Title: Railroad Yard Operational Plan 1. Introduction

Total Page:16

File Type:pdf, Size:1020Kb

Title: Railroad Yard Operational Plan 1. Introduction Title: Railroad Yard Operational Plan 1. Introduction In railroad freight transportation, shipments are consolidated to benefit from economies of scale in core transportation costs. Railroad classification yards, also called marshaling or shunting yards, play an important role as consolidation nodes in rail freight transport networks. At classification yards, inbound trains are disassembled or humped; the railcars are uncoupled on the hump and roll onto the classification tracks by gravity. The railcars are then assembled in the forwarding yard (or departure area) area to generate the desired outbound trains via a system of tracks and switches. Through this procedure, railcars can be routed through the network in blocks in such a way that every origin-destination (OD) pair can be served avoiding a large number of end-to-end connections. Typically, railroad classification yards are classified into three yard types: hump yards, flat yards and gravity yards. A typical hump yard layout is shown in Figure 1. Receiving Area Hump Classification Area Departure Area Figure 1. Layout of a typical classification yard The yard compound can be generally divided into three main areas, each of which consists of a set of parallel tracks: the Receiving Area where inbound railcars arrive, the Classification Area where railcars are rearranged and the Departure Area where sorted railcars wait until they are departed from the yard. Railcars are brought to the receiving area by inbound trains and pass through the yard from the receiving area to the departure area where they are fetched by outbound trains. Humps make use of the gravitational pulling force between the receiving area and the classification area so that railcars can be rearranged without relying on (classification) engines. The classification area is often connected to the receiving area by one or more hump lead tracks; this allows for a repeated classification (re-hump) of railcars. The car storage capacities of these areas are mainly determined by the number of available tracks and their length. Due to limited space and scarcity of other resources, yards are physically capacitated in terms of (a) the number of cars that can be classified, (b) the number of blocks that can be made in a given time period, (c) the number of trains that can be received in a given time period, (d) the number of trains that can be dispatched in a given time period, and (e) the average dwell time. The main functions of a classification yard include (a) receiving railcars, (b) sorting of railcars into different groups, (c) storing railcars until their corresponding train departure time, and (d) building of outbound trains. The two main processes at each end of the yard compound can be described as follows: Inbound trains enter the receiving area (on the left in Figure 1) and wait for sorting. Since only one bunch or “string” of railcars can be sorted at a time, the receiving area needs to ensure sufficient storage space for the trains that arrive later. When a train is ready for sorting or classification, it is pushed out of the receiving area through the hump. Each railcar or block of an inbound train is made to run into the classification track to which it is assigned. 1 Typically, the classification tracks in the classification area are already occupied by existing railcars. As a result, the railcars will couple automatically with the existing cars on the corresponding track when pushed onto a track. Outbound trains leave the yard from the departure area (on the right in Figure 1). Engines pull strings of railcars from the departure end of the classification tracks to their designated tracks in the departure area. The railcars or “blocks” are assembled in accordance with the sequence of the railcar’s destination station to make up the outbound trains. During the classification process of a particular train, its railcars could be redistributed over several of the classification tracks, each corresponding to its designated destination stations or directions. The assignment (positioning) of railcars to (on) classification tracks is determined by multiple factors; among these, the designated outbound block for the railcar is the major determinant. Typically, each outbound block is assigned to a classification track. The positioning and movement of railcars on classification tracks synchronize the two main processes at each end of the classification area as both the sorting process and the train building process are carried on in a fairly continuous manner at the receiving end and at the departure end of the classification tracks, respectively. 2. Problem Statement a. Overview Optimizing operational plans of a classification yard is very important for a railroad company as it helps fully utilize the limited resources of its rail network. Typical yard planning performance measures for a yard can be: the number of inbound/outbound trains received/assembled, the number of blocks made, the number of cars handled, or the expected time in system per railcar. Earlier research has focused on minimizing the total waiting time of railcars at the yard. Please see references by Lin and Cheng (2009, 2011) for a list of performance measures definitions. To improve the overall yard throughput, an optimized yard operation plan is highly desirable. However, building a classification yard operation plan is challenging as it covers many interrelated operations and decisions, such as, the sequence of inbound trains’ disassembly, the sequence of outbound trains’ assembly, sorting plans at the hump, block-to-train assignment plan for classification tracks, etc. Essentially, given arrival times of the inbound trains, this problem aims to find the humping schedule and the departure times of the outbound trains subject to the different operational constraints in the yard. The goal is to minimize the total waiting time of railcars in the yard and maximize the total number of railcar processed during a certain period. Yard Capacity Optimization Number of Number of Outbound Inbound Trains, Trains and Their Train Design and Their Arrival Yard Operation Departure Time Problem Times Problem Operational Constraints, Resources and Business Rules Figure 2. Yard Operational Plan Optimization 2 b. Problem Input, Output and Assumption The overarching goal is to determine an optimized plan of a typical hump yard, supposing that the following information is known: 1. Yard infrastructure List of receiving tracks and their capacity in term of number of cars List of classification tracks and their capacity in term of number of cars List of departure tracks and their capacity in terms of number of cars 2. Resources: Number of hump engines Number of pullback engines 3. Operational parameters Humping rate (e.g. 2.3 cars per min) Minimum humping interval (e.g. 10 min between consecutive humping activities) Technical inspection time for an inbound or outbound train Expected time to perform a single track pull for each pullback engine (e.g. 10 min) Expected time for each pullback engine to perform a multi-track pull (e.g. 15 min for each additional track) 4. Operational constraints: Minimum and maximum train size for outbound trains Minimum inter-departure times for outbound trains Business rules associated with the order of cars in classification yard 5. Outbound train pattern: List of potential outbound trains Feasible outbound block combinations Given the above input, participants need to determine: 1. The arrival track for each inbound train. 2. When to start humping each arrival track. 3. Block-to-track assignments over time. 4. When to pullback blocks to the departure tracks. 5. Decide what the outbound train plan should be – departure times and contents of outbound trains. In order to develop appropriate quantitative-based analytical solution approaches, we make some simplifying assumptions as follows: 1. No railcars are disallowed to move through the hump. 2. An entire track gets humped. That is, no partial track humping is allowed. 3. The sizes and shapes of all railcars are the same. 4. There is only one hump engine working on the hump. 5. A pullback engine is used to assemble the blocks or railcars from the hump into the assigned track. The assembly time is proportional to the number of connections, which is one less than the number of blocks or railcars. 3 6. Typically, the number of railcars assembled in a train is required to be within a certain range. For example, a typical outbound train has between 30 and 40 cars. An exception to this rule is “local trains” which only run within adjacent districts. 7. The total time to disassemble an inbound train includes The total time to disassemble an inbound train includes the time required to move a railcar from the receiving area, over the hump and then to the classification area, and an engine running from the hump to the inbound train track in the receiving area. 8. The overall time of assembling an outbound train includes the time required to assemble an engine running from the departure area to the classification tracks in the classification area. 9. A range of technical inspections are required for inbound trains (following the arrival of the trains) at the receiving area and for outbound trains (preceding the departure) at the departure area. Typically, the time for technical inspections is proportional to the number of railcars being processed and the time per railcar on the receiving area is shorter than that on the departure area. For simplicity, we assume a constant inspection time duration for both areas. 10. Pullback engines need extra time to run from one track to another when the railcars or blocks stored on different classification tracks are to be assembled into the same outbound train. There are sufficiently many outbound engines to satisfy the requirements of outbound train departure. 11.
Recommended publications
  • 216 Part 218—Railroad Operating Practices
    Pt. 217, App. A 49 CFR Ch. II (10–1–12 Edition) APPENDIX A TO PART 217—SCHEDULE OF CIVIL PENALTIES 1 Willful viola- Section Violation tion 217.7 Operating rules: (a) ............................................................................................................................................ $2,500 $5,000 (b) ............................................................................................................................................ $2,000 $5,000 (c) ............................................................................................................................................ $2,500 $5,000 217.9 Operational tests and inspections: (a) Failure to implement a program ........................................................................................ $9,500– $13,000– 12,500 16,000 (b) Railroad and railroad testing officer responsibilities:. (1) Failure to provide instruction, examination, or field training, or failure to con- duct tests in accordance with program ................................................................. 9,500 13,000 (2) Records ............................................................................................................... 7,500 11,000 (c) Record of program; program incomplete .......................................................................... 7,500– 11,000– 12,500 16,000 (d) Records of individual tests and inspections ...................................................................... 7,500 (e) Failure to retain copy of or conduct:. (1)(i) Quarterly
    [Show full text]
  • US Army Railroad Course Railway Track Maintenance II TR0671
    SUBCOURSE EDITION TR0671 1 RAILWAY TRACK MAINTENANCE II Reference Text (RT) 671 is the second of two texts on railway track maintenance. The first, RT 670, Railway Track Maintenance I, covers fundamentals of railway engineering; roadbed, ballast, and drainage; and track elements--rail, crossties, track fastenings, and rail joints. Reference Text 671 amplifies many of those subjects and also discusses such topics as turnouts, curves, grade crossings, seasonal maintenance, and maintenance-of-way management. If the student has had no practical experience with railway maintenance, it is advisable that RT 670 be studied before this text. In doing so, many of the points stressed in this text will be clarified. In addition, frequent references are made in this text to material in RT 670 so that certain definitions, procedures, etc., may be reviewed if needed. i THIS PAGE WAS INTENTIONALLY LEFT BLANK. ii CONTENTS Paragraph Page INTRODUCTION................................................................................................................. 1 CHAPTER 1. TRACK REHABILITATION............................................................. 1.1 7 Section I. Surfacing..................................................................................... 1.2 8 II. Re-Laying Rail............................................................................ 1.12 18 III. Tie Renewal................................................................................ 1.18 23 CHAPTER 2. TURNOUTS AND SPECIAL SWITCHES........................................................................................
    [Show full text]
  • Nurail Project ID: Nurail2012-UTK-R04 Macro Scale
    NURail project ID: NURail2012-UTK-R04 Macro Scale Models for Freight Railroad Terminals By Mingzhou Jin Professor Department of Industrial and Systems Engineering University of Tennessee at Knoxville E-mail: [email protected] David B. Clarke Director of the Center for Transportation Research University of Tennessee at Knoxville E-mail: [email protected] Grant Number: DTRT12-G-UTC18 March 2, 2016 Page 1 of 6 DISCLAIMER Funding for this research was provided by the NURail Center, University of Illinois at Urbana - Champaign under Grant No. DTRT12-G-UTC18 of the U.S. Department of Transportation, Office of the Assistant Secretary for Research & Technology (OST-R), University Transportation Centers Program. The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. This document is disseminated under the sponsorship of the U.S. Department of Transportation’s University Transportation Centers Program, in the interest of information exchange. The U.S. Government assumes no liability for the contents or use thereof. March 2, 2016 Page 2 of 6 TECHNICAL SUMMARY Title Macro Scale Models for Freight Railroad Terminals Introduction This project has developed a yard capacity model for macro-level analysis. The study considers the detailed sequence and scheduling in classification yards and their impacts on yard capacities simulate typical freight railroad terminals, and statistically analyses of the historical and simulated data regarding dwell-time and traffic flows. Approach and Methodology The team developed optimization models to investigate three sequencing decisions are at the areas inspection, hump, and assembly.
    [Show full text]
  • Sounder Commuter Rail (Seattle)
    Public Use of Rail Right-of-Way in Urban Areas Final Report PRC 14-12 F Public Use of Rail Right-of-Way in Urban Areas Texas A&M Transportation Institute PRC 14-12 F December 2014 Authors Jolanda Prozzi Rydell Walthall Megan Kenney Jeff Warner Curtis Morgan Table of Contents List of Figures ................................................................................................................................ 8 List of Tables ................................................................................................................................. 9 Executive Summary .................................................................................................................... 10 Sharing Rail Infrastructure ........................................................................................................ 10 Three Scenarios for Sharing Rail Infrastructure ................................................................... 10 Shared-Use Agreement Components .................................................................................... 12 Freight Railroad Company Perspectives ............................................................................... 12 Keys to Negotiating Successful Shared-Use Agreements .................................................... 13 Rail Infrastructure Relocation ................................................................................................... 15 Benefits of Infrastructure Relocation ...................................................................................
    [Show full text]
  • Mitigating Jacksonville's Freight Train
    Consolidated Rail Infrastructure and Safety Improvements (CRISI) Program October 2018 Mitigating Jacksonville’s Freight Train- Vehicle/Pedestrian/Bicyclist Conflicts Rickey Fitzgerald, Manager Freight & Multimodal Operations Florida Department of Transportation 605 Suwannee Street, MS 25 Tallahassee, FL 32399 Jacksonville, Florida [email protected] Federal Railroad Administration Consolidated Rail Infrastructure and Safety Improvements 2018 GRANT APPLICATION Project Title: Mitigating Jacksonville’s Freight Train-Vehicle/ Pedestrian/ Bicyclist Conflicts Applicant Florida Department of Transportation Project Tracks 2 and 3 Will this project contribute to the Restoration or Initiation of Intercity Passenger Rail No Service? Was a Federal grant application previously Yes, for FASTLANE Cycle 1 and 2 (April submitted for this project? and December 2016, respectively); title was North Florida Freight Rail Enhancement Program (Phase II) If applicable, what stage of NEPA is the project in (e.g., EA, Tier 1 NEPA, Tier 2 The project is eligible for a Categorical NEPA, or CE)? Exclusion (worksheet attached, Appendix F) Is this a Rural Project? No What percentage of the project cost is based 0 % in a Rural Area? City(ies), State(s) where the project is located Jacksonville, Florida, 4th Congressional District Urbanized Area where the project is located Jacksonville, Florida Population of Urbanized Area 937,934 (2010 Census) Is the project currently programmed in the: Yes, it is included in the MPO Long Range State rail plan, State Freight Plan, TIP, STIP, Transportation Plan and the State Freight MPO Long Range Transportation Plan, State Plan Long Range Transportation Plan? DUNS # 004078374 Funds Requested: $17,615,500 Funds Matched: $17,615,500 Total Project Cost: $35,231,000 Contact: Rickey Fitzgerald, Manager, Freight & Multimodal Operations Florida Department of Transportation 605 Suwannee Street, MS 25 Tallahassee, FL 32399 [email protected] i TABLE OF CONTENTS I.
    [Show full text]
  • Failure-Free Operation of Classification Yards Through Technology Optimization
    Badania Liudmyla V. Trykoz, Irina V. Bagiyanc Failure-free operation of classifi cation yards through technology optimization The railway operation practice has proved that the condition of The development of new or refurbishment of existing classifi - technical equipment considerably infl uences the processes of traf- cation yards require analysis of the maximum possible number fi c organization and making-up/breaking-up trains. Operational of cars to be sorted in a specifi c time, i.e. a required capacity failures lead to a lower estimated capacity of sorting facilities which takes into account station functions, features connected and, consequently, to a lower carrying capacity of stations and with its location within the rail network and industrial area. The sections. Besides, they infl ict losses on both Ukrzaliznytsia and required capacity of the main sorting unit is determined on the wagon/freight owners, thus affecting train and wagon fl ows. The base of the forecasted average daily volume of operation, es- objective of the study is to analyze the infl uence of failures in sort- tablished by economic studies for calculated operation periods. ing facilities on their estimated capacity and to search for ways to Thus, the subject matter of the study is the scheduled break- minimize their negative impact. Methodology of the study is com- ing-up of freight trains on rail classifi cation facilities with their putational simulation and graphical interpretation of a 24-hour es- consequent making-up. The scope of the study is the support of timated capacity of the sorting hump and the lead track, the most capacity of the classifi cation facilities with the optimized techni- signifi cant parameters of which are weight average values, and cal equipment.
    [Show full text]
  • INVITATION for BID (IFB) No. 020-020 CONSTRUCTION of the LIFECYCLE OVERHAUL and UPGRADE
    INVITATION FOR BID (IFB) No. 020-020 CONSTRUCTION OF THE LIFECYCLE OVERHAUL AND UPGRADE (LOU) FACILITY QUESTIONS AND ANSWERS AS OF JULY 28, 2020 Below are questions VRE received as of July 28, 2020 at 5:00 P.M. EST, with responses. Whenever possible, questions are presented as originally asked. Otherwise, the questions or inquiries are presented to capture the main thrust or idea. Question #1: Are CAD files available for the Civil portion of the work? Response #1: VRE elects to not provide CAD files for bidding purposes. CAD files may be provided to the successful Bidder for use during the work. Question #2: We note railroad protective insurance is required. Insurance carriers typically require the number of trains (broken out by freight vs passenger) per day. Please provide. Response #2: No freight trains operate on the tracks within the VRE yard facility. VRE operates eight (8) northbound trains out of the yard which return as eight (8) southbound trains back into the yard. During the daytime hours between morning and afternoon service train movements are infrequent and occur only on Track 1. Question #3: If VRE does not provide flagging services or cancels track access, does this constitute a Compensable Delay? Response #3: The Contractor shall work in close coordination with the VRE local Employee-in- Charge. For purposes of bidding, the Contractor shall assume the work hours provided in the Special Provisions. If, for some unexpected reason, flagging protection is not provided on a day that was scheduled with the Employee-in-Charge, then yes Compensable Delay may be considered.
    [Show full text]
  • Chapter 14 Yards and Terminals1
    CHAPTER 14 YARDS AND TERMINALS1 FOREWORD This chapter deals with the engineering and economic problems of location, design, construction and operation of yards and terminals used in railway service. Such problems are substantially the same whether railway's ownership and use is to be individual or joint. The location and arrangement of the yard or terminal as a whole should permit the most convenient and economical access to it of the tributary lines of railway, and the location, design and capacity of the several facilities or components within said yard or terminal should be such as to handle the tributary traffic expeditiously and economically and to serve the public and customer conveniently. In the design of new yards and terminals, the retention of existing railway routes and facilities may seem desirable from the standpoint of initial expenditure or first cost, but may prove to be extravagant from the standpoint of operating costs and efficiency. A true economic balance should be achieved, keeping in mind possible future trends and changes in traffic criteria, as to volume, intensity, direction and character. Although this chapter contemplates the establishment of entirely new facilities, the recommendations therein will apply equally in the rearrangement, modernization, enlargement or consolidation of existing yards and terminals and related facilities. Part 1, Generalities through Part 4, Specialized Freight Terminals include specific and detailed recommendations relative to the handling of freight, regardless of the type of commodity or merchandise, at the originating, intermediate and destination points. Part 5, Locomotive Facilities and Part 6, Passenger Facilities relate to locomotive and passenger facilities, respectively.
    [Show full text]
  • BHRA's Narrows Tunnel Plan
    Cross Harbor Freight Tunnel: Add Subway To Staten Island and More! The Brooklyn Historic Railway Association (BHRA) applauds the Port Authority’s endeavour to build a rail tunnel under New York Harbor. This idea has dates back to the 1920’s when the ​City of New York, and later Port Authority, first devised plans to connect Long Island with the mainland U.S. via a cross harbor rail tunnel.​ ​The Port Authority's current plan calls for a rail tunnel alignment from 65th street yards in Brooklyn to Greenville Yards in New Jersey. However, this alignment was developed as a result of a political schism with then Mayor Hylan and his plan to connect Brooklyn with Staten Island, via a 4 track freight, passenger, and subway ​ tunnel from Bay Ridge in Brooklyn, to St George in Staten Island. Similar to the Port Authority's earlier plan, the Port Authority's current proposal lacks a passenger rail component and a link to Staten Island. Because such a large construction project is a once in a lifetime opportunity, the BHRA believes that the Port Authority's plan should be revised to include a passenger rail link to Staten Island. ​Our alternative calls for a revival of the City's plan, hybridized with the ​Port Authority's​ plan, with two freight tunnel portals on the Brooklyn side. The first portal would surface near Brooklyn's 1st Ave, at the old Cross Harbor rail yard. This would permit freight rail access to the Sunset Park waterfront, including, but not limited to, Bush Terminal and the Sims Recycling facility.
    [Show full text]
  • Minimizing Derailments of Railcars Carrying Dangerous Commodities Through Effective Marshaling Strategies
    34 TRANSPORTATION RESEARCH RECORD 1245 Minimizing Derailments of Railcars Carrying Dangerous Commodities Through Effective Marshaling Strategies F. F. SACCOMANNO AND S. EL-HAGE egies that take into account train derailment profiles on the Effective marshaling and buffering strategies can reduce the like­ lihood of special dangerous commodity (SOC) cars being involved basis of car position. in a train derailment. The objeclive of these strategies should be to minimize the probability that an SOC car is located in a potential derailment block, subject lo external rail corridor characl ·l'istics OBJECTIVES OF TIIIS STUDY that affect derailments. A procedure is developed for predicting derailments for different railcar positions in a train, on the basis Although it is known that the position of cars in a train can of the point of derailment and the number of cars involved. The number of cars involved in each derailment is assumed to be a influence their involvement in a derailment, the specific nature function of the train operating speed, the cause of dc1·ailmcnt and of this relationship is not well understood. This paper presents the number of car' folio\ ing the point of derailmc.nL anadian a procedure for establishing and evaluating the effectiveness rail accident data for the period 1980-1985 are used to calibrate of alternative marshaling and buffering strategies for posi­ a probabilistic expression of number of cars involved in derail­ tioning SDC cars in a given train consist. ments. The Canadian accident data base is also used to estimate The specific objectives of this study are threefold: point-of-derailment probabilities for different railcar position and derailment causes.
    [Show full text]
  • The Ten Commandments of Model Railroad Yard Design
    The Ten Commandments of Model Railroad Yard Design By Craig Bisgeier Sample Yard Layout You may find it helpful to print out this diagram before reading the article. Having a hard copy of the diagram to refer to as you are reading will probably be a big help for some of the more difficult concepts. This is definitely a case of a picture being worth a thousand words... One of the most often modeled -- and misunderstood -- layout design elements is the yard. Nearly everyone has one on their layout, whether it's used simply for car storage or as an actual operating tool. Unfortunately, many of them don't work very well. Common design mistakes are made over and over again by beginner and intermediate modelers. They can't be faulted, though, because the info on how to design a good yard is very hard to find. Even when the hobby press gets it right, it's short-lived, because if you missed the issue you didn't see it. Most of the time you see poor examples (like the hated Timesaver) which are often published by the hobby press without comment, and therefore accepted by those who do not know better as good design. So the "secrets" of good yard design are difficult to for most to uncover, because the good nuggets of information appear in wildly different places like out of print magazines or books, special interest publications, or even word of mouth among advanced modelers. not many modelers have that kind of library or access. What is needed is a repository where all the good ideas can be collected, stored, edited and presented as one all-encompassing primer on the subject.
    [Show full text]
  • Track Report 2006-03.Qxd
    DIRECT FIXATION ASSEMBLIES The Journal of Pandrol Rail Fastenings 2006/2007 1 DIRECT FIXATION ASSEMBLIES DIRECT FIXATION ASSEMBLIES PANDROL VANGUARD Baseplate Installed on Guangzhou Metro ..........................................pages 3, 4, 5, 6, 7 PANDROL VANGUARD Baseplate By L. Liu, Director, Track Construction, Guangzhou Metro, Guangzhou, P.R. of China Installed on Guangzhou Metro Extension of the Docklands Light Railway to London City Airport (CARE project) ..............pages 8, 9, 10 PANDROL DOUBLE FASTCLIP installation on the Arad Bridge ................................................pages 11, 12 By L. Liu, Director, Track Construction, Guangzhou Metro, Guangzhou, P.R. of China PANDROL VIPA SP installation on Nidelv Bridge in Trondheim, Norway ..............................pages 13,14,15 by Stein Lundgreen, Senior Engineer, Jernbanverket Head Office The city of Guangzhou is the third largest track form has to be used to control railway VANGUARD vibration control rail fastening The Port Authority Transit Corporation (PATCO) goes High Tech with Rail Fastener............pages 16, 17, 18 in China, has more than 10 million vibration transmission in environmentally baseplates on Line 1 of the Guangzhou Metro by Edward Montgomery, Senior Engineer, Delaware River Port Authority / PACTO inhabitants and is situated in the south of sensitive areas. Pandrol VANGUARD system has system (Figure 1) in China was carried out in the country near Hong Kong. Construction been selected for these requirements on Line 3 January 2005. The baseplates were installed in of a subway network was approved in and Line 4 which are under construction. place of the existing fastenings in a tunnel on PANDROL FASTCLIP 1989 and construction started in 1993. Five the southbound track between Changshoulu years later, the city, in the south of one of PANDROL VANGUARD TRIAL ON and Huangsha stations.
    [Show full text]