is to deconstruct whale and dolphin ears to determine which elements are simply mammalian and which are aquatic or devoted to special acoustic tasks. The concept that there is a significant relationship between ear structure and hearing capacity, and that both are related to the animal's niche, is par,ticularly relevant for understanding whale hearing. Analyzing how hearing capacity and auditory structures covary in a range of species can provide important insights into funda­ mental 'hearing mechanisms that take place in the auditory periphery 44 D.R. Ketten 2. Cetacean Ears 45 (Fay 1992). If we extend the analyses to ultra- and infrasonic animals, we employ the broadest known acoustic range, spanning low infrasonic (10Hz) can learn substantially more about how hearing ranges are determined as to high ultrasonic (200 kHz) frequencies. well as how to detect and use physical cues that are normally impercepti­ Hearing is arguably the primary sensory and communication channel for ble to us (e.g., Hinchcliffe and Pye 1968; Webster and Webster 1975). Using cetaceans, and we expect all whale ears are highly evolved. Comparative ears adapted to different media, we can begin to explore how the auditory functional anatomy studies may be the only way to understand the breadth system deals with physical features of acoustic cues. of whale ears because the majority of whale species are not approachable Whales and dolphins fit all three criteria for productive analyses. Even by conventional audiometry. Only about 13% of all species have ever been more important, cetacean ears are derived from land mammal auditory tested, all those tested are from one suborder, and nearly all are from one systems but may now be more acoustically and physically diverse than any family. Given the diversity of habitats, behaviors, and sizes that cetaceans related land mammal group. Whales originally had air-adapted ears. All encompass, it would be naive to expect that data from a few species or one cetaceans are descended from mesonychid condylarths, catlike, carnivorous, division will provide a full picture of cetacean hearing. By analyzing the land-based ungulates that became amphibious in the Eocene, probably to structure ofa broad spectrum ofcetacean ears, we can gain insights not only exploit food-rich near-shore waters (Thewissen 1998). In the intervening 50 into whale hearing and aquatic adaptations but also into some basic hearing to 60 million years, as these condylarths gradually transformed from hoofed issues. First, similarities between land and aquatic mammal ears are likely waders into full-fledged, flippered whales, every portion of their anatomy to be related to fundamental mammalian ear mechanisms. Second, struc­ was physically and functionally reshaped to accommodate life in water. tures that are common among aquatic species but lacking or significantly Their air-adapted high-frequency mammalian· ears had to be coupled to different in land mammals are probably key elements for transducing water-borne sound for hearing to remain functional, but ear'evolution took water-borne sound. Third, because of extreme variations among whales in place in tandem with other body reconfigurations. Just as the physical animal size, sound use patterns, and habitats, differences that we see among demands ofoperat.ing in water exacted a structural price in the locomotory whale and dolphin ears that have land mammal parallels can teach us some­ and t~rmoregulatory systems of marine mammals, the physics of swim­ thing about how auditory anatomy is shaped by physiologic and environ­ ming, diving, and resting on the sudace reshaped the head. Modem mental factors. cetaceans have the most derived cranial structure of any mammal (Thewis­ Therefore, the most cogent reason for studying whale ears is simply to sen 1998; Cranford, Chapter 3). "Telescoping," a term coined by Miller find out how they to do it, that is, how do they hear-at high speed, under (1923), refers to the evolutionary revamping of the cetacean face. As the pressure, and underwater. anterior cranial structures pushed up and back, one bone sliding over another, every facet of the auditory periphery was modified: pinnae and external auditory canals were lost, the middle and inner ear capsules fused, 2. Comparative Acoustics: Sound in Air Versus Water and a new ear complex with the bone density of enamel erupted from its intracranial position to settle into a newly formed, cavernous peribulLar To understand ears, it is imperative to understand not only how they were sinus. Today, all cetaceans are absolute aquatics, unable to move, reproduce, evolutionarily tailored by the fundamental needs ofthe animal but also how or feed on land, and their ears are so fully adapted to water-borne sound the information options were constrained by the acoustic properties of the that they may no longer be able to detect or interpret airborne signals. Con­ medium in which each species evolved. To properly assess whale ears and sequently they have ancestral ear elements in common with land mammals place them in a general mammalian hearing context,· it is necessary to but have added hydro-related specializations that hold clues to media­ understand how the physical properties of water vs. air affect acoustic cues. dependent hearing mechanisms. Because water is denser than air, sound in water travels faster and with Currently, there are 76 extant species of whales, ranging in size from less attenuation than sound in air. Sound speed (c) in moist ambient sudace the harbor porpoise (Phocoena phocoena, 1m, 55 kg) to the blue whale air is approximately 34Om/s.
Recommended publications
  • Inter and Intra Specific Variation In
    the presence of a human operator. Recordings collected using seafloor instru- 2:00 ments do not have associated visual observations, so species must be identi- fied based on their calls. Visually validated acoustic recordings are necessary 2pABa5. Relative abundance of sound scattering organisms in the for training acoustic species classifiers and so most are trained using data col- Northwestern Hawaiian Islands is a driver for some odontocete forag- Adrienne M. Copeland (Univ. of Hawaii at Manoa, P.O. Box 1106, Kai- lected near the sea surface. The suitability of using classifiers trained using ers. surface recordings to analyze recordings obtained at depth is unknown. To lua, HI 96734, [email protected]), Whitlow W. Au (Hawaii Inst. of Marine Biology, Kailua, HI), Amanda Bradford, Erin Oleson, and Jeffrey investigate this, we used a vertical array of four Ecological Acoustic Record- ers (EARs) spaced 90 m apart to record delphinids at different depths. The Polovina (Pacific Islands Fisheries Sci. Ctr., NOAA, Honolulu, HI) same whistles were measured from each EAR and median values of 17 spec- Previous studies in the Northwestern Hawaiian Islands (NWHI) focused trographic variables were compared among EARs for six acoustic encounters. on shallower communities in and near reefs and did not investigate the For five of the encounters, there were significant differences in whistle varia- organisms living in deeper waters that some apex predators rely on for food, bles among EARs, most commonly in frequency variables. When a random e.g., some odontocetes forage at depths greater than 400 m. To examine the forest classifier was used to identify these whistles to species, the same five relationship between deep-diving odontocete predators and prey, a Simrad encounters were classified as different species when recorded at different EK60 echosounder operating at 70 kHz collected acoustic abundance depths.
    [Show full text]
  • New ISO Standards for Hearing Protectors (A)
    Downloaded from orbit.dtu.dk on: Sep 25, 2021 New ISO standards for hearing protectors (A) Poulsen, Torben Published in: Acoustical Society of America. Journal Publication date: 2000 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Poulsen, T. (2000). New ISO standards for hearing protectors (A). Acoustical Society of America. Journal, 108(5), 2619-2619. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. THURSDAY MORNING, 7 DECEMBER 2000 CATAMARAN ROOM, 8:25 TO 11:30 A.M. Session 4aAA Architectural Acoustics: Theme Park Acoustics David E. Marsh, Chair Pelton Marsh Kinsella, 1420 West Mockingbird Lane, #400, Dallas, Texas 75247-4932 Chair’s Introduction—8:25 Invited Papers 8:30 4aAA1. Challenges and more in the acoustic design of an attraction. Neil A. Shaw and Ray Van den Broeck ͑Menlo Sci. Acoust., Inc., P.O.
    [Show full text]
  • Sessions Full Week
    MONDAY MORNING, 2 DECEMBER 2013 GOLDEN GATE 4/5, 9:00 A.M. TO 11:45 A.M Session 1aAA Architectural Acoustics: General Topics in Architectural Acoustics 1a MON. AM Steven D. Pettyjohn, Chair The Acoustics & Vibration Group, Inc., 5700 Broadway, Sacramento, CA 95820 Contributed Papers 9:00 mechanisms allows us to predict how this ability is lost in the presence of reflections and noise, and to predict a number of ways that real clarity can 1aAA1. Toward reliable metrics for Sacred Harp singing spaces. be measured and optimized in classrooms, lecture halls, and performance Benjamin J. Copenhaver, Scott J. Schoen, and Michael R. Haberman venues of all types. This paper will describe and demonstrate how reflec- (Mech. Eng. Dept. and Appl. Res. Labs., The Univ. of Texas at Austin, P.O. tions degrade the closeness or clarity of sounds, and how this degradation Box 8029, Austin, TX 78713-8029, [email protected]) can be prevented or ameliorated. Examples of old and new spaces with ei- Sacred Harp singing, a common type of shape-note singing, is a centu- ther excellent or poor clarity will be presented, along with a few examples ries-old tradition of American community choral music. It is traditionally a of recent improvements to existing halls. participatory form of music with no distinction between performers and au- dience, a characteristic that makes for acoustical requirements that differ 09:45 considerably from those of a concert hall or even a typical worship space. In the spirit of the text Concert Halls and Opera Houses by L. Beranek, we 1aAA4.
    [Show full text]
  • Marine Mammal Populations and Ocean Noise
    http://www.nap.edu/catalog/11147.html We ship printed books within 1 business day; personal PDFs are available immediately. Marine Mammal Populations and Ocean Noise: Determining When Noise Causes Biologically Significant Effects Committee on Characterizing Biologically Significant Marine Mammal Behavior, National Research Council ISBN: 0-309-54667-2, 142 pages, 6 x 9, (2005) This PDF is available from the National Academies Press at: http://www.nap.edu/catalog/11147.html Visit the National Academies Press online, the authoritative source for all books from the National Academy of Sciences, the National Academy of Engineering, the Institute of Medicine, and the National Research Council: • Download hundreds of free books in PDF • Read thousands of books online for free • Explore our innovative research tools – try the “Research Dashboard” now! • Sign up to be notified when new books are published • Purchase printed books and selected PDF files Thank you for downloading this PDF. If you have comments, questions or just want more information about the books published by the National Academies Press, you may contact our customer service department toll- free at 888-624-8373, visit us online, or send an email to [email protected]. This book plus thousands more are available at http://www.nap.edu. Copyright © National Academy of Sciences. All rights reserved. Unless otherwise indicated, all materials in this PDF File are copyrighted by the National Academy of Sciences. Distribution, posting, or copying is strictly prohibited without written permission of the National Academies Press. Request reprint permission for this book. Marine Mammal Populations and Ocean Noise: Determining When Noise Causes Biologically Significant Effects http://www.nap.edu/catalog/11147.html Committee on Characterizing Biologically Significant Marine Mammal Behavior Ocean Studies Board Division on Earth and Life Studies THE NATIONAL ACADEMIES PRESS Washington, DC www.nap.edu Copyright © National Academy of Sciences.
    [Show full text]
  • Acoustical News—Usa
    ACOUSTICAL NEWS—USA Elaine Moran Acoustical Society of America, Suite 1NO1, 2 Huntington Quadrangle, Melville, NY 11747-4502 Editor’s Note: Readers of the journal are encouraged to submit news items on awards, appointments, and other activities about themselves or their colleagues. Deadline dates for news items and notices are 2 months prior to publication. J. Acoust. Soc. Am. 120 ͑3͒, September 20060001-4966/2006/120͑3͒/1133/20/$22.50 © 2006 Acoustical Society of America 1133 1134 J. Acoust. Soc. Am., Vol. 120, No. 3, September 2006 Annual Reports of Technical Committees Award in Animal Bioacoustics for her paper “Sound production patterns from humpback whales in a high latitude foraging area.” In Providence, we ͑See October issue for additional report͒ had two student paper award winners, Charlotte Kotas ͑Georgia Institute of Technology͒ for her paper “Are acoustically induced flows relevant in fish Acoustical Oceanography hearing?” and Anthony Petrites ͑Brown University͒ for his paper “Echolo- Fall 2005 Meeting (Minneapolis, MN). The Technical Committee on cating big brown bats shorten interpulse intervals when flying in high-clutter Acoustical Oceanography ͑AO͒ sponsored two special sessions: ͑1͒ “Inver- environments.” Lee Miller ͑University of Southern Denmark͒ and Bertel sion Using Ambient Noise Sources,” organized by Peter Gerstoft ͑Marine Møhl ͑Aarhus University͒ were both elevated to Fellow status. Physical Laboratory, Scripps͒; and ͑2͒ “Ocean Ecosystem Measurements,” AB sponsored or cosponsored three special sessions at the Minneapo- cosponsored by Animal Bioacoustics ͑AB͒ and organized by Whit Au ͑Ha- lis meeting. These include Cognition in the Acoustic Behavior of Animals waii Inst. of Marine Biology͒ and Van Holliday ͑BAE Systems͒.
    [Show full text]
  • Aalborg Universitet Grafting Acoustic Instruments and Signal Processing: Creative Control and Augmented Expressivity Overholt, D
    Aalborg Universitet Grafting Acoustic Instruments and Signal Processing: Creative Control and Augmented Expressivity Overholt, Daniel; Freed, Adrian Publication date: 2013 Document Version Early version, also known as pre-print Link to publication from Aalborg University Citation for published version (APA): Overholt, D., & Freed, A. (2013). Grafting Acoustic Instruments and Signal Processing: Creative Control and Augmented Expressivity. Abstract from 166th Meeting of the Acoustical Society of America, San Francisco, United States. http://acousticalsociety.org/content/program-166th-meeting-acoustical-society-america General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research. ? You may not further distribute the material or use it for any profit-making activity or commercial gain ? You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us at [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from vbn.aau.dk on: September 26, 2021 MONDAY MORNING, 2 DECEMBER 2013 GOLDEN GATE 4/5, 9:00 A.M. TO 11:45 A.M Session 1aAA Architectural Acoustics: General Topics in Architectural Acoustics 1a MON. AM Steven D. Pettyjohn, Chair The Acoustics & Vibration Group, Inc., 5700 Broadway, Sacramento, CA 95820 Contributed Papers 9:00 mechanisms allows us to predict how this ability is lost in the presence of reflections and noise, and to predict a number of ways that real clarity can 1aAA1.
    [Show full text]
  • 1998 Pacific SRG07 Meeting
    MEETING OF THE PACIFIC SCIENTIFIC REVIEW GROUP SOUTHWEST FISHERIES SCIENCE CENTER, HONOLULU, HI 30 MARCH – 1 APRIL 1998 The seventh meeting of the Pacific Scientific Review Group (SRG) was held at the Southwest Fisheries Science Center in Honolulu, HI on 30 March – 1 April 1998. All Pacific SRG members were in attendance. Also participating were Meghan Donahue, Barb Taylor, Sarah Mesnick, and Bob Brownell from SWFSC in La Jolla, Paul Wade of the Office of Protected Resources, and Bud Antonelis from the SWFSC in Honolulu. For the discussion of Hawaiian marine mammal stocks, participants included Whitlow Au, Adam Frankel, Emily Gardner, Bill Gilmartin, Walter Ikehara, Mark Lammer, Tom Lawrence, Naomi McIntosh, Joe Mobley, and Gene Nitta. Meghan Donahue and Michael Scott served as rapporteurs. Participants and observers are listed in Appendix 1, background documents provided to the group are listed in Appendix 2, and the agenda of the meeting is in Appendix 3. The meeting was chaired by Robin Brown. Robin Brown thanked Hannah Bernard and the staffs of the SWFSC in La Jolla and Honolulu for organizing this meeting and the authors of the sperm whale summary paper (Taylor, Barlow, and Heyning) for providing such a complete background document for the SRG’s discussion. The two major topics for this meeting were the sperm whale Recovery Factor and Hawaiian marine mammals. SPERM WHALES The SRG has devoted much attention to sperm whales because of the uncertainties surrounding the values needed to calculate PBR and because fishery mortality has exceeded PBR. A series of summary papers have been prepared for the SRG on sperm whales (Hester 1996, Taylor 1997, and, for this meeting, Taylor, Barlow, and Heyning 1998).
    [Show full text]
  • Aquatic Mammals Aquatic Mammals, Volume 33, Number 4, 2007 ISSN 0167-5427
    Aquatic Mammals Aquatic Aquatic Mammals, Volume 33, Number 4, 2007 ISSN 0167-5427 Marine Mammal Noise Exposure Criteria: Initial Scientific Recommendations Brandon L. Southall, Ann E. Bowles, William T. Ellison, James J. Finneran, Roger L. Gentry, Aquatic Charles R. Greene Jr., David Kastak, Darlene R. Ketten, James H. Miller, Paul E. Nachtigall, W. John Richardson, Jeanette A. Thomas, & Peter L. Tyack Contents Overview . 411 Chapter 1. Introduction . 415 Mammals Objectives. 415 Historical Perspective . 416 Acoustic Measures and Terminology. 417 Sound Production and Use in Marine Mammals . 419 Responses to Sound . 420 Chapter 2. Structure of the Noise Exposure Criteria . 427 Sound Types. 427 Marine Mammal Functional Hearing Groups . 430 Exposure Criteria Metrics . 434 Levels of Noise Effect: Injury and Behavioral Disturbance . 436 Chapter 3. Criteria for Injury: TTS and PTS . 437 Effects of Noise on Hearing in Marine Mammals: TTS Data . 437 Injury from Noise Exposure: PTS-Onset Calculation . 441 Criteria for Injury from a Single Pulse . 442 Criteria for Injury from Multiple Pulses . 444 Criteria for Injury from Nonpulses . 444 Chapter 4. Criteria for Behavioral Disturbance . 446 Behavioral Response Data Analysis Procedures: Disturbance Criteria and Severity Scaling. 448 Criteria for Behavioral Disturbance: Single Pulse. 451 Behavioral Response Severity Scaling: Multiple Pulses . 452 Behavioral Response Severity Scaling: Nonpulses . 456 Chapter 5. Research Recommendations . 474 Measurements of Anthropogenic Sound Sources and Ambient Noise . 474 Marine Mammal Auditory Processes. 474 Behavioral Responses of Marine Mammals to Sound. 477 Effects of Noise Exposure on Marine Mammal Hearing and Other Systems . 478 Particularly Sensitive Species . 480 Necessary Progressions of Marine Mammal Noise Exposure Criteria .
    [Show full text]
  • 39Th Annual Albert L. Tester Memorial Symposium March 12 - 14, 2014
    39th Annual Albert L. Tester Memorial Symposium March 12 - 14, 2014 “Ridge to Reef, Native Hawai'i” by Melissa Wright Thanks to our many volunteers! James Anderson Giacomo Gilori Lindsay Root Keisha Bahr Whitney Goodell Mark Royer Silke Ballmer Melanie Hutchinson Eva Schemmel Kari Barber Katie Kamelamela Steve Scherrer Jake Buehler Keith Kamikawa Maggie Sogin Ian Caldwell Stephen Karl Yuko Stender Richard Coleman Katie Lubarsky Nadiera Sukhraj Adrienne Copeland Tayler Massey Jamie Sziklay Chelsie Counsell Jessica Maxfield Kaho Tisthammer Rachel Dacks Zack Oyafuso Eric Tong Caroline Dong Angela Richards Carlie Weiner Mary Donovan Donà Christie Wilcox Mackenzie Gerrier Raphael Ritson- Heather Ylitalo- Jonatha Giddens Williams Ward Special thanks to our Faculty Judge: Ruth Gates Poster Judges: James Anderson Keisha Bahr Anuschka Faucci Mark Heckman Melanie Hutchinson Florence Thomas Session Chairs: Charles Birkeland Amy Moran Brian Bowen Floyd Reed Kathleen Cole Andy Taylor Heinz Gert de Couet Florence Thomas Cynthia Hunter Robert Thomson Peter Marko Timothy Tricas 1 Special contributions from: 2014 Tester Organizing Committee Matthew Iacchei Cynthia Hunter Nyssa Silbiger Steven Robinow Jonathan Whitney Robert Thomson We also acknowledge the office staff of the Department of Biology for logistical assistance: Shelley Deakins Matthew Lim Audrey Shintani “Sleeping Wrasses” by Yuko Stender 39th Annual Albert L. Tester Memorial Symposium Sponsors The Department of Biology gratefully acknowledges financial support provided by: The Albert L. Tester Fund (UH Foundation) Dr. Andrew Rossiter, Waikīkī Aquarium Student Activity and Program Fee Board College of Natural Sciences Joint Institute for Marine and Atmospheric Research University of Hawai'i Sea Grant Hawai'i Institute of Marine Biology Pacific Biosciences Research Center Department of Chemistry Department of Oceanography John A.
    [Show full text]
  • Acoustic Ecology of Humpback Whales (Megaptera Novaeangliae) in the Hawaiian Archipelago
    ACOUSTIC ECOLOGY OF HUMPBACK WHALES (MEGAPTERA NOVAEANGLIAE) IN THE HAWAIIAN ARCHIPELAGO A DISSERTATION SUBMITTED TO THE OFFICE OF GRADUATE EDUCATION OF THE UNIVERSITY OF HAWAIʻI AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ZOOLOGY (MARINE BIOLOGY) MAY 2017 By Jessica Chen Dissertation Committee: Whitlow W.L. Au, Chairperson Marc O. Lammers Paul E. Nachtigall Adam A. Pack Eva-Marie Nosal © Copyright 2017 Jessica Chen All rights reserved. i ACKNOWLEDGEMENTS I would like to thank my advisor, Whitlow Au, for all his support and supervision since my entrance into the graduate program and throughout my doctorate research. It takes a lot of patience to guide a biologist through the field of acoustics, and his assistance was priceless. I would like to thank my dissertation committee, Paul Nachtigall, Adam Pack, Marc Lammers, and Eva-Marie Nosal for their valuable guidance and support. I have learned so much from each of you and could not have made it this far without your advice and cooperation. My research involved many parts and people, so I wish to thank all who contributed to the research. Many thanks to my colleagues, past and present, in the Marine Mammal Research Program (MMRP) of the Hawaiʻi Institute of Marine Biology (HIMB) for their guidance and support: Alison Stimpert, Adrienne Copeland, Lee Shannon, Giacomo Giorli, Aude Pacini, Michael Richlen, Alexis Rudd, Adam Smith, Ali Bayliss, Aliza Milette-Winfree, and Helen Ou. Additional thanks to “honorary labmates” Brendan Rideout, Andy Dewald, and Anne Rosinski. I would also like to thank the many volunteers who came out to assist with fieldwork and data collection: Andrea Bendlin, Chelsie Counsell, Elia Herman, Merra Howe, Zachary Jambor, Anke Kuegler, Sheldon Plentovich, Mark Royer, Sabena Siddiqui, Hilary Street, Chelsea Szydlowski, Allison Taranto, Grant Thompson, Dana Wilkes, and Eden Zhang.
    [Show full text]
  • Kelly J. Benoit-Bird
    Kelly J. Benoit-Bird Monterey Bay Aquarium Research Institute 7700 Sandholdt Road, Moss Landing, CA 95039 [email protected] (831) 775-1833 Research Interests My work focuses on the ecological importance of spatial and temporal dynamics in pelagic marine ecosystems. I am particularly interested in the effects of behavior like schooling, cooperation, and other ‘group’ processes on inter-individual and predator-prey interactions. In order to address complex, four-dimensional problems, a significant emphasis of my efforts is the development and thoughtful application of active acoustic techniques, integration of acoustic technologies within novel platforms, and the combination of these tools with other approaches including optical sampling, animal tagging, and behavioral modeling. Current Positions Senior Scientist (Level V of V) 07/16-present Professor (By Courtesy) College of Earth, Ocean, & Atmospheric Sciences, Oregon State Univ. 07/18-present Professor (By Courtesy) Hopkins Marine Laboratory, Stanford University 10/17-present Education University of Hawaii at Manoa, Honolulu, Hawaii 2003 Ph.D., Department of Zoology Brown University, Providence, Rhode Island 1998 B.S. with Honors, Aquatic Biology Duke University Marine Laboratory, Beaufort, North Carolina 1/97-5/97 Previous Experience Professor (with indefinite tenure) Assistant 07/04- 06/09; Associate 07/09-06/14; Professor 07/14-07/18 College of Earth, Ocean, & Atmospheric Sciences, Oregon State University Post-Doctoral Fellow, Hawaii Institute of Marine Biology 05/03-07/04 Research advisor:
    [Show full text]
  • Kelly J. Benoit-Bird
    Kelly J. Benoit-Bird Monterey Bay Aquarium Research Institute 7700 Sandholdt Road, Moss Landing, CA 95039 [email protected] (831) 775-1833 Research Interests My work focuses on the ecological importance of spatial and temporal dynamics in pelagic marine ecosystems. I am particularly interested in the effects of behavior like schooling, cooperation, and other ‘group’ processes on inter-individual and predator-prey interactions. In order to address complex, four-dimensional problems, a significant emphasis of my efforts is the development and thoughtful application of active acoustic techniques, integration of acoustic technologies within novel platforms, and the combination of these tools with other approaches including optical sampling, animal tagging, and behavioral modeling. Current Positions Research Chair, Monterey Bay Aquarium Research Institute 02/21-present Senior Scientist (Level V of V), Monterey Bay Aquarium Research Institute 07/16-present Professor (By Courtesy) College of Earth, Ocean, & Atmospheric Sciences, Oregon State Univ. 07/18-present Professor (By Courtesy) Hopkins Marine Laboratory, Stanford University 10/17-present Education University of Hawaii at Manoa, Honolulu, Hawaii 2003 Ph.D., Department of Zoology Brown University, Providence, Rhode Island 1998 B.S. with Honors, Aquatic Biology Duke University Marine Laboratory, Beaufort, North Carolina 1/97-5/97 Previous Experience Professor (with indefinite tenure) Assistant 07/04- 06/09; Associate 07/09-06/14; Professor 07/14-07/18 (on leave 07/16-07/18) College of Earth, Ocean, & Atmospheric Sciences, Oregon State University Post-Doctoral Fellow, Hawaii Institute of Marine Biology 05/03-07/04 Research advisor: Whitlow Au Research Assistant, Bottomfish Project, Hawaii Institute of Marine Biology 08/00-05/03 Research advisors: Christopher D.
    [Show full text]