The Algebraic View of Computation Attila Egri-Nagy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mathematics I Basic Mathematics
Mathematics I Basic Mathematics Prepared by Prof. Jairus. Khalagai African Virtual university Université Virtuelle Africaine Universidade Virtual Africana African Virtual University NOTICE This document is published under the conditions of the Creative Commons http://en.wikipedia.org/wiki/Creative_Commons Attribution http://creativecommons.org/licenses/by/2.5/ License (abbreviated “cc-by”), Version 2.5. African Virtual University Table of ConTenTs I. Mathematics 1, Basic Mathematics _____________________________ 3 II. Prerequisite Course or Knowledge _____________________________ 3 III. Time ____________________________________________________ 3 IV. Materials _________________________________________________ 3 V. Module Rationale __________________________________________ 4 VI. Content __________________________________________________ 5 6.1 Overview ____________________________________________ 5 6.2 Outline _____________________________________________ 6 VII. General Objective(s) ________________________________________ 8 VIII. Specific Learning Objectives __________________________________ 8 IX. Teaching and Learning Activities ______________________________ 10 X. Key Concepts (Glossary) ____________________________________ 16 XI. Compulsory Readings ______________________________________ 18 XII. Compulsory Resources _____________________________________ 19 XIII. Useful Links _____________________________________________ 20 XIV. Learning Activities _________________________________________ 23 XV. Synthesis Of The Module ___________________________________ -
The Mathematical Structure of the Aesthetic
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 June 2017 doi:10.20944/preprints201706.0055.v1 Peer-reviewed version available at Philosophies 2017, 2, 14; doi:10.3390/philosophies2030014 Article A New Kind of Aesthetics – The Mathematical Structure of the Aesthetic Akihiro Kubota 1,*, Hirokazu Hori 2, Makoto Naruse 3 and Fuminori Akiba 4 1 Art and Media Course, Department of Information Design, Tama Art University, 2-1723 Yarimizu, Hachioji, Tokyo 192-0394, Japan; [email protected] 2 Interdisciplinary Graduate School, University of Yamanashi, 4-3-11 Takeda, Kofu,Yamanashi 400-8511, Japan; [email protected] 3 Network System Research Institute, National Institute of Information and Communications Technology, 4-2-1 Nukui-kita, Koganei, Tokyo 184-8795, Japan; [email protected] 4 Philosophy of Information Group, Department of Systems and Social Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-42-679-5634 Abstract: This paper proposes a new approach to investigation into the aesthetics. Specifically, it argues that it is possible to explain the aesthetic and its underlying dynamic relations with axiomatic structure (the octahedral axiom derived category) based on contemporary mathematics – namely, category theory – and through this argument suggests the possibility for discussion about the mathematical structure of the aesthetic. If there was a way to describe the structure of aesthetics with the language of mathematical structures and mathematical axioms – a language completely devoid of arbitrariness – then we would make possible a synthetical argument about the essential human activity of “the aesthetics”, and we would also gain a new method and viewpoint on the philosophy and meaning of the act of creating a work of art and artistic activities. -
Structure” of Physics: a Case Study∗ (Journal of Philosophy 106 (2009): 57–88)
The “Structure” of Physics: A Case Study∗ (Journal of Philosophy 106 (2009): 57–88) Jill North We are used to talking about the “structure” posited by a given theory of physics. We say that relativity is a theory about spacetime structure. Special relativity posits one spacetime structure; different models of general relativity posit different spacetime structures. We also talk of the “existence” of these structures. Special relativity says that the world’s spacetime structure is Minkowskian: it posits that this spacetime structure exists. Understanding structure in this sense seems important for understand- ing what physics is telling us about the world. But it is not immediately obvious just what this structure is, or what we mean by the existence of one structure, rather than another. The idea of mathematical structure is relatively straightforward. There is geometric structure, topological structure, algebraic structure, and so forth. Mathematical structure tells us how abstract mathematical objects t together to form different types of mathematical spaces. Insofar as we understand mathematical objects, we can understand mathematical structure. Of course, what to say about the nature of mathematical objects is not easy. But there seems to be no further problem for understanding mathematical structure. ∗For comments and discussion, I am extremely grateful to David Albert, Frank Arntzenius, Gordon Belot, Josh Brown, Adam Elga, Branden Fitelson, Peter Forrest, Hans Halvorson, Oliver Davis Johns, James Ladyman, David Malament, Oliver Pooley, Brad Skow, TedSider, Rich Thomason, Jason Turner, Dmitri Tymoczko, the philosophy faculty at Yale, audience members at The University of Michigan in fall 2006, and in 2007 at the Paci c APA, the Joint Session of the Aristotelian Society and Mind Association, and the Bellingham Summer Philosophy Conference. -
Group Theory
Appendix A Group Theory This appendix is a survey of only those topics in group theory that are needed to understand the composition of symmetry transformations and its consequences for fundamental physics. It is intended to be self-contained and covers those topics that are needed to follow the main text. Although in the end this appendix became quite long, a thorough understanding of group theory is possible only by consulting the appropriate literature in addition to this appendix. In order that this book not become too lengthy, proofs of theorems were largely omitted; again I refer to other monographs. From its very title, the book by H. Georgi [211] is the most appropriate if particle physics is the primary focus of interest. The book by G. Costa and G. Fogli [102] is written in the same spirit. Both books also cover the necessary group theory for grand unification ideas. A very comprehensive but also rather dense treatment is given by [428]. Still a classic is [254]; it contains more about the treatment of dynamical symmetries in quantum mechanics. A.1 Basics A.1.1 Definitions: Algebraic Structures From the structureless notion of a set, one can successively generate more and more algebraic structures. Those that play a prominent role in physics are defined in the following. Group A group G is a set with elements gi and an operation ◦ (called group multiplication) with the properties that (i) the operation is closed: gi ◦ g j ∈ G, (ii) a neutral element g0 ∈ G exists such that gi ◦ g0 = g0 ◦ gi = gi , (iii) for every gi exists an −1 ∈ ◦ −1 = = −1 ◦ inverse element gi G such that gi gi g0 gi gi , (iv) the operation is associative: gi ◦ (g j ◦ gk) = (gi ◦ g j ) ◦ gk. -
Axioms and Algebraic Systems*
Axioms and algebraic systems* Leong Yu Kiang Department of Mathematics National University of Singapore In this talk, we introduce the important concept of a group, mention some equivalent sets of axioms for groups, and point out the relationship between the individual axioms. We also mention briefly the definitions of a ring and a field. Definition 1. A binary operation on a non-empty set S is a rule which associates to each ordered pair (a, b) of elements of S a unique element, denoted by a* b, in S. The binary relation itself is often denoted by *· It may also be considered as a mapping from S x S to S, i.e., * : S X S ~ S, where (a, b) ~a* b, a, bE S. Example 1. Ordinary addition and multiplication of real numbers are binary operations on the set IR of real numbers. We write a+ b, a· b respectively. Ordinary division -;- is a binary relation on the set IR* of non-zero real numbers. We write a -;- b. Definition 2. A binary relation * on S is associative if for every a, b, c in s, (a* b) * c =a* (b *c). Example 2. The binary operations + and · on IR (Example 1) are as sociative. The binary relation -;- on IR* (Example 1) is not associative smce 1 3 1 ~ 2) ~ 3 _J_ - 1 ~ (2 ~ 3). ( • • = -6 I 2 = • • * Talk given at the Workshop on Algebraic Structures organized by the Singapore Mathemat- ical Society for school teachers on 5 September 1988. 11 Definition 3. A semi-group is a non-€mpty set S together with an asso ciative binary operation *, and is denoted by (S, *). -
A List of Arithmetical Structures Complete with Respect to the First
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Theoretical Computer Science 257 (2001) 115–151 www.elsevier.com/locate/tcs A list of arithmetical structures complete with respect to the ÿrst-order deÿnability Ivan Korec∗;X Slovak Academy of Sciences, Mathematical Institute, Stefanikovaà 49, 814 73 Bratislava, Slovak Republic Abstract A structure with base set N is complete with respect to the ÿrst-order deÿnability in the class of arithmetical structures if and only if the operations +; × are deÿnable in it. A list of such structures is presented. Although structures with Pascal’s triangles modulo n are preferred a little, an e,ort was made to collect as many simply formulated results as possible. c 2001 Elsevier Science B.V. All rights reserved. MSC: primary 03B10; 03C07; secondary 11B65; 11U07 Keywords: Elementary deÿnability; Pascal’s triangle modulo n; Arithmetical structures; Undecid- able theories 1. Introduction A list of (arithmetical) structures complete with respect of the ÿrst-order deÿnability power (shortly: def-complete structures) will be presented. (The term “def-strongest” was used in the previous versions.) Most of them have the base set N but also structures with some other universes are considered. (Formal deÿnitions are given below.) The class of arithmetical structures can be quasi-ordered by ÿrst-order deÿnability power. After the usual factorization we obtain a partially ordered set, and def-complete struc- tures will form its greatest element. Of course, there are stronger structures (with respect to the ÿrst-order deÿnability) outside of the class of arithmetical structures. -
Basic Concepts of Set Theory, Functions and Relations 1. Basic
Ling 310, adapted from UMass Ling 409, Partee lecture notes March 1, 2006 p. 1 Basic Concepts of Set Theory, Functions and Relations 1. Basic Concepts of Set Theory........................................................................................................................1 1.1. Sets and elements ...................................................................................................................................1 1.2. Specification of sets ...............................................................................................................................2 1.3. Identity and cardinality ..........................................................................................................................3 1.4. Subsets ...................................................................................................................................................4 1.5. Power sets .............................................................................................................................................4 1.6. Operations on sets: union, intersection...................................................................................................4 1.7 More operations on sets: difference, complement...................................................................................5 1.8. Set-theoretic equalities ...........................................................................................................................5 Chapter 2. Relations and Functions ..................................................................................................................6 -
Binary Operations
4-22-2007 Binary Operations Definition. A binary operation on a set X is a function f : X × X → X. In other words, a binary operation takes a pair of elements of X and produces an element of X. It’s customary to use infix notation for binary operations. Thus, rather than write f(a, b) for the binary operation acting on elements a, b ∈ X, you write afb. Since all those letters can get confusing, it’s also customary to use certain symbols — +, ·, ∗ — for binary operations. Thus, f(a, b) becomes (say) a + b or a · b or a ∗ b. Example. Addition is a binary operation on the set Z of integers: For every pair of integers m, n, there corresponds an integer m + n. Multiplication is also a binary operation on the set Z of integers: For every pair of integers m, n, there corresponds an integer m · n. However, division is not a binary operation on the set Z of integers. For example, if I take the pair 3 (3, 0), I can’t perform the operation . A binary operation on a set must be defined for all pairs of elements 0 from the set. Likewise, a ∗ b = (a random number bigger than a or b) does not define a binary operation on Z. In this case, I don’t have a function Z × Z → Z, since the output is ambiguously defined. (Is 3 ∗ 5 equal to 6? Or is it 117?) When a binary operation occurs in mathematics, it usually has properties that make it useful in con- structing abstract structures. -
Binary Operations
Binary operations 1 Binary operations The essence of algebra is to combine two things and get a third. We make this into a definition: Definition 1.1. Let X be a set. A binary operation on X is a function F : X × X ! X. However, we don't write the value of the function on a pair (a; b) as F (a; b), but rather use some intermediate symbol to denote this value, such as a + b or a · b, often simply abbreviated as ab, or a ◦ b. For the moment, we will often use a ∗ b to denote an arbitrary binary operation. Definition 1.2. A binary structure (X; ∗) is a pair consisting of a set X and a binary operation on X. Example 1.3. The examples are almost too numerous to mention. For example, using +, we have (N; +), (Z; +), (Q; +), (R; +), (C; +), as well as n vector space and matrix examples such as (R ; +) or (Mn;m(R); +). Using n subtraction, we have (Z; −), (Q; −), (R; −), (C; −), (R ; −), (Mn;m(R); −), but not (N; −). For multiplication, we have (N; ·), (Z; ·), (Q; ·), (R; ·), (C; ·). If we define ∗ ∗ ∗ Q = fa 2 Q : a 6= 0g, R = fa 2 R : a 6= 0g, C = fa 2 C : a 6= 0g, ∗ ∗ ∗ then (Q ; ·), (R ; ·), (C ; ·) are also binary structures. But, for example, ∗ (Q ; +) is not a binary structure. Likewise, (U(1); ·) and (µn; ·) are binary structures. In addition there are matrix examples: (Mn(R); ·), (GLn(R); ·), (SLn(R); ·), (On; ·), (SOn; ·). Next, there are function composition examples: for a set X,(XX ; ◦) and (SX ; ◦). -
Do We Need Recursion?
Do We Need Recursion? V´ıtˇezslav Svejdarˇ Charles University in Prague Appeared in Igor Sedl´arand Martin Blicha eds., The Logica Yearbook 2019, pp. 193{204, College Publications, London, 2020. Abstract The operation of primitive recursion, and recursion in a more general sense, is undoubtedly a useful tool. However, we will explain that in two situa- tion where we work with it, namely in the definition of partial recursive functions and in logic when defining the basic syntactic notions, its use can be avoided. We will also explain why one would want to do so. 1 What is recursion, where do we meet it? Recursion in a narrow sense is an operation with multivariable functions whose arguments are natural numbers. Let z denote the k-tuple z1; : : ; zk (where the number k of variables does not have to be indicated), and let fb(x; z) denote the code hf(0; z); : : ; f(x − 1; z)i of the sequence f(0; z); : : ; f(x − 1; z) under some suitable coding of finite sequences. If (1), (2) or (3) holds for any choice of arguments: f(0) = a; f(x + 1) = h(f(x); x); (1) f(0; z) = g(z); f(x + 1; z) = h(f(x; z); x; z); (2) f(x; z) = h(fb(x; z); z); (3) then in the cases (1) and (2) we say that f is derived from a number a and a function h or from two functions g and h by primitive recursion, while in the case (3) we say that f is derived from h by course-of-values recursion. -
Ernesto Calleros: an Introduction to Group Theory
FINAL REPORT: INTRODUCTION TO GROUPS ERNESTO D. CALLEROS PROFESSOR DAVID LARSON MATH 482 25 APRIL 2013 TEXAS A&M UNIVERSITY A group in an algebra setting is a type of set that, together with some operation, obeys a predefined set of rules called axioms. In order to understand these rules and to be able to define them precisely, it helps to understand binary operations first. Definition 1. A binary operation ∗ on a set S is a function mapping S × S into S. For each (a; b) 2 S × S, we will denote the element ∗(a; b) of S by a ∗ b. To emphasize certain conditions for a binary operation on a set, we give the following remarks: Remark 2. By definition, a binary operation ∗ on a set S is well-defined; that is, ∗ assigns exactly one element to each possible ordered pair of elements in S. Remark 3. For a binary operation ∗ on a set S, S is closed under ∗; that is, for all a; b 2 S, we also have a ∗ b 2 S. We proceed with some examples. Example 4. Determine if usual addition is a binary operation on the sets Z, Q, f1,2,3g. Solution. Given a; b 2 Z, a + b is a well-defined element of Z. Also, Z is closed under addition, so addition is a binary operation on Z. Similarly, addition is a binary operation on Q. However, 2 + 2 = 4 2= f1; 2; 3g, so addition is not closed on f1; 2; 3g, and thus is not a binary operation on this set. -
The (Homo)Morphism Concept: Didactic Transposition, Meta-Discourse and Thematisation Thomas Hausberger
The (homo)morphism concept: didactic transposition, meta-discourse and thematisation Thomas Hausberger To cite this version: Thomas Hausberger. The (homo)morphism concept: didactic transposition, meta-discourse and the- matisation. International Journal of Research in Undergraduate Mathematics Education, Springer, 2017, 3 (3), pp.417-443. 10.1007/s40753-017-0052-7. hal-01408419 HAL Id: hal-01408419 https://hal.archives-ouvertes.fr/hal-01408419 Submitted on 20 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Noname manuscript No. (will be inserted by the editor) The (homo)morphism concept: didactic transposition, meta-discourse and thematisation Thomas Hausberger Received: date / Accepted: date Abstract This article focuses on the didactic transposition of the homomor- phism concept and on the elaboration and evaluation of an activity dedicated to the teaching of this fundamental concept in Abstract Algebra. It does not restrict to Group Theory but on the contrary raises the issue of the teaching and learning of algebraic structuralism, thus bridging Group and Ring Theo- ries and highlighting the phenomenon of thematisation. Emphasis is made on epistemological analysis and its interaction with didactics. The rationale of the isomorphism and homomorphism concepts is discussed, in particular through a textbook analysis focusing on the meta-discourse that mathematicians offer to illuminate the concepts.