FAA Rotorcraft Flying Handbook (Gyroplane Chapters)

Total Page:16

File Type:pdf, Size:1020Kb

FAA Rotorcraft Flying Handbook (Gyroplane Chapters) Collision Avoidance at Night............................13-5 Propeller Thrust Line........................................16-5 Approach and Landing .....................................13-5 Rotor Force .......................................................16-6 Trimmed Condition...........................................16-6 Chapter 14—Aeronautical Decision Making Origins of ADM Training......................................14-2 Chapter 17—Gyroplane Flight Controls The Decision-Making Process ..............................14-3 Cyclic Control .......................................................17-1 Defining the Problem........................................14-3 Throttle ..................................................................17-1 Choosing a Course of Action............................14-3 Rudder ...................................................................17-2 Implementing the Decision and Horizontal Tail Surfaces........................................17-2 Evaluating the Outcome ...................................14-3 Collective Control .................................................17-2 Risk Management..................................................14-4 Assessing Risk ..................................................14-4 Chapter 18—Gyroplane Systems Factors Affecting Decision Making ......................14-5 Propulsion Systems ...............................................18-1 Pilot Self-Assessment .......................................14-5 Rotor Systems .......................................................18-1 Recognizing Hazardous Attitudes ....................14-5 Semirigid Rotor System....................................18-1 Stress management ...........................................14-6 Fully Articulated Rotor System ........................18-1 Use of Resources ..............................................14-6 Prerotator ...............................................................18-2 Internal Resources........................................14-7 Mechanical Prerotator.......................................18-2 External Resources.......................................14-7 Hydraulic Prerotator .........................................18-2 Workload Management.....................................14-7 Electric Prerotator.............................................18-3 Situational Awareness.......................................14-8 Tip Jets..............................................................18-3 Obstacles to Maintaining Instrumentation......................................................18-3 Situational Awareness ..................................14-8 Engine Instruments ...........................................18-3 Operational Pitfalls.......................................14-8 Rotor Tachometer .............................................18-3 Slip/Skid Indicator ............................................18-4 Airspeed Indicator ............................................18-4 Altimeter ...........................................................18-4 IFR Flight Instrumentation ...............................18-4 Ground Handling...................................................18-4 GYROPLANE Chapter 15—Introduction to the Gyroplane Chapter 19—Rotorcraft Flight Manual Types of Gyroplanes..............................................15-1 (Gyroplane) Components...........................................................15-2 Using the Flight Manual........................................19-1 Airframe............................................................15-2 Weight and Balance Section.............................19-1 Powerplant ........................................................15-2 Sample Problem ...........................................19-1 Rotor System ....................................................15-2 Performance Section.........................................19-2 Tail Surfaces .....................................................15-2 Sample Problem ...........................................19-2 Landing Gear ....................................................15-3 Height/Velocity Diagram .............................19-3 Wings ................................................................15-3 Emergency Section ...........................................19-3 Hang Test...............................................................19-4 Chapter 16—Aerodynamics of the Gyroplane Autorotation...........................................................16-1 Chapter 20—Flight Operations Vertical Autorotation.........................................16-1 Preflight .................................................................20-1 Rotor Disc Regions...........................................16-2 Cockpit Management........................................20-1 Autorotation in Forward Flight ........................16-2 Engine Starting......................................................20-1 Reverse Flow................................................16-3 Taxiing...................................................................20-1 Retreating Blade Stall ..................................16-3 Blade Flap.........................................................20-1 Rotor Force............................................................16-3 Before Takeoff.......................................................20-2 Rotor Lift ..........................................................16-4 Prerotation.........................................................20-2 Rotor Drag ........................................................16-4 Takeoff...................................................................20-3 Thrust.....................................................................16-4 Normal Takeoff.................................................20-3 Stability .................................................................16-5 Crosswind Takeoff............................................20-4 Horizontal Stabilizer.........................................16-5 Common Errors for Normal and Fuselage Drag (Center of Pressure)..................16-5 Crosswind Takeoffs ..........................................20-4 Pitch Inertia.......................................................16-5 Short-Field Takeoff...........................................20-4 ix Common Errors............................................20-4 High-Altitude Landing....................................20-14 High-Altitude Takeoff ..................................20-4 Common Errors During Landing....................20-15 Soft-Field Takeoff.............................................20-5 Go-Around...........................................................20-15 Common Errors............................................20-5 Common Errors ..............................................20-15 Jump Takeoff................................................20-5 After Landing and Securing................................20-15 Basic Flight Maneuvers.........................................20-6 Straight-and-Level Flight..................................20-6 Chapter 21—Gyroplane Emergencies Climbs...............................................................20-6 Descents ............................................................20-7 Aborted Takeoff.....................................................21-1 Turns .................................................................20-7 Accelerate/Stop Distance..................................21-1 Slips..............................................................20-7 Lift-off at Low Airspeed and Skids.............................................................20-7 High Angle of Attack ............................................21-1 Common Errors During Basic Common Errors ................................................21-2 Flight Maneuvers ..............................................20-8 Pilot-Induced Oscillation (PIO) ............................21-2 Steep Turns .......................................................20-8 Buntover (Power Pushover) ..................................21-3 Common Errors............................................20-8 Ground Resonance ................................................21-3 Ground Reference Maneuvers...............................20-8 Emergency Approach and Landing.......................21-3 Rectangular Course...........................................20-8 Emergency Equipment and Survival Gear............21-4 S-Turns............................................................20-10 Turns Around a Point......................................20-11 Chapter 22—Gyroplane Aeronautical Decision Common Errors During Making Ground Reference Maneuvers ........................20-11 Impulsivity.............................................................22-1 Flight at Slow Airspeeds .....................................20-12 Invulnerability .......................................................22-1 Common Errors ..............................................20-12 Macho....................................................................22-2 High Rate of Descent ..........................................20-12 Resignation............................................................22-2 Common Errors ..............................................20-13 Anti-Authority .......................................................22-3 Landings ..............................................................20-13 Normal Landing..............................................20-13 Short-Field Landing........................................20-13 Glossary.................................................................G-1
Recommended publications
  • Future Battlefield Rotorcraft Capability (FBRC) – Anno 2035 and Beyond
    November 2018 Future Battle eld Rotorcraft Capability Anno 2035 and Beyond Joint Air Power Competence Centre Cover picture © Airbus © This work is copyrighted. No part may be reproduced by any process without prior written permission. Inquiries should be made to: The Editor, Joint Air Power Competence Centre (JAPCC), [email protected] Disclaimer This document is a product of the Joint Air Power Competence Centre (JAPCC). It does not represent the opinions or policies of the North Atlantic Treaty Organization (NATO) and is designed to provide an independent overview, analysis and food for thought regarding possible ways ahead on this subject. Comments and queries on this document should be directed to the Air Operations Support Branch, JAPCC, von-Seydlitz-Kaserne, Römerstraße 140, D-47546 Kalkar. Please visit our website www.japcc.org for the latest information on JAPCC, or e-mail us at [email protected]. Author Cdr Maurizio Modesto (ITA Navy) Release This paper is releasable to the Public. Portions of the document may be quoted without permission, provided a standard source credit is included. Published and distributed by The Joint Air Power Competence Centre von-Seydlitz-Kaserne Römerstraße 140 47546 Kalkar Germany Telephone: +49 (0) 2824 90 2201 Facsimile: +49 (0) 2824 90 2208 E-Mail: [email protected] Website: www.japcc.org Denotes images digitally manipulated JAPCC |Future BattlefieldRotorcraft Capability and – AnnoBeyond 2035 | November 2018 Executive Director, JAPCC Director, Executive DEUAF General, Lieutenant Klaus Habersetzer port Branchviae-mail [email protected]. AirOperationsSup contact to theJAPCC’s free feel thisdocument.Please to withregard have you may comments welcome any We thisstudy.
    [Show full text]
  • Shipboard Operations
    FM 1-564 SHIPBOARD OPERATIONS HEADQUARTERS, DEPARTMENT OF THE ARMY DISTRIBUTION RESTRICTION: Approved for public release; distribution is unlimited. Field Manual *FM1-564 No. 1-564 Headquarters Department of the Army Washington, DC, 29 June 1997 SHIPBOARD OPERATIONS Contents PREFACE CHAPTER 1. PREDEPLOYMENT PLANNING Section 1. Mission Analysis 1-1. Preparation 1-1 1-2. Mission Definition 1-1 1-3. Shipboard Helicopter Training Requirements 1-2 1-4. Service Responsibilities 1-2 1-5. Logistics 1-3 Section 2. Presail Conference 1-6. Coordination 1-7 1-7. Number of Army Aircraft on Board the Ship 1-7 1-8. Checklist 1-7 Section 3. Training Requirements 1-9. Aircrew Requirements for Training 1-9 1-10. Ground School Training 1-11 1-11. Initial Qualification and Currency Requirements 1-11 1-12. Ship Certification and Waiver 1-15 1-13. Detachment Certification 1-15 CHAPTER 2. PREPARATION FOR FLIGHT OPERATIONS Section 1. Chain of Command 2-1. Command Relationship 2-1 2-2. Special Operations 2-2 2-3. Augmentation Support 2-2 Section 2. Personnel Responsibilities 2-4. Flight Quarters Stations 2-3 2-5. Landing Signal Enlisted 2-4 DISTRIBUTION RESTRICTION: Approved for public release; distribution is unlimited. i Section 3. Aircraft Handling 2-6. Fundamentals 2-4 2-7. Helicopter Recovery Tie-Down Procedures 2-5 Section 4. The Air Plan 2-8. Scope 2-5 2-9. Contents 2-6 2-10. Maintenance Test Flights 2-7 2-11. Flight Plan 2-7 2-12. Aqueous Film-Forming Foam System and Mobile Firefighting Equipment 2-7 CHAPTER 3.
    [Show full text]
  • A Numerical Approach for Implementing Air Intakes in a Canard Type Aircraft for Engine Cooling Purposes
    https://doi.org/10.1590/jatm.v13.1192 ORIGINAL PAPER A Numerical Approach for Implementing Air Intakes in a Canard Type Aircraft for Engine Cooling Purposes Odenir de Almeida1,* , Pedro Correa Souza1 , Erick Cunha2 1.Universidade Federal de Uberlândia – Faculdade de Engenharia Mecânica – Centro de Pesquisa em Aerodinâmica Experimental – Uberlândia/MG – Brazil. 2.Fábrica Brasileira de Aeronaves – Uberlândia/MG – Brazil *Corresponding author: [email protected] ABSTRACT This work presents selected results of an unconventional aircraft development campaign. Engine installation at the rear part of the fuselage imposed design constraints for air intakes that should be used for cooling purposes. Trial and error flight tests increased the development cost and time which required a more sophisticated analysis through computational fluid dynamics (CFD) techniques and robust semiempirical approach. The carried-out investigation of the air intakes started with an empirical approach from guidelines for designing NACA and scoops. Numerical studies via computational fluid dynamics were performed with the air intakes installed in the aircraft fuselage. An analysis based on the air intake efficiency, drag and the effect of angle of attack are detailed in this work. Different air intakes designs, such as scoops of different shapes, were evaluated seeking for improved air intake efficiency and low drag while providing enough air for cooling the engine compartment. The results showed that the numerical approach used herein decreased the development cost and time of the aircraft, providing a reasonable low-cost approach and leading to a design selection more easily. Based on the current approach the canard airplane geometry was changed to account for the new selected air intake for engine cooling purposes.
    [Show full text]
  • Montgomerie-Bensen B8MR, G-BXDC
    Montgomerie-Bensen B8MR, G-BXDC AAIB Bulletin No: 1/2001 Ref: EW/C2000/04/03 - Category: 2.3 Aircraft Type and Registration: Montgomerie-Bensen B8MR, G-BXDC No & Type of Engines: 1 Rotax 582 piston engine Year of Manufacture: 1999 Date & Time (UTC): 16 April 2000 at 1411 hrs Location: Carlisle Airport, Cumbria Type of Flight: Private Persons on Board: Crew - 1 - Passengers - None Injuries: Crew - 1 - Passengers - N/A Nature of Damage: Aircraft destroyed Commander's Licence: Private Pilot's Licence (gyroplanes) Commander's Age: 51 years Commander's Flying Experience: 67 hours (of which 30 were on type) Last 90 days - 44 hours Last 28 days - 43 hours Information Source: AAIB Field Investigation Background information The pilot first showed an active interest in autogyros when in March 1999 he visited Carlisle Airport for a trial lesson. He had not flown before and enjoyed the experience so much that he flew again the same day and agreed to embark on a formal training programme with an instructor who was authorised by the CAA to conduct dual and single seat autogyro training as well as flight examinations. The instructor reported that his student approached all matters to do with his flying 'with a great deal of enthusiasm and a fair degree of ability'. From the start of his course until January 2000 the pilot undertook dual instruction, mainly at weekends, on a two seater VPM M16 autogyro. By March 2000 he was sufficiently experienced to transfer to the 'open frame' single-seat Benson autogyro. He flew this for approximately 20 hours, carrying out mainly short 'hops' along the length of the runway and practising balancing on the main wheels before progressing to flying the aircraft in the visual circuit and carrying out general handling exercises.
    [Show full text]
  • Helicopter Dynamics Concerning Retreating Blade Stall on a Coaxial Helicopter
    Helicopter Dynamics Concerning Retreating Blade Stall on a Coaxial Helicopter A project presented to The Faculty of the Department of Aerospace Engineering San José State University In partial fulfillment of the requirements for the degree Master of Science in Aerospace Engineering by Aaron Ford May 2019 approved by Prof. Jeanine Hunter Faculty Advisor © 2019 Aaron Ford ALL RIGHTS RESERVED ABSTRACT Helicopter Dynamics Concerning Retreating Blade Stall on a Coaxial Helicopter by Aaron Ford A model of helicopter blade flapping dynamics is created to determine the occurrence of retreating blade stall on a coaxial helicopter with pusher-propeller in straight and level flight. Equations of motion are developed, and blade element theory is utilized to evaluate the appropriate aerodynamics. Modelling of the blade flapping behavior is verified against benchmark data and then used to determine the angle of attack distribution about the rotor disk for standard helicopter configurations utilizing both hinged and hingeless rotor blades. Modelling of the coaxial configuration with the pusher-prop in straight and level flight is then considered. An approach was taken that minimizes the angle of attack and generation of lift on the advancing side while minimizing them on the retreating side of the rotor disk. The resulting asymmetric lift distribution is compensated for by using both counter-rotating rotor disks to maximize lift on their respective advancing sides and reduce drag on their respective retreating sides. The result is an elimination of retreating blade stall in the coaxial and pusher-propeller configuration. Finally, an assessment of the lift capability of the configuration at both sea level and at “high and hot” conditions were made.
    [Show full text]
  • National Rappel Operations Guide
    National Rappel Operations Guide 2019 NATIONAL RAPPEL OPERATIONS GUIDE USDA FOREST SERVICE National Rappel Operations Guide i Page Intentionally Left Blank National Rappel Operations Guide ii Table of Contents Table of Contents ..........................................................................................................................ii USDA Forest Service - National Rappel Operations Guide Approval .............................................. iv USDA Forest Service - National Rappel Operations Guide Overview ............................................... vi USDA Forest Service Helicopter Rappel Mission Statement ........................................................ viii NROG Revision Summary ............................................................................................................... x Introduction ...................................................................................................... 1—1 Administration .................................................................................................. 2—1 Rappel Position Standards ................................................................................. 2—6 Rappel and Cargo Letdown Equipment .............................................................. 4—1 Rappel and Cargo Letdown Operations .............................................................. 5—1 Rappel and Cargo Operations Emergency Procedures ........................................ 6—1 Documentation ................................................................................................
    [Show full text]
  • Book Reviews the SYCAMORE SEEDS
    Afterburner Book Reviews THE SYCAMORE SEEDS Early British Helicopter only to be smashed the following night in a gale. The book then covers the Cierva story in some detail, the Development chapter including, out of context, two paragraphs on By C E MacKay the Brennan propeller-driven rotor driven helicopter [helicogyro] fl own in 1924 at Farnborough but Distributed by A MacKay, 87 Knightscliffe Avenue, aborted by the Air Ministry the next year, stating that Netherton, Glasgow G13 2RX, UK (E charlese87@ there was no future for the helicopter and backing btinternet.com). 2014. 218pp. Illustrated. £12.95. Cierva’s autogyro programme contracting Avro to build ISBN 978-0-9573443-3-4. the fi rst British machines. Good coverage is given to the range of Cierva autogyros culminating in the Avro Given the paucity of coverage of British helicopter C30 Rota and its service use by the RAF. development I approached this slim (218 A5 pp) The heart of the book begins with a quotation: publication with interest. While autogyros have been “Morris, I want you to make me blades, helicopter well documented, Charnov and Ord-Hume giving blades,” with which William Weir, the fi rst Air Minister, exhaustive and well documented treatments of the founder of the RAF and supporter of Cierva, brought helicopter’s predecessor, the transition to the directly furniture maker H Morris & Co into the history of driven rotor of the helicopter is somewhat lacking. rotorcraft pulling in designers Bennett, Watson, Unfortunately MacKay’s book only contributes a Nisbet and Pullin with test pilots Marsh and Brie fi nal and short chapter to the ‘British Helicopter’ to form his team.
    [Show full text]
  • Adventures in Low Disk Loading VTOL Design
    NASA/TP—2018–219981 Adventures in Low Disk Loading VTOL Design Mike Scully Ames Research Center Moffett Field, California Click here: Press F1 key (Windows) or Help key (Mac) for help September 2018 This page is required and contains approved text that cannot be changed. NASA STI Program ... in Profile Since its founding, NASA has been dedicated • CONFERENCE PUBLICATION. to the advancement of aeronautics and space Collected papers from scientific and science. The NASA scientific and technical technical conferences, symposia, seminars, information (STI) program plays a key part in or other meetings sponsored or co- helping NASA maintain this important role. sponsored by NASA. The NASA STI program operates under the • SPECIAL PUBLICATION. Scientific, auspices of the Agency Chief Information technical, or historical information from Officer. It collects, organizes, provides for NASA programs, projects, and missions, archiving, and disseminates NASA’s STI. The often concerned with subjects having NASA STI program provides access to the NTRS substantial public interest. Registered and its public interface, the NASA Technical Reports Server, thus providing one of • TECHNICAL TRANSLATION. the largest collections of aeronautical and space English-language translations of foreign science STI in the world. Results are published in scientific and technical material pertinent to both non-NASA channels and by NASA in the NASA’s mission. NASA STI Report Series, which includes the following report types: Specialized services also include organizing and publishing research results, distributing • TECHNICAL PUBLICATION. Reports of specialized research announcements and feeds, completed research or a major significant providing information desk and personal search phase of research that present the results of support, and enabling data exchange services.
    [Show full text]
  • Shipboard Operations
    FM 1-564 SHIPBOARD OPERATIONS HEADQUARTERS, DEPARTMENT OF THE ARMY DISTRIBUTION RESTRICTION: Approved for public release; distribution is unlimited. Field Manual *FM1-564 No. 1-564 Headquarters Department of the Army Washington, DC, 29 June 1997 SHIPBOARD OPERATIONS Contents PREFACE CHAPTER 1. PREDEPLOYMENT PLANNING Section 1. Mission Analysis 1-1. Preparation 1-1 1-2. Mission Definition 1-1 1-3. Shipboard Helicopter Training Requirements 1-2 1-4. Service Responsibilities 1-2 1-5. Logistics 1-3 Section 2. Presail Conference 1-6. Coordination 1-7 1-7. Number of Army Aircraft on Board the Ship 1-7 1-8. Checklist 1-7 Section 3. Training Requirements 1-9. Aircrew Requirements for Training 1-9 1-10. Ground School Training 1-11 1-11. Initial Qualification and Currency Requirements 1-11 1-12. Ship Certification and Waiver 1-15 1-13. Detachment Certification 1-15 CHAPTER 2. PREPARATION FOR FLIGHT OPERATIONS Section 1. Chain of Command 2-1. Command Relationship 2-1 2-2. Special Operations 2-2 2-3. Augmentation Support 2-2 Section 2. Personnel Responsibilities 2-4. Flight Quarters Stations 2-3 2-5. Landing Signal Enlisted 2-4 DISTRIBUTION RESTRICTION: Approved for public release; distribution is unlimited. i Section 3. Aircraft Handling 2-6. Fundamentals 2-4 2-7. Helicopter Recovery Tie-Down Procedures 2-5 Section 4. The Air Plan 2-8. Scope 2-5 2-9. Contents 2-6 2-10. Maintenance Test Flights 2-7 2-11. Flight Plan 2-7 2-12. Aqueous Film-Forming Foam System and Mobile Firefighting Equipment 2-7 CHAPTER 3.
    [Show full text]
  • Over Thirty Years After the Wright Brothers
    ver thirty years after the Wright Brothers absolutely right in terms of a so-called “pure” helicop- attained powered, heavier-than-air, fixed-wing ter. However, the quest for speed in rotary-wing flight Oflight in the United States, Germany astounded drove designers to consider another option: the com- the world in 1936 with demonstrations of the vertical pound helicopter. flight capabilities of the side-by-side rotor Focke Fw 61, The definition of a “compound helicopter” is open to which eclipsed all previous attempts at controlled verti- debate (see sidebar). Although many contend that aug- cal flight. However, even its overall performance was mented forward propulsion is all that is necessary to modest, particularly with regards to forward speed. Even place a helicopter in the “compound” category, others after Igor Sikorsky perfected the now-classic configura- insist that it need only possess some form of augment- tion of a large single main rotor and a smaller anti- ed lift, or that it must have both. Focusing on what torque tail rotor a few years later, speed was still limited could be called “propulsive compounds,” the following in comparison to that of the helicopter’s fixed-wing pages provide a broad overview of the different helicop- brethren. Although Sikorsky’s basic design withstood ters that have been flown over the years with some sort the test of time and became the dominant helicopter of auxiliary propulsion unit: one or more propellers or configuration worldwide (approximately 95% today), jet engines. This survey also gives a brief look at the all helicopters currently in service suffer from one pri- ways in which different manufacturers have chosen to mary limitation: the inability to achieve forward speeds approach the problem of increased forward speed while much greater than 200 kt (230 mph).
    [Show full text]
  • Helicopter Safety July-August 1991
    F L I G H T S A F E T Y F O U N D A T I O N HELICOPTER SAFETY Vol. 17 No. 4 For Everyone Concerned with the Safety of Flight July/August 1991 The Philosophy and Realities of Autorotations Like the power-off glide in a fixed-wing aircraft, the autorotation in a helicopter must be used properly if it is to be a successful safety maneuver. by Michael K. Hynes Aviation Consultant In all helicopter flying, there is no single event that has a In the early years of airplane flight, the fear of engine greater impact on safety than the autorotation maneuver. failure, or that the airplane might have structural prob- The mere mention of the word “autorotation” at any lems during flight, was very strong. If either of these gathering of helicopter pilots, especially flight instruc- events took place, the pilot’s ability to get the airplane tors, will guarantee a long and lively discussion. safely on the ground quickly was important. The time it took to get the airplane on the ground was directly in There are many misconceptions about autorotations and proportion to the altitude at which the airplane was being they contribute to the accident rate when an autorotation flown. It is therefore logical that all early flights were precedes a helicopter landing accident. One approach to flown at low altitudes, often at less than 500 feet above a discussion of autorotations is to look at the subject the ground (agl). from three views: first, the philosophy of the subject; second, the reality of the circumstances that require au- At these low altitudes, the pilot did not always have the torotations; and third, the execution of the maneuver.
    [Show full text]
  • FY 06 Aviation Accident Review
    DOIDOI FYFY 0606 AviationAviation MishapsMishaps 44 AircraftAircraft AccidentsAccidents TheThe lossloss ofof oneone lifelife OneOne serious,serious, andand threethree minorminor injuriesinjuries 1212 IncidentsIncidents withwith PotentialPotential DOIDOI FYFY 0606 AviationAviation MishapsMishaps NTSB 831.13 Flow and dissemination of accident or incident information. (b) … Parties to the investigation may relay to their respective organizations information necessary for purposes of prevention or remedial action. … However, no (release of) information… without prior consultation and approval of the NTSB. ThisThis informationinformation isis providedprovided forfor accidentaccident preventionprevention purposespurposes onlyonly Fairbanks,Fairbanks, AKAK OctoberOctober 6,6, 20052005 Husky A-1B Mission Resource Clinic Training Damage Substantial Injuries None Procurement Fleet NTSB ID ANC06TA002 Fairbanks,Fairbanks, AKAK OctoberOctober 6,6, 20052005 Issues Mission briefing Cockpit communications Distraction Crew Selection Training standards and program objectives NTSBNTSB ProbableProbable CauseCause Fairbanks,Fairbanks, AK,AK, October October 6,6, 20052005 The National Probable Cause Transportation Safety Board determined that “The flight instructor's the probable cause of inadequate supervision of the dual this accident was … student during the landing roll, which resulted in the dual student applying the brakes excessively, and the airplane nosing over. A factor associated with the accident was the excessive braking by the dual student.” FAI
    [Show full text]