Iowa Amphibians

Total Page:16

File Type:pdf, Size:1020Kb

Iowa Amphibians about two months. The female remains with the eggs until they hatch. Occasionally, mudpuppies are caught by people fishing and recently a mudpuppy caught with minnow bait in the Shellrock River, Floyd County was recorded. The mudpuppy is found in most large rivers in eastern Iowa, however records for this species are scarce. Populations may be declining as a result of habitat degradation. Habitats Mississippi River; interior rivers and streams Iowa Status endangered; native Channelization and the increase in pollutants in lower reaches of larger rivers likely affects the abundance of mudpuppies. Iowa Range eastern one-third of Iowa mudpuppy Necturus maculosus Bibliography Iowa Department of Natural Resources. 2001. Biodiversity of Iowa: Aquatic Habitats CD-ROM. Kingdom: Animalia Division/Phylum: Chordata - vertebrates Class: Amphibia Order: Caudata Family: Proteidae Features Iowa’s only fully aquatic salamander, the mudpuppy, ranges from eight to seventeen inches long. Its bushy, deep-red, external gills are retained throughout life. The body is gray or rust-brown. The back usually has scattered blue-black spots. The belly is gray, sometimes with dark spots. It has four toes on each of its feet (most salamanders have five toes on each hind foot). A dark stripe is present through the eye. The name “mudpuppy” comes from the mistaken belief that the animal “barks.” Natural History The mudpuppy lives in lakes, rivers, and large creeks. It is a very slimy animal. It eats crayfish, fishes, arthropods (spiders, insects, mites, etc.), annelids (segmented worms), and mollusks (snails, mussels). It is active at night throughout the year. Breeding occurs in the fall, but the eggs are not deposited until spring. About 100 eggs are laid, usually on the underside of a submerged rock or log. Eggs hatch in Iowa Department of Natural Resources www.iowadnr.gov.
Recommended publications
  • Comparative Osteology and Evolution of the Lungless Salamanders, Family Plethodontidae David B
    COMPARATIVE OSTEOLOGY AND EVOLUTION OF THE LUNGLESS SALAMANDERS, FAMILY PLETHODONTIDAE DAVID B. WAKE1 ABSTRACT: Lungless salamanders of the family Plethodontidae comprise the largest and most diverse group of tailed amphibians. An evolutionary morphological approach has been employed to elucidate evolutionary rela­ tionships, patterns and trends within the family. Comparative osteology has been emphasized and skeletons of all twenty-three genera and three-fourths of the one hundred eighty-three species have been studied. A detailed osteological analysis includes consideration of the evolution of each element as well as the functional unit of which it is a part. Functional and developmental aspects are stressed. A new classification is suggested, based on osteological and other char­ acters. The subfamily Desmognathinae includes the genera Desmognathus, Leurognathus, and Phaeognathus. Members of the subfamily Plethodontinae are placed in three tribes. The tribe Hemidactyliini includes the genera Gyri­ nophilus, Pseudotriton, Stereochilus, Eurycea, Typhlomolge, and Hemidac­ tylium. The genera Plethodon, Aneides, and Ensatina comprise the tribe Pleth­ odontini. The highly diversified tribe Bolitoglossini includes three super­ genera. The supergenera Hydromantes and Batrachoseps include the nominal genera only. The supergenus Bolitoglossa includes Bolitoglossa, Oedipina, Pseudoeurycea, Chiropterotriton, Parvimolge, Lineatriton, and Thorius. Manculus is considered to be congeneric with Eurycea, and Magnadig­ ita is congeneric with Bolitoglossa. Two species are assigned to Typhlomolge, which is recognized as a genus distinct from Eurycea. No. new information is available concerning Haptoglossa. Recognition of a family Desmognathidae is rejected. All genera are defined and suprageneric groupings are defined and char­ acterized. Range maps are presented for all genera. Relationships of all genera are discussed.
    [Show full text]
  • Necturus Maculosus)
    MINNESOTA PROFILE Mlldplippy (Necturus maculosus) Appearance The mudpuppy is Minnesota's largest salamander species, with adults reaching lengths of 13 inches or more. Brown or grayish in color, the mudpuppy has spots peppered across its back and sides, and its underside is light gray or buff. Hatchlings and juveniles have a yellow stripe along each side. The mud- puppy has small eyes and a paddlelike tail, which it uses to propel itself during rapid swimming. The sides of the head are adorned with bushy, red gills, that are bright red and conspicuous when in heavily oxygenated water, but are smaller, more compressed, and darker colored when in low-oxygenated water. Tiger salamander larvae are often mistaken for mudpuppies because they have a similar body structure and external gills.The best distinguishing trait: Mudpuppies have four toes on each hind foot, and larval tiger salamanders have five. People often refer to mudpuppies as waterdogs or axolotls, but true waterdogs and axolotls are not found in Minnesota. Range Mudpuppies are found primarily in the eastern United States.Their range extends from southeastern Manitoba and southern Quebec, to eastern Kansas, and to northern Mississippi, Alabama, and Georgia. In Minnesota, mudpuppies inhabit the Mississippi, St. Croix, Minnesota, and Red river drainages. Most recorded sightings have been on the state's eastern and western edges, except for a few records along the Minnesota River. Habitat Minnesota's only fully aquatic salamander species, the mudpuppy lives in water during every stage of its life cycle. In eastern Minnesota they appear to prefer rivers with rocky or gravelly substrates.
    [Show full text]
  • AMPHIBIANS of OHIO F I E L D G U I D E DIVISION of WILDLIFE INTRODUCTION
    AMPHIBIANS OF OHIO f i e l d g u i d e DIVISION OF WILDLIFE INTRODUCTION Amphibians are typically shy, secre- Unlike reptiles, their skin is not scaly. Amphibian eggs must remain moist if tive animals. While a few amphibians Nor do they have claws on their toes. they are to hatch. The eggs do not have are relatively large, most are small, deli- Most amphibians prefer to come out at shells but rather are covered with a jelly- cately attractive, and brightly colored. night. like substance. Amphibians lay eggs sin- That some of these more vulnerable spe- gly, in masses, or in strings in the water The young undergo what is known cies survive at all is cause for wonder. or in some other moist place. as metamorphosis. They pass through Nearly 200 million years ago, amphib- a larval, usually aquatic, stage before As with all Ohio wildlife, the only ians were the first creatures to emerge drastically changing form and becoming real threat to their continued existence from the seas to begin life on land. The adults. is habitat degradation and destruction. term amphibian comes from the Greek Only by conserving suitable habitat to- Ohio is fortunate in having many spe- amphi, which means dual, and bios, day will we enable future generations to cies of amphibians. Although generally meaning life. While it is true that many study and enjoy Ohio’s amphibians. inconspicuous most of the year, during amphibians live a double life — spend- the breeding season, especially follow- ing part of their lives in water and the ing a warm, early spring rain, amphib- rest on land — some never go into the ians appear in great numbers seemingly water and others never leave it.
    [Show full text]
  • The Salamanders of Tennessee
    Salamanders of Tennessee: modified from Lisa Powers tnwildlife.org Follow links to Nongame The Salamanders of Tennessee Photo by John White Salamanders are the group of tailed, vertebrate animals that along with frogs and caecilians make up the class Amphibia. Salamanders are ectothermic (cold-blooded), have smooth glandular skin, lack claws and must have a moist environment in which to live. 1 Amphibian Declines Worldwide, over 200 amphibian species have experienced recent population declines. Scientists have reports of 32 species First discovered in 1967, the golden extinctions, toad, Bufo periglenes, was last seen mainly species of in 1987. frogs. Much attention has been given to the Anurans (frogs) in recent years, however salamander populations have been poorly monitored. Photo by Henk Wallays Fire Salamander - Salamandra salamandra terrestris 2 Why The Concern For Salamanders in Tennessee? Their key role and high densities in many forests The stability in their counts and populations Their vulnerability to air and water pollution Their sensitivity as a measure of change The threatened and endangered status of several species Their inherent beauty and appeal as a creature to study and conserve. *Possible Factors Influencing Declines Around the World Climate Change Habitat Modification Habitat Fragmentation Introduced Species UV-B Radiation Chemical Contaminants Disease Trade in Amphibians as Pets *Often declines are caused by a combination of factors and do not have a single cause. Major Causes for Declines in Tennessee Habitat Modification -The destruction of natural habitats is undoubtedly the biggest threat facing amphibians in Tennessee. Housing, shopping center, industrial and highway construction are all increasing throughout the state and consequently decreasing the amount of available habitat for amphibians.
    [Show full text]
  • Amphiumidae Cryptobranchidae Proteidae
    Amphiumidae Amphiuma means – Two-toed Amphiuma cryptobranchidae Cryptobranchus alleganiensis – Hellbender Proteidae Necturus maculosus – Mudpuppy Sirenidae Siren intermedia – Lesser Siren Ambystomatidae Ambystoma gracile – Northwestern Salamander Ambystoma tigrinum – Tiger Salamander Ambystoma macrodactylum – Long-toed Salamander Ambystoma californiense – California Tiger Salamander Dicamptodontidae Dicamptodon ensatus – California Giant Salamander Dicamptodon tenebrosus – Pacific Giant Salamander Rhyacotritonidae Rhyacotriton variegatus – Southern Torrent Salamander Salamandridae Taricha torosa – California Newt Taricha Sierrae – Sierra Newt Taricha rivularis – Red-bellied Newt Taricha granulosa – Rough-skinned Newt Plethodontidae Aneides flavipunctatus – Black Salamander Aneides vagrans – Wandering Salamander Aneides ferreus – Clouded Salamander Aneides lugubris – Arboreal Salamander Plethodontidae Ensatina eschscholtzii – Ensatina Plethodontidae Batrachoseps attenuatus – California Slender Salamander Batrachoseps gavilanensis – Gabilan Mountains Slender Salamander Plethodontidae Plethodon dunni – Dunn’s Salamander Plethodon stormi – Siskiyou Mountains Salamander Plethodon elongatus – Del Norte Salamander Plethodon asupak – Scott Bar Salamander Plethodontidae Hydromantes brunus – Limestone Salamander Hydromantes platycephalus – Mount Lyell Salamander Hydromantes shastae – Shasta Salamander Ascaphidae Ascaphus truei – Tailed Frog Pelobatidae Spea hammondii – Western Spadefoot Spea intermontana – Great Basin Spadefoot Scaphiopus couchi
    [Show full text]
  • PRE-SITE Activity SALAMANDER INFORMATION
    EFFECTS OF ACID DEPOSITION Pre-Site Activity SALAMANDER SAlAmAnder informAtion MONITORING Objectives: 1) use the scientific method while Grade Level: High School •Biological Monitoring: a studying biodiversity technique used by scientists to 2) describe the steps in scientific check the condition of a par- Science inquiry Subject Area: ticular species or ecosystem 3) learn the identifying character- over time. istics between different species of Activity time: 60 minutes •Canopy: the top layer of the salamanders forest, the treetops. 4) understand the biodiversity of Setting: Classroom the Great Smoky Mountains Na- •Density: the number of tional Park Skills: Analyzing, Classifying, individuals of a given species 5) recognize the threats to aquatic Collecting information, Con- within a certain area. and terrestrial salamanders necting, Contrasting, Formu- lating questions, Interpreting, •Dichotomous Key: an iden- Background: Researching tification method that narrows When students visit the Smok- down a species in question us- ies on their field trip one group ing a series of pairs of choices. will be collecting data as part of a Vocabulary: Salamander study. This lesson will •All Taxa Biodiversity Inven- •Ecosystem: a system formed introduce the scientific method tory: also called the ATBI. A by the interaction of groups of and use the identifying anatomical research project in the Great organisms with each other and characteristics to key different spe- Smoky Mountains National their environment. cies of salamanders. Park to inventory every life form in the park. It is estimated that •Hypothesis: a proposition To be a scientist you don’t neces- we currently know only 14,000 based on assumptions that can sarily have to have an advanced of an estimated 100,000 species.
    [Show full text]
  • AMPHIBIA: CAUDATA: PROTEIDAE Catalogue of American Amphibians and Reptiles
    m AMPHIBIA: CAUDATA: PROTEIDAE Catalogue of American Amphibians and Reptiles. Dundee, H.A. 1998. Nectlrrlrsprmctntus. Necturr~spunctatus (Gibbes) Dwarf Waterdog Nectlrr~rs: Baird 1850:25 1 . Indicated Necturus -Gibbes. not yet published. Metzohrnnchus punctatris Gibbes 1850: 159. Type locality, "South Santee River, a few miles from its mouth." Holotype, presumably National Museum of Natural History (USNM) 11813 (not seen by author). The first actual specimen was collected in February 1848, by one of Mr. Augustus Shool- bred's negro workers on Shoolbred's plantation but was lost. A few weeks later, additional specimens were presented to Gibbes by Dr. A. Gadsden, and again, shortly thereafter, ad- ditional specimens were given to Gibbes by Mr. Shoolbred. All apparently came from Shoolbred's plantation in 1848. MAP. Range of Necturrrspunctarus. The circle marks the type locality Two others, given to Gibbes by Shoolbred in March 1850, and dots represent most known localities. apparently came from his father's (Dr. Shoolbred) plantation; all were exhibited in Charleston, South Carolina in March 1850 (see Comment). Cope ( 1889) stated that USNM 11 8 13 mander and the smallest species of the genus, maximum TL was the type; it was received from Gibbes and. according to being 189 mm. The tail length ranges from about 3&41% (av- Cope (1 889), was collected in 1850. Cope's mention of cloa- erage 38%) of the TL in adults, with sexual maturity being cal papillae in USNM 11813 would indicate that the speci- reached at approximately 65-70 mm SVL (about 4.5 or more men was a male.
    [Show full text]
  • Key to the Identification of Streamside Salamanders
    Key to the Identification of Streamside Salamanders Ambystoma spp., mole salamanders (Family Ambystomatidae) Appearance : Medium to large stocky salamanders. Large round heads with bulging eyes . Larvae are also stocky and have elaborate gills. Size: 3-8” (Total length). Spotted salamander, Ambystoma maculatum Habitat: Burrowers that spend much of their life below ground in terrestrial habitats. Some species, (e.g. marbled salamander) may be found under logs or other debris in riparian areas. All species breed in fishless isolated ponds or wetlands. Range: Statewide. Other: Five species in Georgia. This group includes some of the largest and most dramatically patterned terrestrial species. Marbled salamander, Ambystoma opacum Amphiuma spp., amphiuma (Family Amphiumidae) Appearance: Gray to black, eel-like bodies with four greatly reduced, non-functional legs (A). Size: up to 46” (Total length) Habitat: Lakes, ponds, ditches and canals, one species is found in deep pockets of mud along the Apalachicola River floodplains. A Range: Southern half of the state. Other: One species, the two-toed amphiuma ( A. means ), shown on the right, is known to occur in A. pholeter southern Georgia; a second species, ,Two-toed amphiuma, Amphiuma means may occur in extreme southwest Georgia, but has yet to be confirmed. The two-toed amphiuma (shown in photo) has two diminutive toes on each of the front limbs. Cryptobranchus alleganiensis , hellbender (Family Cryptobranchidae) Appearance: Very large, wrinkled salamander with eyes positioned laterally (A). Brown-gray in color with darker splotches Size: 12-29” (Total length) A Habitat: Large, rocky, fast-flowing streams. Often found beneath large rocks in shallow rapids. Range: Extreme northern Georgia only.
    [Show full text]
  • Sexual Dimorphism in the Three-Toed Amphiuma, Amphiuma Tridactylum: Sexual Selection Or Ecological Causes?
    Copeia 2008, No. 1, 39–42 Sexual Dimorphism in the Three-toed Amphiuma, Amphiuma tridactylum: Sexual Selection or Ecological Causes? Clifford L. Fontenot, Jr.1 and Richard A. Seigel2 Sexual dimorphism is widespread among vertebrates, and may be attributable to sexual selection, differences in ecology between the sexes, or both. The large aquatic salamander, Amphiuma tridactylum, has been suggested to have male biased sexual dimorphism that is attributable to male–male combat, although detailed evidence is lacking. To test this, data were collected on A. tridactylum head and body size, as well as on bite-marks inflicted by conspecifics. Amphiuma tridactylum is sexually dimorphic in several characters. There was no sex difference in body length, but males had heavier bodies than females of the same body length. Larger males had wider and longer heads than larger females, but whether any of these sexually dimorphic characters are attributable to differences in diet is unknown because diet data (by sex) are lacking. There was no difference in the number of bite-marks between males and females, and juveniles also possessed bite-marks, suggesting that the biting is not necessarily related to courtship or other reproductive activities. In addition, fresh bite-marks were present on individuals during months well outside of the breeding season. Biting was observed in the field and lab to occur by both sexes on both sexes, during feeding-frenzy type foraging. Thus, biting is likely related to foraging rather than to courtship. The sexually dimorphic characters remain unexplained, pending sex-specific diet data, but there is no evidence that they are related to male–male combat or to courtship.
    [Show full text]
  • Mud Puppy (Necturus)
    Mud Puppy (Necturus) Species: maculosus Genus: Necturus Family: Proteidae Order: Caudata Class: Amphibia Subphylum: Vertebrata Phylum: Chordata Kingdom: Animalia Conditions for Customer Ownership We hold permits allowing us to transport these organisms. To access permit conditions, click here. Never purchase living specimens without having a disposition strategy in place. An end-user permit is required in order to receive Necturus maculosus into Oregon. Shipments of Necturus maculosus are restricted in Ohio. In order to protect our environment, never release a live laboratory organism into the wild. Primary Hazard Considerations • Always wash your hands thoroughly after you handle your organism. • Handle your mud puppy with care—they don’t bark (as once believed) but they can bite! If the skin is broken from a mud puppy bite, disinfect the wound, using soap and warm water. Availability • Mud puppies are wild collected from Lake Erie and are generally available late December through April. Larger than most salamanders, mud puppies can reach a length of 30 centimeters, have external gills, and are dark colored. • Mud puppies will arrive in a sealed plastic bag (double-bagged) filled with water and oxygen. Since oxygen will be continuously depleted, your mud puppy’s good health will be best preserved by moving it into its new home as soon as you receive it. • Open the shipping bag and float it in the aquarium the mud puppy will inhabit. When the water inside the bag is the same temperature as the water in the aquarium (after about 15-30 minutes), transfer the mud puppy from the bag to the tank.
    [Show full text]
  • Forestry Information Summary on Federal T&E Species
    Forestry Information Summary on Federal T&E Species Species: Carolina Madtom (a small catfish), Noturus furiosus. Neuse River Waterdog (a large salamander), Necturus lewisi. Federal Listing Status: Carolina Madtom = Endangered. Neuse River Waterdog = Threatened. Effective Date: July 9, 2021. Federal Register Notice: Vol.86, No.109, pg.30688-30751. Published Wednesday / June 9, 2021. Affected River Basins: Large areas of Neuse River basin and Tar-Pamlico River basin. (See snapshot index maps on page 3, and more maps in the Federal Register or online map viewer.) Habitat Type: In-stream, aquatic habitat. Stressors: Sedimentation; Flow obstruction; Disconnection of stream channel; High temperatures. Affected NCFS Districts: D4, D5, D6, D11. USF&WS Raleigh Field Office Phone Number: 919-856-4520. Regulatory Requirements • Both species are protected under the Endangered Species Act (ESA). • There is a “4(d)-Rule” for the Neuse River Waterdog. That rule includes requirements for forestry operations to remain exempt from permitting in the event of an “incidental take”. • The forestry requirements of the 4(d)-Rule are outlined on the next page. These requirements are similar to what is already required by the North Carolina FPGs and the Neuse/Tar-Pamlico Riparian Buffer Rules, but there are some minor differences. • Implementing appropriate BMPs will also help to protect both of these species, and their habitat, and support compliance with the ESA. • The Carolina Madtom does not have any allowances for a non-permitted incidental take, therefore any non-permitted ‘take’ of the animal or its habitat would violate the ESA. Critical Habitat Designation • Both species have Critical Habitat designated.
    [Show full text]
  • Necturus Maculosus) in Southeast Ohio Using Environmental DNA
    Searching for a Salamander: Distribution and Habitat of the Common Mudpuppy (Necturus maculosus) in Southeast Ohio Using Environmental DNA A thesis presented to the faculty of the Voinovich School of Leadership and Public Affairs of Ohio University In partial fulfillment of the requirements for the degree Master of Science Merri K. Collins August 2017 © 2017 Merri K. Collins. All Rights Reserved. 2 This thesis titled Searching for a Salamander: Distribution and Habitat of the Common Mudpuppy (Necturus maculosus) in Southeast Ohio Using Environmental DNA by MERRI K. COLLINS has been approved for the Program of Environmental Studies and the Voinovich School of Leadership and Public Affairs by Shawn R. Kuchta Associate Professor of Biological Sciences Mark Weinberg Dean, Voinovich School of Leadership and Public Affairs 3 ABSTRACT COLLINS MERRI K., M.S., August 2017, Environmental Studies Searching for a Salamander: Distribution and Habitat of the Common Mudpuppy (Necturus maculosus) in Southeast Ohio Using Environmental DNA Director of Thesis: Shawn R. Kuchta Habitat destruction and anthropogenic drivers have led to a decline of amphibian populations worldwide, but the conservation status of many species remains in question. Environmental DNA is a new monitoring methodology that non-invasively detects the presence of imperiled, rare, and secretive species. Although the use of environmental DNA (eDNA) to detect species presence is increasing, it is not often paired with habitat data. This study focuses on the declining Common Mudpuppy salamander, Necturus maculosus. I conducted both traditional and eDNA field surveys at 10 stream sites located in Southeastern Ohio. I detected the presence of Mudpuppies at 6 of 10 streams using eDNA.
    [Show full text]