<<

Suzaku observations of the in the intracluster medium of groups and clusters of galaxies

K. Sato1, K. Matsushita2, Y. Ishisaki3, N.Y. Yamasaki4, M. Ishida4, and T. Ohashi3 1MIT, 2Tokyo Univ. of Science, 3Tokyo Metropolitan Univ., 4ISAS/JAXA  Introduction

 Suzaku observations of groups & clusters

 Metal distributions in the ICM in groups & clusters

 Contributions of SNe Ia & II to the ICM

 Metal mass to galaxy light ratios in groups & clusters

 Summary Where do the metals come from?

by Kaguya Metals in intracluster medium (ICM)

O & Mg Si, S, Fe, Ni

 Synthesized by SNe II  Synthesized by SNe Ia & II  Formation history of high  Contributes to the history mass stars in clusters of SNe Ia & II to ICM

Star formation history & chemical evolution history in groups and clusters of galaxies

Suzaku provides better sensitivity for measuring O & Mg Why oxygen?

 Half of the heavy metals in the universe Chemical evolution of the universe

History of oxygen synthesis

 Oxygen is synthesized by SNe II • O mass reflects total amount of massive stars in the past.

 Oxygen mass to light ratio in the universe • Galaxies, groups, clusters of galaxies & WHIM • Initial mass function of stars vs. environment • Feedback from SNe II  Introduction

 Suzaku observations of groups & clusters

 Metal distributions in the ICM in groups & clusters

 Contributions of SNe Ia & II to the ICM

 Metal mass to galaxy light ratios in groups & clusters

 Summary Advantages of the Suzaku satellite

Tsunemi+06  Lower intrinsic non X-ray Background (NXB) XMM (PN) XMM & better reproducibility (~5%) (MOS1)

 Higher line sensitivity Suzaku (BI) below ~1 keV Suzaku (FI) for smaller low-pulse-height tail

 Mg is also important where O line is affected by the Galactic emission. Suzaku has little influence from the instrumental Al near Mg line.  Energy range around Mg suffers from strong Fe-L lines, although lines around O do not suffer from contamination. Need for both O & Mg measurements O & Mg measurements with Suzaku

OVII OVIII O Mg Abell 1060

The Galactic emission From Abell 1060 Selected groups and clusters  Nearby and bright objects in Suzaku observations  Moderate low temperature (kT<4 keV) for O measurement

Obs. r180(Mpc) Temp. (keV) References AWM7 0.0172 1.65 ~3.5 Sato+08 A1060 0.0114 1.53 ~3.0 Sato+07a A262 0.0163 1.25 ~2.0 Sato+09b HCG62 0.0145 1.08 ~1.5 Tokoi+08 NGC507 0.0165 1.08 ~1.5 Sato+09a Fornax 0.0043 1.00 ~1.3 Matsushita+07 NGC1550 0.0124 0.97 ~1.2 Sato+10 NGC5044 0.0090 0.88 ~1.0 Komiyama+09 Measurements of the metal abundances and

distributions to ~0.3 – 0.5 r180  Introduction

 Suzaku observations of groups & clusters

 Metal distributions in the ICM in groups & clusters

 Contributions of SNe Ia & II to the ICM

 Metal mass to galaxy light ratios in groups & clusters

 Summary Measured radial Fe abundances

AWM7 (Sato+08), A1060 (Sato+07a), A262 (Sato+09b), HCG62 (Tokoi+08), NGC507 (Sato+09a), Fornax (Matsushita+07), NGC1550 (Sato+10), 1 NGC5044 (Komiyama+09) (solar) 0.1

Solar table: Anders & Grevesse (1989)

0.01 0.1 1

r / r180 5 5 O/Fe Mg/Fe 2 2

11 11

O/Fe ratio AWM7 A1060 A262 Mg/Fe ratio 0.5 0.5 HCG62 NGC507  Comparison of Z to FeFornax ratios NGC1550 NGC5044 0.2 Si / Fe, S / Fe : fairly0.2 flat ~1 – 2 0.01 0.1 1 0.01 0.1 1 r O/ r / Fe, Mg / Fe : increase with radius?r / r rr // rr180180 180 r / r180180 5 ⇒ Difference from 5SNe Ia or II? Si/Fe S/Fe 2 2

11 11 S/Fe ratio Si/Fe ratio AWM7 A1060 A262 0.5 HCG62 NGC507 0.5 Fornax NGC1550 Solar table: NGC5044 Anders & Grevesse (1989) 0.2 0.2 0.01 0.1 1 0.01 0.1 1 r / r 0.1180 r180 r /0.1 r180 r180 Abundance pattern r < 0.1 r180 with Lodders 03

90% errors kT ~ 2 - 4 keV clusters kT ~ 1 keV groups

Sato+07,08 09ab Tokoi+08, Matsushita+07 Komiyama+08,Hayashi+09 Increase of O/Fe & Mg/Fe ratios in 0.1 – 0.3 r180

unit : solar ratio error:90%

In the clusters, the metals synthesized by SNe II tend to be more extended than SNe Ia products.

Sato+07a,08,09, Tokoi+08, Komiyama+09  Introduction

 Suzaku observations of groups & clusters

 Metal distributions in the ICM in groups & clusters

 Contributions of SNe Ia & II to the ICM

 Metal mass to galaxy light ratios in groups & clusters

 Summary Contributions of SNe Ia & II to ICM “ASCA” : Dupke & White (2000), Baumgartner et al. (2005) “XMM” : de Plaa et al. (2006, 2007), Werner et al. (2006)

de Plaa et al. (2007) XMM  22 clusters  O in only the central region  Mg with larger uncertainties SNe II/Ia ratio ~ 3.5

Poor information from SNe II products

SNe nucleosynthesis model SNe Ia : W7 model (Nomoto et al. 1984) WDD1 or 2 model (Iwamoto et al. 1999)

SNe II : 10 – 50 M (Salpeter Initial Mass Function) Progenitor metallicity Z = 0.02 (Nomoto et al. 2006) Fitting result of AWM 7 cluster (r < 0.1 r180)

AWM 7 χ2 / d.o.f. W7 model for SNe Ia = 15.9 / 3

O Ne NII / NIa = 4.0 ± 1.2 Mg Si S Fe

~75% of Fe, ~40% of Si & S from SNe Ia Number ratios of SNe II/Ia 6 r < ~0.1 r180

4

ratio 3 Ia N / II/Ia ratio II/Ia II 2 N AWM7 A1060 A262 SNe HCG62 NGC507 Sato+07b NGC1550 NGC5044 0 1011 1012 Gas mass (solar mass) Gas mass(M) SNe II/Ia ratio: ~3 (W7 and WDD2), ~2.5 (WDD1) cf. Clusters (XMM ; de Plaa et al. 2007): ~3.5 Our Galaxy (Tsujimoto et al. 1995): ~6.7 LMC & SMC (Tsujimoto et al. 1995): 3.3 – 5 Comparison of numbers of SNe II

 Number of SNe II expected from star formation rate of Hubble Deep Field (Madau et al. 1998)  Numbers of SNe II expected from the metal mass observed with Suzaku Normalized by K-band(2MASS) luminosities

) Now, only the metals

-1 AWM7

 in the ICM, not including K

L HDF in the stars (galaxies) (

K L /

II A1060 N Considering in the stars, Sato+07b the results with X-ray increase by factor ~2 Numbers of SNe II(Mpc-3)  Introduction

 Suzaku observations of groups & clusters

 Metal distributions in the ICM in groups & clusters

 Contributions of SNe Ia & II to the ICM

 Metal mass to galaxy light ratios in groups & clusters

 Summary Mass-to-Light Ratio: MLR Metals are synthesized in stars (galaxies):

Compare Mmetal, < R ( in units of M ) with B-band luminosity LB, < R ( in units of L )

Also use K-band luminosity because of the comparison of galaxy type -bandluminosity B Mmetal, < R M MLR =  L Makishima et al. (2001) LB or K, < R 

Fe mass / mass/ Fe Temperature (keV) ∝ size of system Oxygen Mass-to-Light Ratio: O MLR Magnesium Mass-to-Light Ratio: Mg MLR Iron Mass-to-Light Ratio: Fe MLR MLRs with B-band in r < ~0.1 r180 Matsushita+07, Sato+07, 08, 09ab, 10, Tokoi+08, Komiyama+09 $'!

)  L /

 $'$! M (

ï& MLRs !$

O/Fe O MLR SNe II Fe MLR SNe Ia & II !$ï% !" # Temperature()*+),-./,)012)34 (keV) MLRs with B-band in r < ~0.3 r180 Matsushita+07, Sato+07, 08, 09ab, 10, Tokoi+08, Komiyama+09 $'!

)  L /

 $'$! M (

ï& MLRs !$

O/Fe O MLR SNe II Fe MLR SNe Ia & II !$ï% !" # Temperature()*+),-./,)012)34 (keV) Radial Fe MLR with K-band luminosity !"# Fe distribution is more extended than stars !"!#

#!ï'

#!ï& ()*+,-.*+/0(123 #!ï% AWM7 A1060 A262 Sato+10 HCG62 NGC507 Komiyama+09 NGC1550 NGC5044 #!ï$ !"!# !"# #

r / r#4! Radial O MLR with K-band luminosity !"# Oxygen mass !"!# High mass stars

#!ï'

#!ï& K-band luminosity

()*+,-.*+/01234 Low mass stars ï% #! AWM7 A1060 A262 HCG62 NGC507 Sato+10 NGC1550 NGC5044 Komiyama+09 #!ï$ !"!# !"# #

r / r#5! Indications from MLRs

 Iron distribution more extended than stars (galaxies) • Metals synthesized by SNe II during formation of galaxies are more extended than Fe distribution?

 Evolution of SNe Ia rate • The derived present SNe Ia rate integrated over the Hubble time gives an order of magnitude smaller value of Fe mass-to-light ratio than the observed values. Higher SNe Ia rate in the past Comparison of groups vs. clusters

 Similar abundance pattern within 0.1 r180

 Similar Fe abundance within 0.3 r180

 The observed MLRs in groups are smaller, especially for O MLRs, reflecting that gas fraction in groups is also smaller  Groups do not contain SNe II products? • SNe II products are located in outer region?  Difference in star formation history?  Similar star formation history but difference in the effect of feedback? ￿￿￿￿￿￿￿ ￿￿ ￿￿￿￿￿￿

￿￿￿￿￿￿￿￿ ￿￿ ￿￿￿￿￿￿￿￿ ￿￿￿￿ ￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿ ￿￿￿￿ ￿￿￿￿￿ ￿￿￿ ￿￿￿￿￿￿￿￿ ￿￿￿ ￿￿ ￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿ ￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿￿ ￿￿￿￿ ￿ ￿￿￿￿￿￿￿￿ ￿￿￿ ￿ ￿￿ ￿￿￿ ￿￿￿￿￿￿￿￿ ￿￿￿￿ ￿￿￿￿￿ ￿￿ ￿￿￿￿ ￿ ￿￿￿ ￿￿ ￿￿ ￿￿￿ ￿￿￿￿ ￿￿￿￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿￿￿￿ ￿￿ ￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿￿￿￿ ￿ ￿ ￿￿￿￿ ￿ ￿ ￿￿ ￿ ￿￿￿ ￿ ￿￿ ￿ ￿￿ ￿ ￿ ￿￿￿￿￿ ￿￿￿￿ ￿￿￿￿￿ ￿￿￿ ￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿￿￿ ￿￿￿￿ ￿￿￿￿￿ ￿ ￿￿ ￿￿￿￿￿￿￿￿￿￿ ￿￿￿￿ ￿￿￿ ￿￿￿ ￿￿￿￿￿￿￿￿ ￿￿ ￿￿￿￿￿ ￿￿￿ ￿￿ ￿￿ ￿￿ ￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿￿￿￿ ￿￿ ￿ ￿ ￿￿￿￿￿ ￿￿ ￿￿￿￿ ￿ ￿￿ ￿￿￿￿￿ ￿￿￿￿￿￿ ￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿￿￿￿￿￿ ￿￿￿￿ ￿￿ ￿￿￿ ￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿ ￿￿￿￿ ￿￿￿￿￿￿ ￿ ￿￿￿￿￿￿￿ ￿￿￿ ￿￿ ￿￿￿ ￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿ ￿￿￿￿ ￿￿￿ ￿￿￿ ￿￿ ￿￿ ￿￿￿ ￿￿￿￿ ￿￿￿￿￿￿￿￿ ￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿ ￿￿ ￿￿￿ ￿￿￿￿ ￿￿￿￿￿ ￿￿￿￿￿ ￿￿ ￿￿￿￿￿￿￿￿￿￿￿ ￿￿ ￿￿￿￿ ￿￿￿ ￿￿￿￿￿￿ ￿￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿￿￿￿ ￿￿￿ ￿￿ ￿￿￿￿￿￿ ￿￿￿￿ ￿￿￿ ￿￿￿￿￿￿ ￿￿￿ ￿￿￿￿￿￿￿ ￿ ￿￿￿￿￿￿ ￿￿ ￿￿￿￿￿ ￿￿ ￿ ￿￿ ￿ ￿￿ ￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿￿￿ ￿￿￿ ￿￿￿￿￿￿￿ ￿￿ ￿￿￿￿ ￿￿￿￿ ￿￿￿￿￿ ￿￿ ￿￿￿￿￿￿￿￿￿￿￿￿￿ ￿￿ ￿ ￿ ￿ ￿￿￿ ￿￿ ￿ ￿￿￿￿￿￿ ￿￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿ ￿￿￿￿ ￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿ ￿￿￿￿￿￿￿ ￿￿ ￿￿￿ ￿￿￿￿￿￿￿￿￿ ￿￿￿ ￿￿￿￿ ￿￿ ￿￿￿ ￿￿ ￿￿￿ ￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿ ￿￿￿￿ ￿￿￿￿￿￿￿￿￿ ￿￿￿￿ ￿ ￿￿￿￿￿￿ ￿ ￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿ ￿￿￿￿￿￿ ￿￿￿￿￿ ￿￿￿￿ ￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿￿ ￿￿￿￿￿ ￿￿￿￿￿ ￿￿￿￿￿￿ ￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿￿ ￿￿ ￿￿￿￿￿￿￿￿￿￿￿￿￿ ￿￿￿￿ ￿￿ ￿￿￿ ￿￿￿ ￿￿ ￿￿￿ ￿￿￿ ￿￿￿￿￿￿ ￿￿ ￿￿ ￿￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿ ￿￿￿ ￿￿￿￿￿￿￿￿ ￿￿￿￿ ￿￿￿ ￿￿￿￿￿ ￿￿￿￿ ￿￿￿￿ ￿￿ ￿￿￿ ￿￿￿ ￿￿ ￿￿￿￿ ￿￿￿￿￿ ￿ ￿ ￿￿￿ ￿￿￿￿ ￿￿ ￿￿￿￿￿￿￿￿￿￿￿ ￿￿￿ ￿￿￿￿￿￿￿￿￿ ￿￿ ￿￿￿￿￿￿￿￿ ￿￿￿￿ ￿￿￿￿￿￿￿￿￿ Smaller￿￿￿￿ ￿￿￿￿ ￿￿￿￿￿￿￿￿￿ ￿￿ MLRs ￿￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿ in￿￿ ￿ ￿￿￿groups ￿￿ ￿ ￿ ￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿ ￿￿￿￿￿￿￿￿ ￿￿ ￿￿￿ ￿￿￿￿￿￿￿ ￿￿ ￿ ￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿￿ ￿￿￿ ￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿￿ ￿￿￿ ￿￿￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿ ￿￿￿ ￿￿￿￿￿ ￿￿ ￿￿￿￿￿ ￿￿￿￿￿￿￿￿ ￿￿ ￿￿￿￿￿ ￿￿ ￿￿￿ ￿￿￿￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿ ￿￿￿￿￿ ￿￿￿ ￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿ ￿￿￿￿ ￿￿￿ ￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿ Gas ￿￿￿￿ ￿￿￿ ￿￿￿mass/stellar ￿￿ ￿￿￿￿￿￿￿￿￿ ￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿luminosity ￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿￿￿ in ￿￿￿ groups ￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿ is smaller ￿￿￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿￿ ￿￿￿ ￿￿￿￿￿￿￿￿ ￿￿ ￿￿￿ ￿￿￿￿ ￿￿ ￿￿￿￿￿￿￿￿￿￿￿ ￿￿￿ ￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿ ￿￿￿￿ ￿￿ ￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿￿￿￿￿ ￿￿ ￿￿￿ ￿￿￿￿ ￿￿ ￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿￿￿ ￿￿￿￿￿ ￿ ￿￿￿￿￿￿ ￿￿￿￿￿ ￿￿￿￿￿ ￿￿ ￿￿￿ ICM ￿￿￿￿￿￿￿￿￿￿ in ￿￿￿￿￿￿￿￿￿ groups￿￿￿￿￿￿￿￿￿ is ￿￿￿￿￿ more ￿￿￿￿￿￿￿ ￿￿￿ extended￿￿￿￿ ￿￿ ￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿￿ than ￿￿ that ￿￿￿￿￿￿ in rich clusters ￿￿￿￿￿ ￿ ￿￿￿ ￿￿ ￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿￿ ￿￿￿ ￿￿￿￿￿￿￿￿￿￿ ￿￿ ￿￿￿￿￿￿￿ ￿￿￿￿￿ ￿￿￿￿ ￿￿￿￿￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿ ￿￿￿ ￿￿￿￿￿￿￿￿￿ ￿￿ ￿￿￿ ￿￿￿￿￿ ￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿ ￿￿￿￿ ￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿ ￿￿ ￿￿￿￿￿￿￿ ￿￿ ￿￿￿• ￿Excess￿￿￿￿ ￿￿￿ ￿￿￿ ￿￿￿￿￿ entropy ￿￿￿ ￿￿￿￿￿￿￿￿￿￿￿ and ￿￿￿￿￿￿￿￿￿ heating￿￿￿ ￿￿￿ ￿￿￿￿ ￿￿￿￿￿￿ ￿￿ ￿ ￿￿￿￿￿￿￿￿￿￿￿ ￿￿ ￿￿￿￿￿￿￿￿￿￿￿￿￿ ￿￿￿ ￿￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿￿￿ ￿￿￿￿ ￿￿ ￿￿￿￿￿￿￿ ￿￿ ￿￿￿￿ ￿￿￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿ ￿￿￿￿￿ ￿￿ ￿￿￿￿￿￿￿￿￿￿￿ ￿￿ ￿￿￿￿￿￿￿￿￿￿￿￿ ￿￿ ￿￿￿￿ ￿￿￿￿ ￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿￿ ￿￿￿ ￿￿￿￿￿￿￿￿ ￿￿ ￿￿￿ ￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿ ￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿￿￿￿ ￿￿ ￿￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿ ￿￿￿￿ ￿￿￿￿￿￿￿￿ ￿￿￿￿ ￿￿￿￿￿￿ ￿￿ ￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿ Metal￿￿ ￿￿￿ ￿￿￿￿￿￿ distributions ￿￿ ￿ ￿￿￿￿￿￿￿￿ ￿￿￿ ￿￿￿￿￿￿￿ may ￿￿￿ ￿￿￿￿￿￿￿ be ￿￿￿￿used ￿￿￿￿ ￿￿￿￿ as ￿￿￿￿ a ￿￿￿￿￿￿￿￿tracer of history of ￿￿￿￿￿￿￿￿￿￿￿ ￿￿ ￿￿￿￿￿￿ ￿￿ ￿￿￿ ￿￿￿￿￿￿￿ ￿￿ ￿￿￿ ￿￿￿ ￿￿￿￿￿￿￿￿￿￿￿ ￿￿￿ ￿￿￿ ￿￿￿￿￿￿￿￿ ￿￿￿ ￿￿￿ ￿￿￿￿￿￿ ￿￿￿ ￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿ ￿￿￿ ￿￿￿￿￿￿ ￿￿￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿ ￿￿ ￿￿￿￿￿￿ ￿￿￿￿￿￿￿ heating ￿￿￿￿ ￿￿￿￿￿￿￿￿ since￿￿￿￿￿ ￿￿￿timescales ￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿ of metal enrichment and heating ￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿ ￿￿ ￿￿￿ ￿￿￿￿￿￿￿￿ ￿￿ ￿ ￿ ￿￿￿￿ ￿￿ ￿￿￿￿￿￿ ￿￿ ￿￿￿ ￿￿￿ ￿￿￿￿￿￿￿￿ ￿￿ ￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿ ￿￿￿￿ ￿￿￿ ￿￿￿￿￿ ￿￿￿￿ ￿￿￿ ￿￿￿ ￿￿￿￿￿ ￿￿ ￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿ ￿￿ ￿￿￿ ￿￿￿￿￿￿￿￿￿￿￿￿ ￿￿￿ ￿￿ ￿￿￿ ￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿ ￿￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿ ￿￿ ￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿￿ ￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿￿￿ ￿￿￿ ￿￿￿ ￿￿￿￿￿￿￿ ￿￿ ￿￿￿ ￿￿￿￿￿￿￿￿ ￿￿ ￿ ￿ ￿determine ￿￿ ￿ ￿￿￿￿￿￿ ￿￿ ￿￿￿ ￿￿￿￿￿￿￿the ￿￿￿metal ￿￿￿￿ ￿￿￿￿￿￿￿￿￿￿ distributions. ￿￿￿￿ ￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿ Ponman+99 3 )] 2 keV cm 2.5 Groups –1/3 (h 2/3 e

n /

T [ 10 2 Log

1.5 –0.5 0 0.5 1 1.5

Log10[T (keV)]

￿￿￿￿￿￿ ￿ ￿￿￿￿￿￿ ￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿ ￿￿ ￿￿￿￿ ￿￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿ ￿ ￿￿￿ ￿￿￿ ￿￿￿￿￿￿￿￿￿ ￿￿ ￿ ￿￿￿￿￿￿￿ ￿￿￿￿￿￿ ￿ ￿ ￿￿￿￿￿ ￿￿ ￿ ￿￿￿￿￿￿￿￿ ￿￿ ￿￿￿￿￿￿￿￿ ￿￿￿ ￿￿￿￿ ￿￿￿￿￿￿￿￿￿￿ ￿￿ ￿￿￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿ ￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿ ￿￿￿￿￿￿￿￿ ￿￿￿￿ ￿￿￿ ￿￿￿ ￿￿ ￿￿￿￿￿￿￿ ￿￿ ￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿ ￿￿￿￿￿￿￿ ￿￿ ￿￿￿￿￿￿ ￿￿ ￿ ￿ ￿￿￿￿ ￿ ￿￿￿￿￿

￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿￿￿￿ ￿￿￿￿￿￿ ￿￿ ￿￿￿ ￿￿￿￿￿ ￿￿￿ ￿￿￿￿ ￿￿ ￿￿￿ ￿￿ ￿ ￿￿ ￿￿￿ ￿￿￿￿ ￿￿￿￿￿￿￿￿￿￿￿ ￿￿￿ ￿￿ ￿￿ ￿￿￿ ￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿ ￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿￿￿￿ ￿￿￿￿￿ ￿￿￿￿￿ ￿￿￿￿￿￿ ￿￿￿￿￿ ￿￿￿￿￿￿ ￿￿￿￿￿￿ ￿￿￿￿￿￿ ￿￿￿￿￿￿ ￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿ ￿￿ ￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿ ￿￿￿ ￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿￿￿￿ ￿￿￿￿￿￿ ￿￿￿￿￿￿ ￿￿￿￿￿￿ ￿￿￿￿￿￿ ￿￿￿￿￿ ￿￿￿￿￿ ￿￿￿￿￿ ￿￿￿￿￿ ￿￿￿￿￿￿ ￿￿￿￿￿ ￿￿ ￿￿￿￿ ￿￿ ￿￿￿￿￿ ￿￿￿￿ ￿￿￿￿￿￿￿￿ ￿￿￿ ￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿ ￿￿ ￿￿￿￿￿￿￿￿￿￿￿￿ ￿￿￿

￿￿￿￿￿￿ ￿￿￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿ ￿￿￿￿￿￿￿￿ ￿￿￿￿ ￿￿￿￿￿￿￿￿￿ ￿￿￿￿ ￿￿￿ ￿￿￿￿ ￿￿￿ ￿￿￿￿￿￿￿￿￿ ￿￿ ￿￿￿￿￿￿￿ ￿￿￿￿ ￿￿￿￿ ￿￿ ￿￿ ￿￿￿ ￿￿￿ ￿￿￿ ￿￿￿￿￿ ￿￿￿￿ ￿￿￿￿￿ ￿￿￿ ￿￿￿￿￿ ￿￿￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿ ￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿￿￿ ￿￿￿ ￿￿￿ ￿￿￿￿￿￿￿ ￿￿ ￿￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿ ￿￿￿￿ ￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿￿￿￿￿ ￿￿ ￿ ￿￿￿ ￿ ￿￿￿ ￿ ￿￿￿￿￿￿￿￿￿￿ ￿￿￿ ￿￿￿￿￿￿￿￿￿￿￿ ￿￿ ￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿￿￿ ￿￿￿ ￿￿￿￿￿￿￿￿￿￿ ￿￿￿ ￿￿￿ ￿￿￿￿￿￿￿￿ ￿ ￿￿￿￿￿￿￿￿ ￿ ￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿ ￿ ￿￿￿ ￿￿ ￿ ￿￿￿￿￿ ￿￿￿￿￿￿￿￿ ￿ ￿ ￿ ￿ ￿￿￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿￿ ￿￿￿￿￿￿￿￿ ￿￿￿ ￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿ ￿￿ ￿￿ ￿ ￿￿￿ ￿ ￿￿ ￿ ￿￿￿ ￿ ￿￿￿ ￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿￿￿￿ ￿￿￿￿ ￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿ ￿￿ ￿￿￿ ￿￿￿￿￿￿￿￿ ￿￿ ￿￿￿ ￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿ ￿￿ ￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿ ￿￿￿ ￿￿￿￿￿￿￿ ￿ ￿￿￿￿ ￿￿￿￿ ￿￿￿￿￿ ￿￿ ￿￿￿ ￿ ￿￿￿ ￿￿￿￿￿￿￿￿￿￿ ￿￿￿ ￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿ ￿￿￿￿ ￿￿￿￿￿￿￿￿￿￿￿￿ ￿￿￿ ￿￿￿￿ ￿￿￿￿￿￿ ￿￿￿ ￿￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿ ￿￿￿ ￿￿ ￿ ￿ ￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿ ￿￿￿￿ ￿ ￿￿￿￿ ￿ ￿ ￿￿￿￿￿￿￿￿ ￿￿￿￿ ￿￿￿￿ ￿￿￿￿￿ ￿￿￿ ￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿ ￿￿￿ ￿￿￿￿ ￿￿ ￿￿￿￿￿￿￿ ￿￿￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿ ￿￿￿ ￿￿￿￿￿￿ ￿￿￿￿ ￿￿￿￿￿￿￿￿￿￿ ￿￿￿￿ ￿￿￿￿￿￿ ￿￿ ￿￿￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿ ￿ ￿ ￿￿ ￿ ￿￿￿￿￿￿￿￿￿￿￿ ￿ ￿￿￿￿ ￿￿￿ ￿￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿￿ ￿￿￿￿ ￿￿￿￿￿￿￿￿￿ ￿￿￿￿ ￿￿￿￿￿ ￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿ ￿￿￿￿￿ ￿￿ ￿￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿ ￿ ￿￿￿ ￿￿￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿ ￿￿￿￿ ￿￿￿￿ ￿￿￿￿￿￿ ￿￿ ￿￿￿￿￿￿ ￿ ￿￿￿￿￿ ￿￿￿￿ ￿￿ ￿￿￿￿￿ ￿￿￿ ￿￿￿￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿￿ ￿￿￿￿ ￿￿￿ ￿￿￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿ ￿￿ ￿￿￿ ￿￿￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿￿ ￿￿ ￿￿￿ ￿￿￿ ￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿￿￿￿ ￿￿￿ ￿￿ ￿￿ ￿ ￿￿ ￿ ￿ ￿￿ ￿￿￿￿￿￿￿ ￿￿￿ ￿￿￿￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿ ￿￿￿ ￿￿￿￿￿￿￿ ￿￿￿ ￿￿￿￿￿￿￿￿￿￿￿￿ ￿￿ ￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿ ￿￿ ￿￿￿￿ ￿￿￿ ￿￿￿ ￿￿ ￿ ￿ ￿￿￿￿ ￿￿￿￿￿￿￿￿ ￿￿￿ ￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿￿ ￿￿￿ ￿￿￿￿￿￿￿￿￿￿ ￿￿ ￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿

© 1999 Macmillan Magazines Ltd ￿￿￿ ￿￿￿￿￿￿ ￿ ￿￿￿ ￿￿￿ ￿ ￿￿ ￿￿￿￿￿￿￿ ￿￿￿￿ ￿ ￿￿￿￿￿￿￿￿￿￿￿￿￿￿ Assuming similar metal synthesized history,  Metal enrichment Preheating 1. Similar abundances and smaller metal mass-to-light ratios  Preheating Metal enrichment 2. Similar metal mass to light ratios  Different timescales of O and Fe synthesis MLR G G Cluster G Z G Z Z G 1 G G G Z Group Z Z Z Z G r MLR G G G G Z 2 Cluster

G G & Group Z Z r Summary

 Origin of metals in Intracluster Medium (ICM)  Abundance patterns from O to Fe in the ICM

within 0.1 r180 is consistent with the new solar abundance table  ~80% of Fe come from SNe Ia  SNe II products are more extended than SNe Ia products by higher SNe Ia rate in the past

 Metals in groups vs. clusters of galaxies  ICM in groups have similar abundance, and smaller MLRs than that in clusters, reflecting metal enrichment & heating history of ICM Radial Mg MLR with K-band luminosity !"#

!"!#

#!ï'

#!ï&

()*+,-.*+/01123 #!ï% AWM7 A1060 A262 Sato+10 HCG62 NGC507 Komiyama+09 NGC1550 NGC5044 #!ï$ !"!# !"# #

r / r#4!