Zebra & Quagga Mussel Fact Sheet

Total Page:16

File Type:pdf, Size:1020Kb

Zebra & Quagga Mussel Fact Sheet ZEBRA & QUAGGA MUSSELQuagga Mussel (Dreissena rostriformis bugensis) FACT SHEET Zebra Mussel (Dreissena polymorpha) ZEBRA AND QUAGGA MUSSELS These freshwater bivalves are native to the Black the Great Lakes in the late 1980s, by trans-Atlantic Sea region of Eurasia. They were first introduced to ships discharging ballast water that contained adult or larval mussels. They spread widely and as of 2019, can be found in Ontario, Quebec and Manitoba. They are now established in at least Alberta24 American or the states. north. Quagga and zebra mussels have not yet been detected in BC, Saskatchewan, IDENTIFICATION Zebra and quagga mussels—or dreissenid mussels— look very similar, but quagga mussels are slightly larger, rounder, and wider than zebra mussels. Both species range in colour from black, cream, or white with varying amounts of banding. Both mussels also possess byssal threads, strong fibers that allow the mussel to attach itself to hard surfaces—these are lacking in native freshwater mussels. There are other bivalve species found within BC (see table on reverse). waters to be distinguished from zebra and quagga IMPACTS ECOLOGICALmussels CHARACTERISTICS Ecological: Once established, invasive dreissenids are nearly impossible to fully eradicate from a water body. Habitat: Zebra and quagga mussels pose Currently, there are very limited tools available to a serious threat to the biodiversity of aquatic attempt to control or eradicate dreissenid mussels Zebra mussels can be found in the near ecosystems, competing for resources with native from natural systems without causing harm to shore area out to a depth of 110 metres, while species like phytoplankton and zooplankton, which other wildlife, including salmonids. Prevention is quagga mussels may be as deep as 130 metres. form the basis of aquatic food webs. Zebra and quagga mussels prefer depths of 2-12 the most effective solution to protecting waters metres and 10-30 metres respectively, in freshwater Removal of large masses of phytoplankton can alter from invasive mussels. lakes, rivers, reservoirs, ponds and quarries, but the water clarity, forcing light-sensitive organisms PREVENTION haveReproduction: been reported in brackish waters as well. deeper into the water body and also encourages the growth of unwanted aquatic vegetation. Dreissenid Females can produce up to one mussels selectively avoid toxic algae when feeding, off all plant parts, animals, and million eggs each year. Fertilized eggs hatch into whichEconomic: may facilitate toxic blooms. mud from boat and equipment (e.g. boots, waders, free-floating veligers (larvae) within 2-3 weeks, fishing gear). produce a calcium-based shell and then settle to Dreissenid mussels create massive colonies that can block water intakes and interfere aDispersal: hard surface. onto land all items that can hold with municipal water supplies, agricultural to always pull all the plugs! water (e.g. buckets, wells, bilge, and ballast). Ensure Dreissenid mussels may disperse irrigation and power plant operations. This naturally as a free-swimming larvae with water often results in millions of dollars per year being currents or as adults attached to other organisms, allocated to removal and management. The impact to be at least $43 million annually. all items completely before launching aquatic infrastructure or boats. of invasive mussels to BC if introduced is projected shipping, recreational boating, water in live wells, into another body of water. Human-mediated dispersal includes commercial Social: Remember, this goes for all types of watercraft and Dreissenid mussel colonies can take over gear—canoes, kayaks, paddle boards, paddles/ bait bucket or bilges and equipment such as work Rule of thumb: if it touches water it needs to beaches, leaving the shoreline covered in razor oars, life jackets, etc.—not just motorized boats! be cleaned. barges and dredges. The primary transport vector sharp shells that render it unusable for recreational within North America is recreational boating. 30 days out of water . purposes, and in turn affect property values and Depending on the temperature and humidity, boattourism. engines They by can clogging also affectwater intakes.boaters as they Learn more at CleanDrainDry.ca dreissenids can survive up to colonize exposed boat surfaces and often damage SHELL DISTINGUISHING SPECIES PHOTO & LENGTH* SHELLCHARACTERISTICS DISTINGUISHINGFEATURES Byssal Threads Lacks Ridge Byssal Threads Lacks Ridge SPECIESZebra Mussel PHOTO & LENGTH* CHARACTERISTICS FEATURES ZebraDreissena Mussel polymorpha 1 I 1 Dreissena polymorpha D-shaped, variable Bysall threads, straight I NP D-shaped,dark and lightvariable Bysallmid ventral threads, line, straight NP darkbanding and light midbilaterally ventral symmetrical line, ≤3.5 cm 1 D. rostriformis bugensis banding bilaterally symmetrical I ≤3.5 cm 1 Asymmetrical mid-ventral line D.Quagga rostriformis Mussel bugensis D-shaped, may Bysall threads, I NP Asymmetrical mid-ventral line Quagga Mussel D-shaped,have banding may Bysallventralasymmetrical threads, line with QUAGGA MUSSEL NP haveranging banding from black, ventralasymmetricalwithout line a straight with mid QUAGGA MUSSEL Amy Benson, USGS, Bugwood.org Rocky Mountain ≤4 cm rangingcream to from white black, without a straight mid Amy Benson, USGS, Bugwood.org 2 Rocky Mountain ≤4 cm cream to white Gonidea angulata 2 bluish-green LEGAL STATUS IN BC Trapezoidal, LEGAL STATUS IN BC GonideaRidgedN P angulata Mussel bluish-green No bysall threads, only Trapezoidal, RidgedN P Mussel growth rings Nofound bysall in thethreads, only shell with defined growth rings foundOkanagan in the Basin shell with defined Under provincial Prohibited regulations, Species ≤12 cm 3 Okanagan Basin Under provincial regulations, Corbicula fluminea 3 zebra and quagga Prohibited mussels Species (dead I ≤12 cm green to brown CorbiculaAsian Clam fluminea zebratransportor alive) and are quaggaor release. mussels (dead I P greenshellOvate, withto yellow/ brown Asian Clam transportor alive) are or release. P shellOvate,concentric with yellow/ rings No bysall threads, and are illegal to possess, breed, concentric rings Noinside bysall of threads,shell is purple and are illegal to possess, breed, Floater Mussels A. kennerlyi ≤6.5 cm 4 inside of shell is purple REPORTING IN BC Anodonta spp. A. kennerlyi 4 Floater Mussels ≤6.5 cm Elliptical, yellow to REPORTING IN BC AnodontaN P spp. For watercraft that have been Elliptical, yellow to For watercraft that have been N P operated outside of BC, AB, WA, shiny operated outside of BC, AB, WA, shinybrown, smooth & ID, OR, or WY please contact the FRESHWATER HABITAT FRESHWATER brown, smooth & ID,BC OR, Conservation or WY please Officer contact Service the FRESHWATER HABITAT FRESHWATER A. oregonensis ≤12.5 cm 5 BCR.A.P.P. Conservation Hotline 1-877-952-7277 Officer Service A. oregonensis ≤12.5 cm 5 Elliptical, light R.A.P.P.prior to Hotline entering 1-877-952-7277 BC waters. Elliptical, light prior to entering BC waters. to dark brown, No bysall threads tosmooth dark brown, and shiny No bysall threads Additionally, all watercraft must A. nuttalliana ≤12.5 cm 5 smooth and shiny Additionally,stop at open alldesignated watercraft watercraft must A. nuttalliana ≤12.5 cm 5 stopinspection at open stations designated in BC. watercraft It’s the inspectionLAW. Sightings stations of zebra in BC. or It’s quagga the Ovate, olive, yellow, LAW.mussels Sightings must beof zebrareported or quagga to the Ovate,red-brown olive, oryellow, black musselsR.A.P.P. hotline.must be reported to the red-brown or black R.A.P.P. hotline. ≤18 cm 6 Much thicker shell than Margaritifera falcata bcinvasives.ca.For more information on Clean ≤18 cm 6 Western Pearlshell Much thicker shell than For more information on Clean MargaritiferaN P falcata bcinvasives.ca.Drain Dry and local partners go to Western Pearlshell Elongated, light N P brown or black dreissenid species, no Drain Dry and local partners go to Elongated,brown to dark light brown or black dreissenidbysall threads, species, bottom no brown to dark bysallshell edgethreads, is concave bottom ≤12.5 cm Blue Mussels M. californianus 7 shell edge is concave ≤12.5 cm BlueMytilus Mussels spp. M.N californianus 7 REFERENCES/LINKS MytilusP spp. N bluish black to REFERENCES/LINKS P bluishWedge-shaped, black to Wedge-shaped, Ministry of Environment. Mussel Defense Program. https:// Ministrywww2.gov.bc.ca/gov/content/invasive-mussels/invasive- of Environment. Mussel Defense Program. https:// brown, ridged mussel-defence-program. Accessed 2018, August, 28. M. trossulus 7 www2.gov.bc.ca/gov/content/invasive-mussels/invasive- ≤25 cm brown, ridged mussel-defence-programTherriault et al. 2012. Risk. Accessed Assessment 2018, for August, Three Dreissenid 28. M.N trossulus 7 ≤25 cm TherriaultMussels (Dreissenaet al. 2012. Riskpolymorpha, Assessment Dreissena for Three rostriformis Dreissenid bugensis, and Mytilopsis leucophaeata) in Canadian N Mussels (Dreissena polymorpha, Dreissena rostriformis bugensis,Freshwater and Ecosystems Mytilopsis leucophaeata)http://www.dfo-mpo.gc.ca/ in Canadian Freshwaterlibrary/348700.pdf Ecosystems http://www.dfo-mpo.gc.ca/ M. edulis library/348700.pdfWestern, Oregon and Winged Floaters Anodonta spp. https:// I ≤10 cm 7 www2.gov.bc.ca/assets/gov/environment/natural-resource- M. edulis Western, Oregon and Winged Floaters Anodonta spp. https:// I ≤10 cm 7 Bysall threads www2.gov.bc.ca/assets/gov/environment/natural-resource-stewardship/best-management-practices/okanagan/ anodonta_spp.pdf
Recommended publications
  • History of Quagga Mussels
    History of Quagga Mussels By Christine Moskell WS ‘08 Zebra mussels (Dreissena polymorpha) have long been the poster child of invasive species in Seneca Lake. Most people don’t even realize there are other varieties of mussels inhabiting the lake. Today, the tide is changing for zebra mussels in Seneca Lake, as another invasive mussel species has displaced the zebra mussels. Meet the quagga mussel. A close relative to zebra mussels, Quagga mussels (Dreissena bugensis) invaded the Finger Lakes in the same way as zebra mussels. Native to Ukraine, quagga mussels were first transported to the United States when foreign ships unknowingly carrying microscopic quagga larvae discharged their ballast water into the Great Lakes. Quagga mussels were first observed in the United States in the Great Lakes in September 1989, but were not at first considered a different species from zebra mussels.1 In 1991 during a zebra mussel survey near Palmyra, New York, researchers Dr. Bernie May of Cornell University and Dr. Ellen Marsden of the Illinois Natural Survey discovered a mussel with a different genotype than the zebra mussels.2 Genetic tests confirmed that this unique mussel was indeed a different species of Dreissena. The mussel was named “quagga” after an extinct African relative of the zebra. 3 Like zebra mussels, quagga mussels spread to the Finger Lakes via the waterways connected to the Great Lakes. The quagga mussel first arrived in Seneca Lake in 2000.4 Since their arrival to the United States, quagga mussels have expanded their populations throughout the country. Quagga mussels have been established in four of the five Great Lakes; Lake Michigan, Lake Huron, Lake Erie and Lake Ontario.
    [Show full text]
  • Age Determination of the Mongolian Wild Ass (Equus Hemionus Pallas, 1775) by the Dentition Patterns and Annual Lines in the Tooth Cementum
    Journal of Species Research 2(1):85-90, 2013 Age determination of the Mongolian wild ass (Equus hemionus Pallas, 1775) by the dentition patterns and annual lines in the tooth cementum Davaa Lkhagvasuren1,*, Hermann Ansorge2, Ravchig Samiya1, Renate Schafberg3, Anne Stubbe4 and Michael Stubbe4 1Department of Ecology, School of Biology and Biotechnology, National University of Mongolia, PO-Box 377 Ulaanbaatar 210646 2Senckenberg Museum of Natural History, Goerlitz, PF 300154 D-02806 Goerlitz, Germany 3Institut für Agrar- und Ernährungswissenschaften, Professur fuer Tierzucht, MLU, Museum für Haustierkunde, Julius Kuehn-ZNS der MLU, Domplatz 4, D-06099 Halle/Saale, Germany 4Institute of Zoology, Martin-Luther University of Halle Wittenberg, Domplatz 4, D-06099 Halle/Saale, Germany *Correspondent: [email protected] Based on 440 skulls recently collected from two areas of the wild ass population in Mongolia, the time course of tooth eruption and replacement was investigated. The dentition pattern allows identification of age up to five years. We also conclude that annual lines in the tooth cementum can be used to determine the age in years for wild asses older than five years after longitudinal tooth sections were made with a low- speed precision saw. The first upper incisor proved to be most suitable for age determination, although the starting time of cement deposition is different between the labial and lingual sides of the tooth. The accurate age of the wild ass can be determined from the number of annual lines and the time before the first forma- tion of the cementum at the respective side of the tooth. Keywords: age determination, annual lines, dentition, Equus hemionus, Mongolia, Mongolian wild ass, tooth cementum �2013 National Institute of Biological Resources DOI: 10.12651/JSR.2013.2.1.085 ence of poaching on the population size and population INTRODUCTION structure.
    [Show full text]
  • Lake Powell Food Web Structure: Predicting Effects of Quagga Mussel Joshua A
    Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2017-04-01 Lake Powell Food Web Structure: Predicting Effects of Quagga Mussel Joshua A. Verde Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Biology Commons BYU ScholarsArchive Citation Verde, Joshua A., "Lake Powell Food Web Structure: Predicting Effects of Quagga Mussel" (2017). All Theses and Dissertations. 6702. https://scholarsarchive.byu.edu/etd/6702 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Lake Powell Food Web Structure: Predicting Effects of Quagga Mussel Joshua A. Verde A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Mark C. Belk, Chair Dennis K. Shiozawa Steven L. Peck Department of Biology Brigham Young University Copyright © 2017 Joshua A. Verde All Rights Reserved ABSTRACT Lake Powell Food Web Structure: Predicting Effects of Quagga Mussel Joshua A. Verde Department of Biology, BYU Master of Science Food webs in aquatic ecosystems can be dramatically altered by invasive species. Quagga mussels are prevalent invaders that compete with existing species and disrupt nutrient cycling. In 2012, the Quagga Mussel (Dreissena rostriformus bugensis) was introduced into Lake Powell and is expected to move throughout the reservoir in the near future. Stable isotope analysis is a powerful tool for characterizing food webs and trophic interactions.
    [Show full text]
  • Risk Assessment for Three Dreissenid Mussels (Dreissena Polymorpha, Dreissena Rostriformis Bugensis, and Mytilopsis Leucophaeata) in Canadian Freshwater Ecosystems
    C S A S S C C S Canadian Science Advisory Secretariat Secrétariat canadien de consultation scientifique Research Document 2012/174 Document de recherche 2012/174 National Capital Region Région de la capitale nationale Risk Assessment for Three Dreissenid Évaluation des risques posés par trois Mussels (Dreissena polymorpha, espèces de moules dreissénidées Dreissena rostriformis bugensis, and (Dreissena polymorpha, Dreissena Mytilopsis leucophaeata) in Canadian rostriformis bugensis et Mytilopsis Freshwater Ecosystems leucophaeata) dans les écosystèmes d'eau douce au Canada Thomas W. Therriault1, Andrea M. Weise2, Scott N. Higgins3, Yinuo Guo1*, and Johannie Duhaime4 Fisheries & Oceans Canada 1Pacific Biological Station 3190 Hammond Bay Road, Nanaimo, BC V9T 6N7 2Institut Maurice-Lamontagne 850 route de la Mer, Mont-Joli, QC G5H 3Z48 3Freshwater Institute 501 University Drive, Winnipeg, MB R3T 2N6 4Great Lakes Laboratory for Fisheries and Aquatic Sciences 867 Lakeshore Road, PO Box 5050, Burlington, Ontario L7R 4A6 * YMCA Youth Intern This series documents the scientific basis for the La présente série documente les fondements evaluation of aquatic resources and ecosystems in scientifiques des évaluations des ressources et des Canada. As such, it addresses the issues of the écosystèmes aquatiques du Canada. Elle traite des day in the time frames required and the problèmes courants selon les échéanciers dictés. documents it contains are not intended as Les documents qu‟elle contient ne doivent pas être definitive statements on the subjects addressed considérés comme des énoncés définitifs sur les but rather as progress reports on ongoing sujets traités, mais plutôt comme des rapports investigations. d‟étape sur les études en cours. Research documents are produced in the official Les documents de recherche sont publiés dans la language in which they are provided to the langue officielle utilisée dans le manuscrit envoyé au Secretariat.
    [Show full text]
  • Water Use of Asiatic Wild Asses in the Mongolian Gobi Petra Kaczensky University of Veterinary Medicine, [email protected]
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Erforschung biologischer Ressourcen der Mongolei Institut für Biologie der Martin-Luther-Universität / Exploration into the Biological Resources of Halle-Wittenberg Mongolia, ISSN 0440-1298 2010 Water Use of Asiatic Wild Asses in the Mongolian Gobi Petra Kaczensky University of Veterinary Medicine, [email protected] V. Dresley University of Freiburg D. Vetter University of Freiburg H. Otgonbayar National University of Mongolia C. Walzer University of Veterinary Medicine Follow this and additional works at: http://digitalcommons.unl.edu/biolmongol Part of the Asian Studies Commons, Biodiversity Commons, Desert Ecology Commons, Environmental Sciences Commons, Nature and Society Relations Commons, Other Animal Sciences Commons, and the Zoology Commons Kaczensky, Petra; Dresley, V.; Vetter, D.; Otgonbayar, H.; and Walzer, C., "Water Use of Asiatic Wild Asses in the Mongolian Gobi" (2010). Erforschung biologischer Ressourcen der Mongolei / Exploration into the Biological Resources of Mongolia, ISSN 0440-1298. 56. http://digitalcommons.unl.edu/biolmongol/56 This Article is brought to you for free and open access by the Institut für Biologie der Martin-Luther-Universität Halle-Wittenberg at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Erforschung biologischer Ressourcen der Mongolei / Exploration into the Biological Resources of Mongolia, ISSN 0440-1298 by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Copyright 2010, Martin-Luther-Universität Halle Wittenberg, Halle (Saale). Used by permission. Erforsch. biol. Ress. Mongolei (Halle/Saale) 2010 (11): 291-298 Water use of Asiatic wild asses in the Mongolian Gobi P. Kaczensky, V. Dresley, D. Vetter, H. Otgonbayar & C. Walzer Abstract Water is a key resource for most large bodied mammals in the world’s arid areas.
    [Show full text]
  • Feeding Ecology of the Invasive Round Goby
    Aquatic Invasions (2015) Volume 10, Issue 4: 463–474 doi: http://dx.doi.org/10.3391/ai.2015.10.4.09 Open Access © 2015 The Author(s). Journal compilation © 2015 REABIC Research Article Feeding ecology of the invasive round goby, Neogobius melanostomus (Pallas, 1814), based on laboratory size preference and field diet in different habitats in the western basin of Lake Erie 1,4 1,2 1,2 1,3 Melanie M. Perello , Thomas P. Simon *, Hilary A. Thompson and Douglas D. Kane 1F.T. Stone Laboratory, The Ohio State University, Put-in-Bay, OH 43456, USA 2School of Public and Environmental Affairs, Indiana University, 1315 E. Tenth Street, Bloomington, IN 47405, USA 3Natural Science, Applied Science, and Mathematics Division, Defiance College, Defiance, OH 43512, USA 4Center for the Environment, Plymouth State University, Plymouth, NH 03264, USA E-mail: [email protected] (MMP), [email protected] (TPS), [email protected] (DDK) *Corresponding author Received: 17 May 2014 / Accepted: 21 July 2015 / Published online: 5 August 2015 Handling editor: Vadim Panov Abstract The round goby, Neogobius melanostomus, is an invasive benthic fish species in the Laurentian Great Lakes that is threatening native fish populations through competition, predation, and trophic dynamic change. This study examined the trophic dynamic plasticity of round goby along a depth gradient based on laboratory and field observations to determine prey species consumed and mussel prey size selection. Prey size selection in the laboratory was assessed by presenting individual round goby with quagga mussels ( Dreissena rostriformis bugensis) of various class sizes (i.e., 6.0– 9.9 mm, 10.0– 12.9 mm, 13.0– 15.9 mm, and 16.0– 18.9 mm in length).
    [Show full text]
  • Invasive Mussel Literature Review and Synthesis
    Invasive Mussel Literature Review and Synthesis Research and Development Office Science and Technology Program Final Report ST-2018-1609-01 U.S. Department of the Interior Bureau of Reclamation Research and Development Office September 2018 Mission Statements The U.S. Department of the Interior protects America’s natural resources and heritage, honors our cultures and tribal communities, and supplies the energy to power our future. The Department of the Interior protects and manages the Nation's natural resources and cultural heritage; provides scientific and other information about those resources; and honors its trust responsibilities or special commitments to American Indians, Alaska Natives, and affiliated island communities. The following form is a Standard form 298, Report Documentation Page. This report was sponsored by the Bureau of Reclamations Research and Development office. For more detailed information about this Report documentation page please contact Yale Passamaneck at 303-445-2480. THIS TEXT WILL BE INVISIBLE. IT IS FOR 508 COMPLIANCE OF THE NEXT PAGE. Disclaimer: Information in this report may not be used for advertising or promotional purposes. The data and findings should not be construed as an endorsement of any product or firm by the Bureau of Reclamation, Department of Interior, or Federal Government. The products evaluated in the report were evaluated for purposes specific to the Bureau of Reclamation mission. Reclamation gives no warranties or guarantees, expressed or implied, for the products evaluated in this report, including merchantability or fitness for a particular purpose. Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 T1. REPORT DATE: T2. REPORT TYPE: T3. DATES COVERED SEPTEMBER 2018 RESEARCH 2016-2018 T4.
    [Show full text]
  • Zebra and Quagga Mussels
    SPECIES AT A GLANCE Zebra and Quagga Mussels Two tiny mussels, the zebra mussel (Dreissena poly- morpha) and the quagga mussel (Dreissena rostriformis bugensis), are causing big problems for the economy and the environment in the west. Colonies of millions of mussels can clog underwater infrastructure, costing Zebra mussel (Actual size is 1.5 cm) taxpayers millions of dollars, and can strip nutrients from nearly all the water in a lake in a single day, turning entire ecosystems upside down. Zebra and quagga mussels are already well established in the Great Lakes and Missis- sippi Basin and are beginning to invade Western states. It Quagga mussel takes only one contaminated boat to introduce zebra and (Actual size is 2 cm) quagga mussels into a new watershed; once they have Amy Benson, U.S. Geological Survey Geological Benson, U.S. Amy been introduced, they are virtually impossible to control. REPORT THIS SPECIES! Oregon: 1-866-INVADER or Oregon InvasivesHotline.org; Washington: 1-888-WDFW-AIS; California: 1-916- 651-8797 or email [email protected]; Other states: 1-877-STOP-ANS. Species in the news Learning extensions Resources Oregon Public Broadcasting’s Like a Mussel out of Water Invasion of the Quagga Mussels! slide coverage of quagga mussels: www. show: waterbase.uwm.edu/media/ opb.org/programs/ofg/episodes/ cruise/invasion_files/frame.html view/1901 (Only viewable with Microsoft Internet Explorer) Why you should care How they got here and spread These tiny invaders have dramatically changed Zebra and quagga mussels were introduced to the entire ecosystems, and they cost taxpayers billions Great Lakes from the Caspian and Black Sea region of dollars every year.
    [Show full text]
  • Sacramento Zoo Reports the Death of Geriatric Grevy's Zebra
    Sacramento Zoo Reports the Death of Geriatric Grevy’s Zebra WHAT’S HAPPENING: The Sacramento Zoo is mourning the loss of Akina, a geriatric female Grevy’s Zebra. WHEN: Akina passed away the evening of Thursday, December 29 at the age of 24. On December 28, Akina was behaving abnormally and was placed under veterinary observation and treatment for suspected colic. Colic is a relatively common, but serious, disorder of the digestive system. The next day, after her conditioned failed to improve, Akina was brought to the Sacramento Zoo’s veterinary clinic where she received a full exam. During the exam, Akina was given fluids, pain medications, antibiotics, intestinal protectants and mineral oil to assist with resolving the colic. Over the course of the afternoon Akina was slow to recover from the exam and unfortunately died at the end of the day. Akina was taken to UC Davis for a full necropsy. Born in 1992, Akina was the second oldest Zebra at the Sacramento Zoo, and one of the oldest Grevy’s Zebras living at an Association of Zoos and Aquariums-accredited institution – the oldest being 27 years-of-age. “Akina was a Grand Old Equine who was never shy about chatting,” said Lindsey Moseanko, Primary Ungulate Keeper at the Sacramento Zoo. “Her vocalizing could be heard throughout the zoo. She loved coming to her keepers at the fence-line for apple slices and ear scratches,” she continued. “Her spunky personality will be missed.” The Sacramento Zoo participates in the Association of Zoos and Aquariums’ Grevy’s Zebra Species Survival Plan®.
    [Show full text]
  • Speciation with Gene Flow in Equids Despite Extensive Chromosomal Plasticity
    Speciation with gene flow in equids despite extensive chromosomal plasticity Hákon Jónssona,1, Mikkel Schuberta,1, Andaine Seguin-Orlandoa,b,1, Aurélien Ginolhaca, Lillian Petersenb, Matteo Fumagallic,d, Anders Albrechtsene, Bent Petersenf, Thorfinn S. Korneliussena, Julia T. Vilstrupa, Teri Learg, Jennifer Leigh Mykag, Judith Lundquistg, Donald C. Millerh, Ahmed H. Alfarhani, Saleh A. Alquraishii, Khaled A. S. Al-Rasheidi, Julia Stagegaardj, Günter Straussk, Mads Frost Bertelsenl, Thomas Sicheritz-Pontenf, Douglas F. Antczakh, Ernest Baileyg, Rasmus Nielsenc, Eske Willersleva, and Ludovic Orlandoa,2 aCentre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen K, Denmark; bNational High-Throughput DNA Sequencing Center, DK-1353 Copenhagen K, Denmark; cDepartment of Integrative Biology, University of California, Berkeley, CA 94720; dUCL Genetics Institute, Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, United Kingdom; eThe Bioinformatics Centre, Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark; fCentre for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, DK-2800 Lyngby, Denmark; gMaxwell H. Gluck Equine Research Center, Veterinary Science Department, University of Kentucky, Lexington, KY 40546; hBaker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853; iZoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; jRee Park, Ebeltoft Safari, DK-8400 Ebeltoft, Denmark; kTierpark Berlin-Friedrichsfelde, 10319 Berlin, Germany; and lCentre for Zoo and Wild Animal Health, Copenhagen Zoo, DK-2000 Frederiksberg, Denmark Edited by Andrew G. Clark, Cornell University, Ithaca, NY, and approved October 27, 2014 (received for review July 3, 2014) Horses, asses, and zebras belong to a single genus, Equus,which Conservation of Nature.
    [Show full text]
  • (EHV-1 and EHV-9): Genetic Diversity, Latency and Co-Infections
    viruses Article Zebra Alphaherpesviruses (EHV-1 and EHV-9): Genetic Diversity, Latency and Co-Infections Azza Abdelgawad 1, Armando Damiani 2, Simon Y. W. Ho 3, Günter Strauss 4, Claudia A. Szentiks 1, Marion L. East 1, Nikolaus Osterrieder 2 and Alex D. Greenwood 1,5,* 1 Leibniz-Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, Berlin 10315, Germany; [email protected] (A.A.); [email protected] (C.A.S.); [email protected] (M.L.E.) 2 Institut für Virologie, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, Berlin 14163, Germany; [email protected] (A.D.); [email protected] (N.O.) 3 School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia; [email protected] 4 Tierpark Berlin-Friedrichsfelde, Am Tierpark 125, Berlin 10307, Germany; [email protected] 5 Department of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19, Berlin 14163, Germany * Correspondence: [email protected]; Tel.: +49-30-516-8255 Academic Editor: Joanna Parish Received: 21 July 2016; Accepted: 14 September 2016; Published: 20 September 2016 Abstract: Alphaherpesviruses are highly prevalent in equine populations and co-infections with more than one of these viruses’ strains frequently diagnosed. Lytic replication and latency with subsequent reactivation, along with new episodes of disease, can be influenced by genetic diversity generated by spontaneous mutation and recombination. Latency enhances virus survival by providing an epidemiological strategy for long-term maintenance of divergent strains in animal populations. The alphaherpesviruses equine herpesvirus 1 (EHV-1) and 9 (EHV-9) have recently been shown to cross species barriers, including a recombinant EHV-1 observed in fatal infections of a polar bear and Asian rhinoceros.
    [Show full text]
  • Evaluation of Quagga Mussel Veliger Thermal Tolerance
    EVALUATION OF QUAGGA MUSSEL VELIGER THERMAL TOLERANCE FINAL REPORT – JANUARY 2011 RESEARCH SESSION July 2011 Prepared for: Colorado Division of Wildlife Aquatic Wildlife Research Group Aquatic Section Fort Collins Research Center Invasive Species Program 317 W. Prospect St. 6060 Broadway Fort Collins, CO 80526 Denver, Colorado 80216 Prepared by: Christopher D. Craft and Christopher A. Myrick, Ph.D. Department of Fish, Wildlife, and Conservation Biology Colorado State University Fort Collins, Colorado 80523-1474 (970) 491-5657 CDOW Task Order # CSU1003 CSU Number 53-0555 Table of Contents Table of Contents ............................................................................................................................. 2 Introduction ..................................................................................................................................... 3 Materials and Methods .................................................................................................................... 6 Veliger Collection ........................................................................................................................ 6 Veliger Holding System .............................................................................................................. 6 Veliger Thermal Tolerance Testing ............................................................................................. 7 Statistical Analyses .....................................................................................................................
    [Show full text]