The Astrophysical Journal, 373:497-508,1991 June 1

Total Page:16

File Type:pdf, Size:1020Kb

The Astrophysical Journal, 373:497-508,1991 June 1 97W .4 The Astrophysical Journal, 373:497-508,1991 June 1 © 1991. The American Astronomical Society. All rights reserved. Printed in U.S.A. .373. 91ApJ. 19 THE DETECTION OF X-RAY EMISSION FROM THE OB ASSOCIATIONS OF THE LARGE MAGELLANIC CLOUD Q. Wang and D. J. Helfand Columbia Astrophysics Laboratory, 538 West 120th Street, New York, NY 10027 Received 1990 June 28; accepted 1990 November 1 ABSTRACT A systematic study of the X-ray properties of OB associations in the Large Magellanic Cloud has been carried out using data from the Einstein Observatory. Not unexpectedly, we find an excess of young, X-ray- bright supernova remnants in the vicinity of the associations. In addition, however, we detect diffuse X-ray emission from over two dozen other associations; luminosities in the 0.16-3.5 keV band range from ~2 x 1034 (the detection threshold) to ~1036 ergs s-1. For several of the more luminous examples, we show that emission from interstellar bubbles created by the OB stellar winds alone is insufficient to explain the emission. We conclude that transient heating of the bubble cavities by recent supernovae may be required to explain the observed X-rays and that such a scenario is consistent with the number of X-ray-bright associ- ations and the expected supernova rate from the young stars they contain. The mean X-ray luminosity of the ~50 undetected associations is ~1034 ergs s_1, and the emission from all associations contributes ~4% to the total diffuse X-ray emission from the galaxy. Subject headings: clusters: associations — galaxies: Magellanic Clouds — nebulae: supernova remnants — X-rays: sources 1. INTRODUCTION et al. 1980; Abbott, Bieging, & Church well 1981; Bochkarev & The injection of radiation and mechanical energy from Sitnik 1985). All are associated with either individual massive massive stars plays a dominant role in shaping the interstellar stars or OB associations. The X-ray detections can be inter- medium (ISM). At birth, the ionizing radiation from an OB preted as optically thin thermal emission from a hot gas 6 7 2 3 star begins to create an H n region. Throughout its evolution, (T ~ 10 -10 K, ne~ 10“ cm“ ) with inferred X-ray lumi- the star’s wind excavates a cavity in the surrounding medium, nosities in the range of 1032-1036 ergs s“ L Whether the gas has while at the end of its life, a supernova (SN) explosion reheats been heated by the strong stellar winds from the massive stars the cavity and expands the compressed shell of gas which or by supernovae (SNSe) has not, in general, been determined. encloses it. In an association of massive stars, all three pro- In cases where diffuse X-rays are detected over a large, compli- cesses operate simultaneously, and the size of the cavity cated emission region such as the Cygnus Superbubble, projec- created can exceed the scale height of the galactic disk tion effects of objects in the line of sight becomes a serious (McCray & Kafatos 1987; Mac Low & McCray 1988). Over concern and the purported correlations among the X-ray emis- the last decade, these effects of correlated massive-star forma- sion structures, OB associations, and related optical nebu- tion have come to be recognized as a controlling factor in losities become a controversial issue (Bochkarev & Sitnik determining the structure and evolution of the ISM (Norman 1985). & Ikeuchi 1989; McKee 1991 ; Heiles 1990). In contrast, the LMC offers a more favorable venue in which Soft X-rays provide an important diagnostic in studying the to undertake a systematic study of the interaction between interstellar cavities or bubbles surrounding OB associations. stellar associations and the ISM. With its nearly face-on disk Diffuse X-rays are not, of course, expected from a classical H n (inclined by 10o-30° to the line of sight), objects in this late- region, although unresolved emission from individual OB stars type galaxy suffers relatively low extinction, and chance super- has been detected with a characteristic ratio of X-ray to bolo- position along the line of sight is minimized; the common and metric luminosity of ~3 x 10“7 (Chlebowski 1989a, b). Both well-determined distances of OB stars in the Cloud provide stellar wind and supernova ejecta velocities (~ 103 and 104 km another advantage over studies in the Galactic plane. Some s"1, respectively) are, however, sufficient to heat the gas inside preliminary results, based on analyses of some individual a bubble to X-ray temperatures. It is our purpose here to observations made with the Einstein Imaging Proportional present a systematic, quantitative analysis of X-ray properties Counter (IPC), have been reported (Wang & Helfand 1988; for a sample of ~ 100 OB associations in the Large Magellanic Chu & Mac Low 1990). We present here a comprehensive Cloud (LMC) in order to shed light on the formation and analysis of the whole IPC data base covering the vicinity of the evolution of the interstellar bubbles they create. majority of the OB associations in the Cloud identified by Candidates for extended X-ray emission have been sug- Lucke & Hodge (1970, hereafter LH). In § 2 we summarize gested for several Galactic H n regions : the nebulae NGC 6888 both the available optical observations of these associations (Bochkarev 1988) and S155 (Fabian & Stewart 1983), the and their surroundings, as well as the X-ray data base and our Rosette Nebula (Leahy 1985), the Orion Nebula (Ku & analysis strategy. We then examine (§ 3) the correlation of Chanan 1979), the Gum Nebula (Reynolds 1976), the Carina discrete sources identified in our X-ray survey of the LMC Nebula (Seward & Chlebowski 1982), RCW 49 (Goldwurm, (Wang et al. 1990 hereafter Paper I) with the stellar associ- Cara veo, & Bignami 1987), and the Cygnus Superbubble (Cash ations, finding an excess of young supernova remnants (SNRs) © American Astronomical Society • Provided by the NASA Astrophysics Data System 97W 498 WANG & HELFAND Vol. 373 .4 and a number of other associated X-ray sources. Section 4 collected a number of measured and derived parameters for describes a search for more extended X-ray emission from five relatively well-observed ring like nebulae. Included are the .373. these young clusters; 16 detections are recorded, and a limit on dimensions of the encircling Ha filaments (col. [2]); the expan- the mean luminosity of the undetected objects is derived. A sion velocities of the shells estimated from the nebular emission detailed discussion comparing these observations with models lines and/or from absorption lines in the light of the exciting 91ApJ. for X-ray emission from interstellar bubbles follows in § 5 ; we stars (col. [3]); the electron number density ne and gas tem- 19 conclude that heating by recent supernovae is required for the perature Te (cols. [4] and [5], Lasker 1977; Dopita et al. most luminous associations. In § 6 we summarize our results 1981); the H i column densities estimated using a ratio of NH to and point to future observations which could enhance substan- reddening of N^Eß^y = 4.2 x 1023 atoms cm "2 mag-1 (col. tially our understanding of the structure and evolution of X- [6], Isserstedt & Kohl 1984); and the ([S n] 226716 + 6731)/Ha ray-emitting interstellar bubbles. line ratios (col. [7]). In the last column of the table, we have also included the estimated ambient density n0 of the undis- 2. THE DATA AND THEIR ANALYSIS turbed ISM (see § 5). We will use these observations in § 5 to 2.1. The OB Associations and Their Environs compare the observed X-ray luminosities with predictions A complete catalog of 122 associations in the LMC was from an interstellar bubble model. compiled by LH, who applied similar criteria to those used in Even large ISM structures (with dimensions up to ~ 1 kpc) identifying galactic associations. They adopted a limiting mag- have been suggested as related to the effects of OB associ- ations. Many of the associations are found within, or at the nitude mv= 14 in reporting the number of stars in each associ- ation; this limit corresponds to a star in the LMC with a periphery of, large H i cavities surrounded by H n filaments such as the supergiant shells LMC 2 and LMC 4 (McGee & main-sequence mass of ~20 M0. In addition, the catalog includes information on the approximate dimensions of the Milton 1966; Meaburn 1979; 1980; Wang & Helfand 1991a). associations. Although these associations most likely do reflect one conse- Only 86 of the LH associations are included in the present quence of the extensive interaction between young stars and study. Among the rest, 26 are either not covered by the X-ray the ISM, we leave detailed study of these complicated giant survey or fall at the very edge of our merged X-ray map systems to separate papers (Wang & Helfand 1991a, b). Here described in Paper I. In addition, LH 100, 103, 105, 106, and we treat the OB associations individually, concentrating on 108 are not included in the study because they fall in regions their effects on the ambient ISM as revealed through the with complicated diffuse X-ray emission and/or serious con- resulting X-ray emission. tamination by mirror-scattered photons from LMC X-l (see Wang & Helfand 1991a). LH 93, 94, 97, and 98, as subgroups 2.2. The X-Ray Data and Their Analysis of a large star cloud LH 96, are not studied separately, and the The present survey is based on the X-ray data collected with low-density, irregularly shaped star cloud LH 77 is excluded the Imaging Proportional Counter (IPC) on board the Einstein from consideration.
Recommended publications
  • Limits from the Hubble Space Telescope on a Point Source in SN 1987A
    Limits from the Hubble Space Telescope on a Point Source in SN 1987A The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Graves, Genevieve J. M., Peter M. Challis, Roger A. Chevalier, Arlin Crotts, Alexei V. Filippenko, Claes Fransson, Peter Garnavich, et al. 2005. “Limits from the Hubble Space Telescopeon a Point Source in SN 1987A.” The Astrophysical Journal 629 (2): 944–59. https:// doi.org/10.1086/431422. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:41399924 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA The Astrophysical Journal, 629:944–959, 2005 August 20 # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. LIMITS FROM THE HUBBLE SPACE TELESCOPE ON A POINT SOURCE IN SN 1987A Genevieve J. M. Graves,1, 2 Peter M. Challis,2 Roger A. Chevalier,3 Arlin Crotts,4 Alexei V. Filippenko,5 Claes Fransson,6 Peter Garnavich,7 Robert P. Kirshner,2 Weidong Li,5 Peter Lundqvist,6 Richard McCray,8 Nino Panagia,9 Mark M. Phillips,10 Chun J. S. Pun,11,12 Brian P. Schmidt,13 George Sonneborn,11 Nicholas B. Suntzeff,14 Lifan Wang,15 and J. Craig Wheeler16 Received 2005 January 27; accepted 2005 April 26 ABSTRACT We observed supernova 1987A (SN 1987A) with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST ) in 1999 September and again with the Advanced Camera for Surveys (ACS) on the HST in 2003 November.
    [Show full text]
  • Luminous Blue Variables
    Review Luminous Blue Variables Kerstin Weis 1* and Dominik J. Bomans 1,2,3 1 Astronomical Institute, Faculty for Physics and Astronomy, Ruhr University Bochum, 44801 Bochum, Germany 2 Department Plasmas with Complex Interactions, Ruhr University Bochum, 44801 Bochum, Germany 3 Ruhr Astroparticle and Plasma Physics (RAPP) Center, 44801 Bochum, Germany Received: 29 October 2019; Accepted: 18 February 2020; Published: 29 February 2020 Abstract: Luminous Blue Variables are massive evolved stars, here we introduce this outstanding class of objects. Described are the specific characteristics, the evolutionary state and what they are connected to other phases and types of massive stars. Our current knowledge of LBVs is limited by the fact that in comparison to other stellar classes and phases only a few “true” LBVs are known. This results from the lack of a unique, fast and always reliable identification scheme for LBVs. It literally takes time to get a true classification of a LBV. In addition the short duration of the LBV phase makes it even harder to catch and identify a star as LBV. We summarize here what is known so far, give an overview of the LBV population and the list of LBV host galaxies. LBV are clearly an important and still not fully understood phase in the live of (very) massive stars, especially due to the large and time variable mass loss during the LBV phase. We like to emphasize again the problem how to clearly identify LBV and that there are more than just one type of LBVs: The giant eruption LBVs or h Car analogs and the S Dor cycle LBVs.
    [Show full text]
  • Variable Star Classification and Light Curves Manual
    Variable Star Classification and Light Curves An AAVSO course for the Carolyn Hurless Online Institute for Continuing Education in Astronomy (CHOICE) This is copyrighted material meant only for official enrollees in this online course. Do not share this document with others. Please do not quote from it without prior permission from the AAVSO. Table of Contents Course Description and Requirements for Completion Chapter One- 1. Introduction . What are variable stars? . The first known variable stars 2. Variable Star Names . Constellation names . Greek letters (Bayer letters) . GCVS naming scheme . Other naming conventions . Naming variable star types 3. The Main Types of variability Extrinsic . Eclipsing . Rotating . Microlensing Intrinsic . Pulsating . Eruptive . Cataclysmic . X-Ray 4. The Variability Tree Chapter Two- 1. Rotating Variables . The Sun . BY Dra stars . RS CVn stars . Rotating ellipsoidal variables 2. Eclipsing Variables . EA . EB . EW . EP . Roche Lobes 1 Chapter Three- 1. Pulsating Variables . Classical Cepheids . Type II Cepheids . RV Tau stars . Delta Sct stars . RR Lyr stars . Miras . Semi-regular stars 2. Eruptive Variables . Young Stellar Objects . T Tau stars . FUOrs . EXOrs . UXOrs . UV Cet stars . Gamma Cas stars . S Dor stars . R CrB stars Chapter Four- 1. Cataclysmic Variables . Dwarf Novae . Novae . Recurrent Novae . Magnetic CVs . Symbiotic Variables . Supernovae 2. Other Variables . Gamma-Ray Bursters . Active Galactic Nuclei 2 Course Description and Requirements for Completion This course is an overview of the types of variable stars most commonly observed by AAVSO observers. We discuss the physical processes behind what makes each type variable and how this is demonstrated in their light curves. Variable star names and nomenclature are placed in a historical context to aid in understanding today’s classification scheme.
    [Show full text]
  • Stsci Newsletter: 2011 Volume 028 Issue 02
    National Aeronautics and Space Administration Interacting Galaxies UGC 1810 and UGC 1813 Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA) 2011 VOL 28 ISSUE 02 NEWSLETTER Space Telescope Science Institute We received a total of 1,007 proposals, after accounting for duplications Hubble Cycle 19 and withdrawals. Review process Proposal Selection Members of the international astronomical community review Hubble propos- als. Grouped in panels organized by science category, each panel has one or more “mirror” panels to enable transfer of proposals in order to avoid conflicts. In Cycle 19, the panels were divided into the categories of Planets, Stars, Stellar Rachel Somerville, [email protected], Claus Leitherer, [email protected], & Brett Populations and Interstellar Medium (ISM), Galaxies, Active Galactic Nuclei and Blacker, [email protected] the Inter-Galactic Medium (AGN/IGM), and Cosmology, for a total of 14 panels. One of these panels reviewed Regular Guest Observer, Archival, Theory, and Chronology SNAP proposals. The panel chairs also serve as members of the Time Allocation Committee hen the Cycle 19 Call for Proposals was released in December 2010, (TAC), which reviews Large and Archival Legacy proposals. In addition, there Hubble had already seen a full cycle of operation with the newly are three at-large TAC members, whose broad expertise allows them to review installed and repaired instruments calibrated and characterized. W proposals as needed, and to advise panels if the panelists feel they do not have The Advanced Camera for Surveys (ACS), Cosmic Origins Spectrograph (COS), the expertise to review a certain proposal. Fine Guidance Sensor (FGS), Space Telescope Imaging Spectrograph (STIS), and The process of selecting the panelists begins with the selection of the TAC Chair, Wide Field Camera 3 (WFC3) were all close to nominal operation and were avail- about six months prior to the proposal deadline.
    [Show full text]
  • Origins of Type Ibn Sne 2006Jc/2015G in Interacting Binaries and Implications for Pre-SN Eruptions
    This is a repository copy of Origins of Type Ibn SNe 2006jc/2015G in interacting binaries and implications for pre-SN eruptions. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/154958/ Version: Published Version Article: Sun, N.-C. orcid.org/0000-0002-4731-9698, Maund, J.R. orcid.org/0000-0003-0733-7215, Hirai, R. et al. (2 more authors) (2019) Origins of Type Ibn SNe 2006jc/2015G in interacting binaries and implications for pre-SN eruptions. Monthly Notices of the Royal Astronomical Society, 491 (4). pp. 6000-6019. ISSN 0035-8711 https://doi.org/10.1093/mnras/stz3431 This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ MNRAS 491, 6000–6019 (2020) doi:10.1093/mnras/stz3431 Advance Access publication 2019 December 6 Origins of Type Ibn SNe 2006jc/2015G in interacting binaries and implications for pre-SN eruptions Ning-Chen Sun,1‹ Jusytn R.
    [Show full text]
  • Arxiv:0905.1328V3
    Spitzer SAGE Infrared Photometry of Massive Stars in the Large Magellanic Cloud A. Z. Bonanos1,2, D.L. Massa2, M. Sewilo2, D. J. Lennon2, N. Panagia2,3, L. J. Smith2, M. Meixner2, B. L. Babler4, S. Bracker4, M. R. Meade4, K.D. Gordon2, J.L. Hora5, R. Indebetouw6, B. A. Whitney7 ABSTRACT We present a catalog of 1750 massive stars in the Large Magellanic Cloud, with accurate spectral types compiled from the literature, and a photometric cat- alog for a subset of 1268 of these stars, with the goal of exploring their infrared properties. The photometric catalog consists of stars with infrared counterparts in the Spitzer SAGE survey database, for which we present uniform photometry from 0.3 − 24 µm in the UBVIJHKs+IRAC+MIPS24 bands. The resulting infrared color–magnitude diagrams illustrate that the supergiant B[e], red super- giant and luminous blue variable (LBV) stars are among the brightest infrared point sources in the Large Magellanic Cloud, due to their intrinsic brightness, and at longer wavelengths, due to dust. We detect infrared excesses due to free– free emission among ∼ 900 OB stars, which correlate with luminosity class. We confirm the presence of dust around 10 supergiant B[e] stars, finding the shape of their spectral energy distributions (SEDs) to be very similar, in contrast to 1Giacconi Fellow. 2Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218, USA; bonanos, massa, sewilo, lennon, panagia, lsmith, meixner, [email protected] 3INAF/Osservatorio Astrofisico di Catania, Via S.Sofia 78, I-95123 Catania, Italy; and Supernova Ltd., arXiv:0905.1328v3 [astro-ph.SR] 11 Aug 2009 VGV #131, Northsound Road, Virgin Gorda, British Virgin Islands.
    [Show full text]
  • Florida State University Libraries
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School Constraining the Evolution of Massive StarsMojgan Aghakhanloo Follow this and additional works at the DigiNole: FSU's Digital Repository. For more information, please contact [email protected] FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES CONSTRAINING THE EVOLUTION OF MASSIVE STARS By MOJGAN AGHAKHANLOO A Dissertation submitted to the Department of Physics in partial fulfillment of the requirements for the degree of Doctor of Philosophy 2020 Copyright © 2020 Mojgan Aghakhanloo. All Rights Reserved. Mojgan Aghakhanloo defended this dissertation on April 6, 2020. The members of the supervisory committee were: Jeremiah Murphy Professor Directing Dissertation Munir Humayun University Representative Kevin Huffenberger Committee Member Eric Hsiao Committee Member Harrison Prosper Committee Member The Graduate School has verified and approved the above-named committee members, and certifies that the dissertation has been approved in accordance with university requirements. ii I dedicate this thesis to my parents for their love and encouragement. I would not have made it this far without you. iii ACKNOWLEDGMENTS I would like to thank my advisor, Professor Jeremiah Murphy. I could not go through this journey without your endless support and guidance. I am very grateful for your scientific advice and knowledge and many insightful discussions that we had during these past six years. Thank you for making such a positive impact on my life. I would like to thank my PhD committee members, Professors Eric Hsiao, Kevin Huf- fenberger, Munir Humayun and Harrison Prosper. I will always cherish your guidance, encouragement and support. I would also like to thank all of my collaborators.
    [Show full text]
  • The Intermediate Luminosity Optical Transient Sn 2010Da: the Progenitor, Eruption, and Aftermath of a Peculiar Supergiant High-Mass X-Ray Binary V
    The Astrophysical Journal, 830:11 (23pp), 2016 October 10 doi:10.3847/0004-637X/830/1/11 © 2016. The American Astronomical Society. All rights reserved. THE INTERMEDIATE LUMINOSITY OPTICAL TRANSIENT SN 2010DA: THE PROGENITOR, ERUPTION, AND AFTERMATH OF A PECULIAR SUPERGIANT HIGH-MASS X-RAY BINARY V. A. Villar1,8, E. Berger1, R. Chornock2, R. Margutti3, T. Laskar4,9, P. J. Brown5, P. K. Blanchard1,8, I. Czekala1, R. Lunnan6, and M. T. Reynolds7 1 Harvard Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA; [email protected] 2 Astrophysical Institute, Department of Physics and Astronomy, 251B Clippinger Lab, Ohio University, Athens, OH 45701, USA 3 New York University, Physics department, 4 Washington Place, New York, NY 10003, USA 4 Department of Astronomy, University of California, Berkeley, CA 94720-3411, USA 5 George P. and Cynthia Woods Mitchell Institute for Fundamental Physics & Astronomy, Texas A. & M. University, Department of Physics and Astronomy, 4242 TAMU, College Station, TX 77843, USA 6 Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA 7 Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109-1107, USA Received 2016 May 24; revised 2016 July 7; accepted 2016 July 21; published 2016 October 3 ABSTRACT We present optical spectroscopy, ultraviolet-to-infrared imaging,and X-ray observations of the intermediate luminosity optical transient (ILOT) SN 2010da in NGC 300 (d = 1.86 Mpc) spanning from −6to+6 years relative to the time of outburst in 2010. Based on the light-curve and multi-epoch spectral energy distributions of SN 2010da, we conclude that the progenitor of SN 2010da is a ≈10–12 Me yellow supergiant possibly transitioning into a blue-loop phase.
    [Show full text]
  • A Massive Nebula Around the Luminous Blue Variable Star RMC
    Astronomy & Astrophysics manuscript no. r143-manuscript c ESO 2019 May 22, 2019 A massive nebula around the Luminous Blue Variable star RMC143 revealed by ALMA C. Agliozzo1,2,3, A. Mehner1, N. M. Phillips2, P. Leto4, J. H. Groh5, A. Noriega-Crespo6, C. Buemi4, F. Cavallaro4, L. Cerrigone7, A. Ingallinera4, R. Paladini8, G. Pignata3,9, C. Trigilio4, G. Umana4 1 European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago de Chile, Chile e-mail: [email protected] 2 European Southern Observatory, Karl-Schwarzschild-Strasse 2, Garching bei München, 85748, Germany 3 Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago, 8320000, Chile 4 INAF-Osservatorio Astrofisico di Catania, Via S. Sofia 78, 95123 Catania, Italy 5 Trinity College Dublin, The University of Dublin, College Green, Dublin, Ireland 6 Space Telescope Science Institute 3700 San Martin Dr., Baltimore, MD, 21218, USA 7 Joint ALMA Observatory, Alonso de Córdova 3107, Vitacura, Santiago, Chile 8 Infrared Processing Analysis Center, California Institute of Technology, 770 South Wilson Ave., Pasadena, CA 91125, USA 9 Millennium Institute of Astrophysics (MAS), Nuncio Monseñor Sótero Sanz 100, Providencia, Santiago, Chile ABSTRACT The luminous blue variable (LBV) RMC143 is located in the outskirts of the 30 Doradus complex, a region rich with interstellar material and hot luminous stars. We report the 3σ sub-millimetre detection of its circumstellar nebula with ALMA. The observed morphology in the sub-millimetre is different than previously observed with HST and ATCA in the optical and centimetre wavelength regimes. The spectral energy distribution (SED) of RMC143 suggests that two emission mechanisms contribute to the sub-mm emission: optically thin bremsstrahlung and dust.
    [Show full text]
  • Newsletter 121 of Working Group on Massive Star
    ISSN 1783-3426 THE MASSIVE STAR NEWSLETTER formely known as the hot star newsletter * No. 121 2011 January-February Editors: Philippe Eenens (University of [email protected] Guanajuato) Raphael Hirschi (Keele University) http://www.astroscu.unam.mx/massive_stars CONTENTS OF THIS NEWSLETTER: News "The multi-wavelength view of Hot, Massive Stars" Proceedings available Abstracts of 21 accepted papers Observational Constraints on Superbubble X-ray Energy Budgets The Sparsest Clusters With O Stars Mass and angular momentum loss via decretion disks He-like ions as practical astrophysical plasma diagnostics: From stellar coronae to active galactic nuclei An asteroseismic study of the O9V star HD 46202 from CoRoT space-based photometry A New Diagnostic of the Radial Density Structure of Be Disks Eccentric binaries. Tidal flows and periastron events The H-alpha Variations of the Luminous Blue Variable P Cygni: Discrete Absorption Components and the Short S Doradus Phase Discovery of the first tau Sco analogues: HD 66665 and HD 63425 Mass loss from inhomogeneous hot star winds Red Supergiants, Luminous Blue Variables and Wolf-Rayet stars: the single massive star The Galactic O-Star Spectroscopic Survey. I. Classification System and Bright Northern Stars in the Blue-Violet at R~2500 First detection of a magnetic field in the fast rotating runaway Oe star $zeta$,Ophiuchi Title: Rotating Massive Main-Sequence Stars II: Simulating a Population of LMC early B-type Stars as a Test of Rotational Mixing Rotating Massive Main-Sequence Stars I: Grids of Evolutionary
    [Show full text]
  • Download This Article in PDF Format
    A&A 626, A126 (2019) Astronomy https://doi.org/10.1051/0004-6361/201935239 & c ESO 2019 Astrophysics A massive nebula around the luminous blue variable star RMC 143 revealed by ALMA?,?? C. Agliozzo1,2,3 , A. Mehner1, N. M. Phillips2, P. Leto4, J. H. Groh5, A. Noriega-Crespo6, C. Buemi4, F. Cavallaro4, L. Cerrigone7, A. Ingallinera4, R. Paladini8, G. Pignata3,9, C. Trigilio4, and G. Umana4 1 European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago de Chile, Chile e-mail: [email protected] 2 European Southern Observatory, Karl-Schwarzschild-Strasse 2, Garching bei München 85748, Germany 3 Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago 8320000, Chile 4 INAF-Osservatorio Astrofisico di Catania, Via S. Sofia 78, 95123 Catania, Italy 5 Trinity College Dublin, The University of Dublin, College Green, Dublin, Ireland 6 Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218, USA 7 Joint ALMA Observatory, Alonso de Córdova 3107, Vitacura, Santiago, Chile 8 Infrared Processing Analysis Center, California Institute of Technology, 770 South Wilson Ave., Pasadena, CA 91125, USA 9 Millennium Institute of Astrophysics (MAS), Nuncio Monseñor Sótero Sanz 100, Providencia, Santiago, Chile Received 9 February 2019 / Accepted 9 May 2019 ABSTRACT The luminous blue variable (LBV) RMC 143 is located in the outskirts of the 30 Doradus complex, a region rich with interstellar material and hot luminous stars. We report the 3σ sub-millimetre detection of its circumstellar nebula with ALMA. The observed morphology in the sub-millimetre is different than previously observed with HST and ATCA in the optical and centimetre wavelength regimes.
    [Show full text]
  • Supernova 1987 A, Eighteen Months of Observations
    18 SUPERNOVA 1987 A DEZOITO MESES DE OBSERVAÇÕES Tasso Augusto Napoleão - REA/SP ABSTRACT This article summarize the observations of SN 1987 A made by the author during period from February 1987, through September, 1988. Ninety-eight visual magnitudes estimates are provided, together with some raw data is compared with information from the IAU circulars, as Historical aspects and general comments on SN 1987 A’s peculiar behavior complete the text. 1. SUMÁRIO. No presente texto, procuramos descrever nossas observações da SN 1987 A, no período entre fevereiro de 1987 até setembro de 1988. Um total de 98 estimativas da magnitude deste objeto foram realizadas pelo autor ao longo deste intervalo de tempo. Observações complementares, como a evolução da cor da SN, são também mencionadas. Uma comparação com os dados de diversos outros observadores (principalmente australianos, neozelandeses e sul-africanos), obtida através da compilação das circulares da União Astronômica Internacional, é também incluída. As conclusões obtidas de nossa curva de luz, bem como algumas reduções feitas sobre os dados brutos, são aqui apresentadas. Finalmente, aspectos genéricos sobre a SN, assim como de natureza histórica, complementam o texto, a título de introdução. O trabalho atual complementa ainda nosso artigo “Fotometria Visual Preliminar da SN 1987 A”, publicado em junho de 1987 (Ref. 12), e que abrangia na época as observações correspondentes aos 100 primeiros dias subsequentes a explosão da supernova. 2. INTRODUÇÃO. 2.1. Supernovas Históricas. Diversas são as referencias a explosões de supernovas galacticas em séculos passados. No entanto (e principalmente nas SN observadas na antiguidade) existem controvérsias, geradas por diferentes culturas e idiomas, calendários, inconsistências e - principalmente - pelo desconhecimento da distinção que hoje fazemos entre novas e supernovas.
    [Show full text]