Evaluation of Bronchodilator Responses in Patients with "Irreversible" Emphysema

Total Page:16

File Type:pdf, Size:1020Kb

Evaluation of Bronchodilator Responses in Patients with Eur Respir J 2001; 18: 914–920 Copyright #ERS Journals Ltd 2001 DOI: 10.1183/09031936.01.00216501 European Respiratory Journal Printed in UK – all rights reserved ISSN 0903-1936 Evaluation of bronchodilator responses in patients with "irreversible" emphysema D.E. O9Donnell, L. Forkert, K.A. Webb Evaluation of bronchodilator responses in patients with 0irreversible0 emphysema. D.E. Respiratory Investigation Unit, Dept O9Donnell, L. Forkert, K.A. Webb. #ERS Journals Ltd 2001. of Medicine, Queen9s University, King- ABSTRACT: Given the emerging physiological and clinical rationale for pharmaco- ston, Ontario, Canada. logical lung-volume reduction, assessment of volume responses to bronchodilators is Correspondence: D.E. O9Donnell likely to be highly relevant in chronic obstructive pulmonary disease (COPD). The Richardson House authors examined the magnitude of lung-volume reduction after acute bronchodilator 102 Stuart Street treatment in patients with advanced emphysema. c/o Kingston General Hospital Eighty-four stable patients with emphysema (mean¡SEM forced expiratory volume Kingston in one second (FEV1): 32¡1% predicted) performed spirometry and body plethysmo- Ontario graphy before and 15–30 min after 200 mg salbutamol. Only irreversible patients with a Canada postbronchodilator change in FEV1 v10% pred were considered in this study. K7L 2V7 Postsalbutamol, the majority of subjects (83%) had significant improvements in one Fax: 1 6135491459 or more lung volumes: on average, residual volume (RV), functional residual capacity Keywords: Bronchodilators (FRC), inspiratory capacity (IC), forced vital capacity and slow vital capacity changed ¡ ¡ ¡ ¡ ¡ chronic obstructive pulmonary disease by -18 2, -10 1, 8 1, 9 1 and 7 1% pred (pv0.0005 each). Total lung capacity emphysema (TLC) decreased 0.12¡0.04 L (pv0.01). Change in IC reflected change in FRC inspiratory capacity (r=-0.60, pv0.0005), but more strongly in the 57% of patients with no significant change lung hyperinflation in TLC (r=-0.93, pv0.0005). The magnitude and frequency of volume responses were reversibility criteria greatest in patients with the most severe COPD; for example, RV decreased by 0.51¡0.09 L (23¡4% pred) and 0.27¡0.04 L (14¡2% pred) in severe and moderate Received: February 19 2001 subgroups, respectively. Accepted after revision July 11 2001 Significant reductions in lung hyperinflation occurred in the absence of a change in This work was supported by the forced expiratory volume in one second after low-dose salbutamol in a majority of Ontario Ministry of Health. patients with advanced emphysema; the greatest changes occurred in those with the most severe disease. Eur Respir J 2001; 18: 914–920. The relatively diminished bronchodilator response dynamic lung hyperinflation, which is arguably a in chronic obstructive pulmonary disease (COPD) relevant measure of impairment in severely flow- (compared with asthma) has led to its designation as limited patients [9, 10]. Symptom relief and improved an irreversible airways disease and has, consequently, exercise performance, following both b2-agonist and promoted a general attitude of therapeutic nihilism. anticholinergic bronchodilators, correlate well with Although the measurement of maximal flow rates e.g. reduced resting and exercise operational lung volumes the forced expiratory volume in one sec (FEV1)is in the presence of only minimal changes in the FEV1 of unquestionable diagnostic utility, and has become [1, 2]. Therefore, the purpose of this study was to an acceptable (albeit imprecise) measure of disease examine the frequency and magnitude of lung-volume severity in COPD, recent studies have shown that this reduction in response to salbutamol in patients with measurement has definite limitations as a clinical irreversible emphysema. The authors were particularly outcome measure for the evaluation of bronchodilator interested in evaluating whether improved inspiratory efficacy [1–4]. In advanced COPD, forced expiratory capacity (IC) accurately reflected reduced lung hyper- manoeuvres initiated from total lung capacity (TLC) inflation in this population. The resting IC may be a are fraught with measurement artefact (e.g. gas and clinically relevant outcome measure because it has airway compression effects) that underestimate the recently been shown to correlate well with symptom- true maximal expiratory flows available over the limited peak oxygen uptake in COPD [10, 11]. More- operating tidal volume range [5]. Therefore, FEV1, over, there is mounting evidence that small increases only crudely reflects the degree of expiratory-flow in IC (in the order of y10 % predicted or 0.3 L), limitation (EFL), which is the true pathophysiological following bronchodilator therapy are associated with hallmark of COPD [6]. The FEV1 correlates weakly, important improvements in dyspnoea and exercise or not at all, with symptom intensity and exercise performance in COPD [1, 3, 12, 13]. The behaviour of capacity in COPD [7–9]. TLC following salbutamol was also studied, since this A major consequence of EFL is air trapping and is essential to the evaluation of the potential utility of PHARMACOLOGICAL VOLUME REDUCTION IN EMPHYSEMA 915 measuring changes in spirometric IC and vital capa- Linda, CA, US). Prebronchodilator only, single- city (VC) to accurately reflect changes in plethysmo- breath DL,CO was also measured (6200 Autobox DL graphic functional residual capacity (FRC) and or Vmax229). Predicted normal values for spirometry, residual volume (RV), respectively. Finally, the lung volumes, and diffusing capacity were those of authors compared volume responses in patients with MORRIS et al. [19], CRAPO et al. [20], and BURROWS moderate (Stage II) and severe (Stage III) COPD, et al. [21], respectively. Predicted normal values for stratified by recent Global Initiative for Chronic IC were calculated as predicted TLC minus predicted Obstructive Lung Disease (GOLD) criteria [14]. FRC. In this study, the authors examined responses to 200 mg of salbutamol in a large population of patients with well-characterized, stable, advanced COPD, who Evaluation of bronchodilator responses had clinical and physiological features of emphysema. The analysis was confined to those patients who had a To establish eligibility for the study, bronchodilator minimal or absent FEV1 response during reversibility responsiveness was first judged against FEV1 criteria testing. recommended by the ERS [15]. To avoid bias from differences in baseline lung function [15], changes in various lung volumes were assessed and compared as Methods % pred normal. A change of ¢10% pred was felt to represent a Subjects significant bronchodilator response for IC or VC, since this amount falls outside the 95% confidence The present authors studied 84 clinically-stable interval (CI) for each of these measurements in this patients with advanced COPD, who did not meet group and in other severe COPD populations [2, 22]. the European Respiratory Society (ERS) reversibility Based on the results from a previous study of patients criteria for a positive bronchodilator response [15]. with severe COPD, a change of this magnitude also Specific inclusion criteria included: 1) a clinical pro- fell outside the coefficient of variation for repeated file of emphysema [16]; 2) a long history of cigarette measurements in this population [2]. In addition, it smoking (¢20 pack-yrs); 3) FEV1 ¡50% pred and was estimated that an increase in IC of 10% pred, FEV1/forced vital capacity (FVC) v70%; 4) lung or y0.3 L, resulted in clinically important improve- hyperinflation (FRC w120% pred); 5) a reduced ments in exertional dyspnoea intensity (i.e. reductions carbon monoxide diffusing capacity of the lung of y0.5 Borg Scale units) and in exercise endurance (DL,CO) ¡50% pred); and 6) a postbronchodilator (i.e. increases of y25%) in severe COPD. FEV1 response v10% pred. Subjects were further Similarly, the proportion of patients with plethys- stratified with respect to COPD severity based on mographic FRC and RV responses w10% pred was FEV1 criteria [14]: moderate (Stage II, FEV1 ¢30% evaluated. Finally, changes in TLC were also eval- pred and ¡50% pred) and severe (Stage III, FEV1 uated, and a significant change was assessed as a v30% pred). change outside the 95% CI of the within-group baseline measurement. Study design Statistical analysis Subjects were selected from a database of COPD Results are means¡SEM. Pre- and postbroncho- patients, who had performed reversibility testing dilator comparisons were made using paired t-tests. during assessment before pulmonary rehabilitation Unpaired t-tests were used for subgroup compari- or as part of the screening process prior to entering sons. Nonparametric frequency statistics were ana- various clinical-research studies. All subjects signed lysed using Chi-squared analysis. Interrelationships written informed consent at the time of their origi- between postbronchodilator changes (D) in lung func- nal assessments and were aware that their test data tion measurements were evaluated using Pearson9s might be used in future analyses. Prior to reversibility correlations. For subgroup comparisons and regres- testing, patients were required to withdraw from all sion analyses, pulmonary function measurements short-acting and long-acting bronchodilators for ¢4 were standardized as % pred normal values. and ¢12 h, respectively. Results Procedures Subject characteristics Pulmonary function testing was conducted with subjects seated at rest, before and 15–30 min after Subjects had significant
Recommended publications
  • Maximum Expiratory Flow Rates in Induced Bronchoconstriction in Man
    Maximum expiratory flow rates in induced bronchoconstriction in man A. Bouhuys, … , B. M. Kim, A. Zapletal J Clin Invest. 1969;48(6):1159-1168. https://doi.org/10.1172/JCI106073. Research Article We evaluated changes of maximum expiratory flow-volume (MEFV) curves and of partial expiratory flow-volume (PEFV) curves caused by bronchoconstrictor drugs and dust, and compared these to the reverse changes induced by a bronchodilator drug in previously bronchoconstricted subjects. Measurements of maximum flow at constant lung inflation (i.e. liters thoracic gas volume) showed larger changes, both after constriction and after dilation, than measurements of peak expiratory flow rate, 1 sec forced expiratory volume and the slope of the effort-independent portion of MEFV curves. Changes of flow rates on PEFV curves (made after inspiration to mid-vital capacity) were usually larger than those of flow rates on MEFV curves (made after inspiration to total lung capacity). The decreased maximum flow rates after constrictor agents are not caused by changes in lung static recoil force and are attributed to narrowing of small airways, i.e., airways which are uncompressed during forced expirations. Changes of maximum expiratory flow rates at constant lung inflation (e.g. 60% of the control total lung capacity) provide an objective and sensitive measurement of changes in airway caliber which remains valid if total lung capacity is altered during treatment. Find the latest version: https://jci.me/106073/pdf Maximum Expiratory Flow Rates in Induced Bronchoconstriction in Man A. Bouiuys, V. R. HuNTr, B. M. Kim, and A. ZAPLETAL From the John B. Pierce Foundation Laboratory and the Yale University School of Medicine, New Haven, Connecticut 06510 A B S T R A C T We evaluated changes of maximum ex- rates are best studied as a function of lung volume.
    [Show full text]
  • Peak Flow Measure: an Index of Respiratory Function?
    International Journal of Health Sciences and Research www.ijhsr.org ISSN: 2249-9571 Original Research Article Peak Flow Measure: An Index of Respiratory Function? D. Devadiga, Aiswarya Liz Varghese, J. Bhat, P. Baliga, J. Pahwa Department of Audiology and Speech Language Pathology, Kasturba Medical College (A Unit of Manipal University), Mangalore -575001 Corresponding Author: Aiswarya Liz Varghese Received: 06/12/2014 Revised: 26/12/2014 Accepted: 05/01/2015 ABSTRACT Aerodynamic analysis is interpreted as a reflection of the valving activity of the larynx. It involves measuring changes in air volume, flow and pressure which indicate respiratory function. These measures help in determining the important aspects of lung function. Peak expiratory flow rate is a widely used respiratory measure and is an effective measure of effort dependent airflow. Aim: The aim of the current study was to study the peak flow as an aerodynamic measure in healthy normal individuals Method: The study group was divided into two groups with n= 60(30 males and 30 females) in the age range of 18-22 years. The peak flow was measured using Aerophone II (Voice Function Analyser). The anthropometric measurements such as height, weight and Body Mass Index was calculated for all the participants. Results: The peak airflow was higher in females as compared to that of males. It was also observed that the peak air flow rate was correlating well with height and weight in males. Conclusions: Speech language pathologist should consider peak expiratory airflow, a short sharp exhalation rate as a part of routine aerodynamic evaluation which is easier as compared to the otherwise commonly used measure, the vital capacity.
    [Show full text]
  • Spirometry Basics
    SPIROMETRY BASICS ROSEMARY STINSON MSN, CRNP THE CHILDREN’S HOSPITAL OF PHILADELPHIA DIVISION OF ALLERGY AND IMMUNOLOGY PORTABLE COMPUTERIZED SPIROMETRY WITH BUILT IN INCENTIVES WHAT IS SPIROMETRY? Use to obtain objective measures of lung function Physiological test that measures how an individual inhales or exhales volume of air Primary signal measured–volume or flow Essentially measures airflow into and out of the lungs Invaluable screening tool for respiratory health compared to BP screening CV health Gold standard for diagnosing and measuring airway obstruction. ATS, 2005 SPIROMETRY AND ASTHMA At initial assessment After treatment initiated and symptoms and PEF have stabilized During periods of progressive or prolonged asthma control At least every 1-2 years: more frequently depending on response to therapy WHY NECESSARY? o To evaluate symptoms, signs or abnormal laboratory tests o To measure the effect of disease on pulmonary function o To screen individuals at risk of having pulmonary disease o To assess pre-operative risk o To assess prognosis o To assess health status before beginning strenuous physical activity programs ATS, 2005 SPIROMETRY VERSUS PEAK FLOW Recommended over peak flow meter measurements in clinician’s office. Variability in predicted PEF reference values. Many different brands PEF meters. Peak Flow is NOT a diagnostic tool. Helpful for monitoring control. EPR 3, 2007 WHY MEASURE? o Some patients are “poor perceivers.” o Perception of obstruction variable and spirometry reveals obstruction more severe. o Family members “underestimate” severity of symptoms. o Objective assessment of degree of airflow obstruction. o Pulmonary function measures don’t always correlate with symptoms. o Comprehensive assessment of asthma.
    [Show full text]
  • BSL Lesson 13
    Physiology Lessons Lesson 13 for use with the PULMONARY FUNCTION II Biopac Student Lab Pulmonary Flow Rates Forced Expiratory Volume (FEV1,2,3) PC under Windows 95/98/NT 4.0/2000 Maximal Voluntary Ventilation (MVV) or Macintosh Manual Revision 12132000.PL3.6.6-ML3.0.7 Number of cycles in 12 second interval Average Volume Richard Pflanzer, Ph.D. per cycle Associate Professor Indiana University School of Medicine Purdue University School of Science J.C. Uyehara, Ph.D. Biologist Number of cycles/minute = Number of cycles in 12 second interval X 5 MVV = (Average volume per cycle) X (Number of cycles per minute) BIOPAC Systems, Inc. William McMullen Vice President BIOPAC Systems, Inc. BIOPAC Systems, Inc. 42 Aero Camino, Santa Barbara, CA 93117 (805) 685-0066, Fax (805) 685-0067 Email: [email protected] Web Site: http://www.biopac.com Page 2 Lesson 13: Pulmonary Function II Biopac Student Lab V3.0 I. INTRODUCTION The respiratory or pulmonary system performs the important functions of supplying oxygen (O2) during inhalation, removing carbon dioxide (CO2) during exhalation, and adjusting the acid-base balance (pH) of the body by removing acid-forming CO2. Because oxygen is necessary for cellular metabolism, the amount of air that the pulmonary system provides is important in setting the upper limits on work capacities or metabolism. Therefore, the measurement of lung volumes and the rate of air movement (airflow) are important tools in assessing the health and capacities of a person. In this lesson, you will measure: Forced Vital Capacity (FVC), which is the maximal amount of air that a person can forcibly exhale after a maximal inhalation.
    [Show full text]
  • Restrictive Lung Disease
    Downloaded from https://academic.oup.com/ptj/article/48/5/455/4638136 by guest on 29 September 2021 RESTRICTIVE LUNG DISEASE WARREN M. GOLD, M.D. RESTRICTIVE LUNG DISEASE is a These disorders can be divided into two pattern of abnormal lung function defined by groups: extrapulmonary and pulmonary. a decrease in lung volume (Fig. I).1,2 The In extrapulmonary restriction, an abnormal total lung capacity is decreased and, in severe increase in the stiffness of the chest wall (kypho­ restrictive defects, all of the subdivisions of the scoliosis) restricts the lung volumes, as does total lung capacity including vital capacity, respiratory muscle weakness (poliomyelitis or functional residual capacity, and residual vol­ muscular dystrophy). These extrapulmonary ume are decreased. In mild or moderately se­ causes of pulmonary restriction are treated vere restrictive defects, the residual volume may be normal or slightly increased. CLINICAL DISORDERS CAUSING TABLE 1 RESTRICTIVE LUNG DISEASE CAUSES OF RESTRICTIVE LUNG DISEASE Restrictive lung disease is not a specific clin­ I. Extrapulmonary restriction 3 ical entity, but only one of several patterns of A. Chest wall stiffness (kyphoscoliosis) B. Respiratory-muscle weakness (muscular dystrophy)4 abnormal lung function. It is produced by a C. Pleural disease (pneumothorax)5 number of clinical disorders (see Table 1). II. Pulmonary restriction A. Surgical resection (pneumonectomy)6.7 Dr. Gold: Director, Pulmonary Laboratory and Re­ B. Tumor (bronchogenic carcinoma or metastatic tumor)8 search Associate in Cardiology (Pulmonary Physiology), C. Heart disease (hypertensive, arteriosclerotic, rheu­ Children's Hospital Medical Center; Associate in Pedi­ matic, congenital)9 atrics and Tutor in Medical Science, Harvard Medical 10 11 School, Boston, Massachusetts.
    [Show full text]
  • Pulmonary Adaptations the Respiratory System
    Dr. Robergs Fall, 2010 Pulmonary Adaptations The Respiratory System Pulmonary Physiology 1 Dr. Robergs Fall, 2010 This is a cast of the airways that conduct air to the lungs. Why is this morphology potentially detrimental to air conductance into and from the lungs? Note; The respiratory zone has the greatest surface area and a dense capillary network. Pulmonary Physiology 2 Dr. Robergs Fall, 2010 Note the density of the alveoli and Note the dense capillary their thin walls. network that surrounds alveoli. Surfactant A phospholipoprotein molecule, secreted by specialized cells of the lung, that lines the surface of alveoli and respiratory bronchioles. Surfactant lowers the surface tension of the alveoli membranes, preventing the collapse of alveoli during exhalation and increasing compliance during inspiration. Respiration The process of gas exchange, which for the human body involves oxygen (O2) and carbon dioxide (CO2). Internal respiration - at the cellular level External respiration - at the lung Pulmonary Physiology 3 Dr. Robergs Fall, 2010 The distribution of surfactant is aided by holes that connect alveoli called Pores of Kohn. Ventilation The movement of air into and from the lung by the process of bulk flow. Ventilation (VE) (L/min) = frequency (br/min) x tidal volume (L) For rest conditions, VE (L/min) = 12 (br/min) x 0.5 (L) = 6 L/min For exercise at VO2max, VE (L/min) = 60 (br/min) x 3.0 (L) = 180 L/min Compliance - the property of being able to increase size or volume with only small changes in pressure. Pulmonary Physiology 4 Dr. Robergs Fall, 2010 Ventilation During Rest Inspiration is controlled by a repetitive discharge of action potentials from the inspiratory center.
    [Show full text]
  • Standardisation of Spirometry
    Eur Respir J 2005; 26: 319–338 DOI: 10.1183/09031936.05.00034805 CopyrightßERS Journals Ltd 2005 SERIES ‘‘ATS/ERS TASK FORCE: STANDARDISATION OF LUNG FUNCTION TESTING’’ Edited by V. Brusasco, R. Crapo and G. Viegi Number 2 in this Series Standardisation of spirometry M.R. Miller, J. Hankinson, V. Brusasco, F. Burgos, R. Casaburi, A. Coates, R. Crapo, P. Enright, C.P.M. van der Grinten, P. Gustafsson, R. Jensen, D.C. Johnson, N. MacIntyre, R. McKay, D. Navajas, O.F. Pedersen, R. Pellegrino, G. Viegi and J. Wanger CONTENTS AFFILIATIONS Background ............................................................... 320 For affiliations, please see Acknowledgements section FEV1 and FVC manoeuvre .................................................... 321 Definitions . 321 CORRESPONDENCE Equipment . 321 V. Brusasco Requirements . 321 Internal Medicine University of Genoa Display . 321 V.le Benedetto XV, 6 Validation . 322 I-16132 Genova Quality control . 322 Italy Quality control for volume-measuring devices . 322 Fax: 39 103537690 E-mail: [email protected] Quality control for flow-measuring devices . 323 Test procedure . 323 Received: Within-manoeuvre evaluation . 324 March 23 2005 Start of test criteria. 324 Accepted after revision: April 05 2005 End of test criteria . 324 Additional criteria . 324 Summary of acceptable blow criteria . 325 Between-manoeuvre evaluation . 325 Manoeuvre repeatability . 325 Maximum number of manoeuvres . 326 Test result selection . 326 Other derived indices . 326 FEVt .................................................................. 326 Standardisation of FEV1 for expired volume, FEV1/FVC and FEV1/VC.................... 326 FEF25–75% .............................................................. 326 PEF.................................................................. 326 Maximal expiratory flow–volume loops . 326 Definitions. 326 Equipment . 327 Test procedure . 327 Within- and between-manoeuvre evaluation . 327 Flow–volume loop examples. 327 Reversibility testing . 327 Method .
    [Show full text]
  • Residual Volume and Total Lung Capacity to Assess Reversibility in Obstructive Lung Disease
    Residual Volume and Total Lung Capacity to Assess Reversibility in Obstructive Lung Disease Conor T McCartney MD, Melissa N Weis MD, Gregg L Ruppel MEd RRT RPFT FAARC, and Ravi P Nayak MD BACKGROUND: Reversibility of obstructive lung disease is traditionally defined by changes in FEV1 or FVC in response to bronchodilators. These may not fully reflect changes due to a reduction in hyperinflation or air-trapping, which have important clinical implications. To date, only a handful of studies have examined bronchodilators’ effect on lung volumes. The authors sought to better characterize the response of residual volume and total lung capacity to bronchodilators. METHODS: Responsiveness of residual volume and total lung capacity to bronchodilators was assessed with a retrospective analysis of pulmonary function tests of 965 subjects with obstructive lung disease as defined by the lower limit of normal based on National Health and Nutritional Examination Survey III prediction equations. RESULTS: A statistically significant number of subjects demonstrated response to bronchodilators in their residual volume independent of re- sponse defined by FEV1 or FVC, the American Thoracic Society and European Respiratory Society criteria. Reduced residual volume weakly correlated with response to FEV1 and to FVC. No statistically significant correlation was found between total lung capacity and either FEV1 or FVC. CONCLUSIONS: A significant number of subjects classified as being nonresponsive based on spirometry have reversible residual volumes. Subjects whose residual volumes improve in response to bronchodilators represent an important subgroup of those with obstructive lung disease. The identification of this subgroup better characterizes the heterogeneity of obstructive lung disease. The clinical importance of these findings is unclear but warrants further study.
    [Show full text]
  • The Large Lungs of Elite Swimmers: an Increased Alveolar Number?
    Eur Respir J 1993, 6, 237-247 The large lungs of elite swimmers: an increased alveolar number? J. Armour*, P.M. Donnelly**, P.T.P. Bye* The large lungs of elite swimmers: an increased alveolar number? J. Armour, P.M. * Institute of Respiratory Medicine, Donnelly, P.T.P. Bye. Royal Prince Alfred Hospital, ABSTRACT: In order to obtain further insight into the mechanisms relating Camperdown, NSW, Australia. to the large lung volumes of swimmers, tests of mechanical lung function, in­ ** University of Sydney, Sydney, NSW, cluding lung distensibility (K) and elastic recoil, pulmonary diffusion capacity, Australia. and respiratory mouth pressures, together with anthropometric data (height, Correspondence: P.M. Donnelly weight, body surface area, chest width, depth and surface area), were com­ Institute of Respiratory Medicine pared in eight elite male swimmers, eight elite male long distance athletes and Royal Prince Alfred Hospital eight control subjects. The differences in training profiles of each group were Camperdown NSW 2050 also examined. Australia There was no significant difference in height between the subjects, but the swimmers were younger than both the runners and controls, and both the Keywords: Alveolar distensibility swimmers and controls were heavier than the runners. Of all the training chest enlargement diffusion coefficient variables, only the mean total distance in kilometres covered per week was sig­ growth hormone nificantly greater in the runners. Whether based on: (a) adolescent predicted lung growth values; or (b) adult male predicted values, swimmers had significantly increased respiratory mouth pressures total lung capacity ((a) 145±22%, (mean±so) (b) 128±15%); vital capacity ((a) swimmers' lungs 146±24%, (b) 124±15%); and inspiratory capacity ((a) 155±33%, (b) 138±29%), but this was not found in the other two groups.
    [Show full text]
  • Interrelationship Between Lung Volume, Expiratory Flow, and Lung Transfer Factor in Fibrosing Alveolitis
    Thorax: first published as 10.1136/thx.36.11.858 on 1 November 1981. Downloaded from thorax 1981 ;36:858-862 Interrelationship between lung volume, expiratory flow, and lung transfer factor in fibrosing alveolitis JN PANDE From the Respiratory Laboratory, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India ABSTRACT Fifty patients with fibrosing alveolitis studied on 104 occasions exhibited significant direct correlations between vital capacity (VC), maximum mid-expiratory flow rate (MMFR), and transfer factor for carbon monoxide (TLCO). Forced expired volume in the first second (FEV,)/VC ratio bore a weak negative correlation with VC. Peak expiratory flow, MMFR, and maximum flow rates at 50 % and 25 % of VC were often reduced in patients with severe grades of pulmonary dys- function. It appears that as the severity of the fibrotic process increases, the lung volumes shrink and the transfer factor for CO decreases. The total lung capacity decreases predominantly on account of reduction in VC. With a decrease in lung volume the MMFR also falls. Decrease in flow rates at low lung volumes is greater as compared to the fall in peak flow. The expiratory flow rates how- ever were normal or even increased when related to absolute lung volume. Some patients exhibit disproportionate expiratory slowing as evidenced by a decrease in MMFR which is out of propor- tion to the reduction in VC. These patients also have a reduced FEV1,/VC ratio. These changes are probably the consequence of associated peripheral airway narrowing. copyright. Increased elastic recoil of the lung limiting maximal 33 women. Their age ranged from 16-68 years (mean inflation is considered to be the main abnormality of ± SE 42-1 ± 1-7 years).
    [Show full text]
  • Errors in the Measurement of Vital Capacity a Comparison of Three Methods in Normal Subjects and in Patients with Pulmonary Emphysema
    Thorax: first published as 10.1136/thx.28.5.584 on 1 September 1973. Downloaded from Thorax (1973), 28, 584. Errors in the measurement of vital capacity A comparison of three methods in normal subjects and in patients with pulmonary emphysema D. C. S. HUTCHISON, C. E. BARTER', and N. A. MARTELLI2 Chest Unit, King's College Hospital, London SE5 Hutchison, D. C. S., Barter, C. E., and Martelli, N. A. (1973). Thorax, 28, 584-587. Errors in the measurement of vital capacity: a comparison of three methods in normal subjects and in patients with pulmonary emphysema. Three methods of measuring the vital capacity have been compared in six normal subjects and in six with pulmonary emphysema, according to a randomized design. The methods were (a) the inspiratory vital capacity (IVC), (b) the expiratory vital capacity (EVC), and (c) the forced vital capacity (FVC). In normal subjects, there was a small but significant difference between the methods. The residual standard deviation derived from analysis of variance was 94 ml (coefficient of variation 1.7 %). A slight but significant rise in vital capacity with repeated effort was observed. In emphysematous subjects, there was no significant difference between the IVC and EVC methods. The FVC gave values which were, on average, approximately 0.5 litre less copyright. than those obtained by the other methods. The standard deviation in all three methods was substantially greater than for the normal subjects. The FVC is not a suitable method for the measurement of vital capacity in patients with pulmonary emphysema. The EVC is satisfactory, provided it is used with caution, but in practice the IVC is the preferred method.
    [Show full text]
  • Alternative Methods for Assessing Bronchodilator Reversibility In
    Thorax 2001;56:713–720 713 Alternative methods for assessing bronchodilator Thorax: first published as 10.1136/thx.56.9.713 on 1 September 2001. Downloaded from reversibility in chronic obstructive pulmonary disease J Hadcroft, P M A Calverley Abstract Chronic obstructive pulmonary disease Background—Bronchodilator reversibil- (COPD) is characterised by airflow limitation ity testing is recommended in all patients which varies little over several months of with chronic obstructive pulmonary dis- observation or after treatment.12 The assess- ease (COPD) but does not predict im- ment of airflow limitation usually relies on provements in breathlessness or exercise spirometric testing and, in particular, the performance. Two alternative ways of forced expiratory volume in 1 second (FEV1) assessing lung mechanics—measurement which is the usual outcome measure in of end expiratory lung volume (EELV) diagnostic bronchodilator reversibility testing.3 using the inspiratory capacity manoeuvre Although useful diagnostically and prognosti- and application of negative expiratory cally,4 spirometric abnormalities are poor pressure (NEP) during tidal breathing to descriptors of the severity of breathlessness in detect tidal airflow limitation—do relate 5 COPD. Likewise, significant changes in FEV1 to the degree of breathlessness in COPD. after inhaled bronchodilators are not necessary Their usefulness as end points in broncho- for improvement in exercise performance or dilator reversibility testing has not been dyspnoea to occur.5–7 Two alternative tech- examined. niques of measuring lung mechanics relatively Methods—We studied 20 patients with easily are now available. Both are better corre- clinically stable COPD (mean age 69.9 lates of breathlessness than FEV , but their (1.5) years, 15 men, forced expiratory vol- 1 reproducibility and sensitivity to change in ume in one second (FEV ) 29.5 (1.6)% pre- 1 response to bronchodilator drugs has not been dicted) with tidal flow limitation as assessed—an important consideration if they assessed by their maximum flow-volume loop.
    [Show full text]