The Role of Advanced Sensing in Smart Cities
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
IOT Platforms: a Brief Study Chaitra Acharya M.Tech Student, National Institute of Engineering, Mysuru, India
International Journal of Advanced Research in ISSN : 2347 - 8446 (Online) Computer Science & Technology (IJARCST 2016) Vol. 4, Issue 2 (Apr. - Jun. 2016) ISSN : 2347 - 9817 (Print) IOT Platforms: A Brief Study Chaitra Acharya M.Tech Student, National Institute of Engineering, Mysuru, India Abstract Internet is one of the most important and powerful creations in all of human history. The internet is basically an informal term for the world-wide communication network of computers more specifically called the network of networks. Internet not only links computers but also people through them. It was primarily designed to share information between networks. In today’s world people use internet for a variety of reasons: from browsing for information to chatting and even online services like shopping, banking, video conferencing and so forth. As the years progress, the services provided by the Internet grows endless. The “Internet of Things” refers to the concept that the Internet is no longer just a global network for people to communicate with one another using computers, but it is also a platform for devices to communicate electronically with the world around them. IoT represents the next evolution of the Internet, taking a huge leap in its ability to gather, analyse, and distribute data that we can turn into information, knowledge, and, ultimately, wisdom. There are a variety of IoT platforms like Thingspeak, Grovestreams, Thingworx, Xively and so on which provide IoT services to the users for a price. Keywords Internet of Things, IoT Architecture, Web of Things, Thingspeak, Grovestreams, Thingworx. I. Introduction we will discuss options for realizing each component. -
A DASH7-Based Power Metering System
A DASH7-based Power Metering System Oktay Cetinkaya Ozgur B. Akan Next-generation and Wireless Communications Laboratory Department of Electrical and Electronics Engineering Koc University, Istanbul, Turkey Email: fokcetinkaya13, [email protected] Abstract—Considering the inability of the existing energy non-embedded structure. When considering the cost of HEMS, resources to satisfy the current needs, the right and efficient use power meters can be defined as cheap and cost effective of the energy has become compulsory. To make energy sustain- products, undoubtedly. ability permanent, management and planning activities should be carried out by arranging the working hours and decreasing There are several wireless communication protocols in liter- the energy wasting. For all these, power metering, managing ature to actualize the remote control of plugged gadgets. The and controlling systems or plugs has been proposed in recent communication between ‘master and slave’ or equivalently efforts. Starting from this point, a new DASH7-based Smart Plug ‘user and device’ is realized over any of these wireless (D7SP) is designed and implemented to achieve a better structure communication protocols based modules. 2.4 GHz frequency compared to ZigBee equipped models and reduce the drawbacks of current applications. DASH7 technology reaches nearly 6 times is frequently preferred for this goal and ZigBee can be referred farther distances in comparison with 2.4 GHz based protocols and as the most popular member of this band. With a brief provides multi-year battery life as a result of using limited energy definition, ZigBee is a low cost and high reliable technology during transmission. Performing in the 433 MHz band prevents based on IEEE 802.15.4 [1]. -
Internet of Underground Things in Precision Agriculture: Architecture and Technology Aspects Mehmet C
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln CSE Journal Articles Computer Science and Engineering, Department of 2018 Internet of underground things in precision agriculture: Architecture and technology aspects Mehmet C. Vuran University of Nebraska-Lincoln, [email protected] Abdul Salam Purdue University, [email protected] Rigoberto Wong University of Nebraska-Lincoln, [email protected] Suat Irmak University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/csearticles Part of the Bioresource and Agricultural Engineering Commons, Computer and Systems Architecture Commons, Operations Research, Systems Engineering and Industrial Engineering Commons, and the Robotics Commons Vuran, Mehmet C.; Salam, Abdul; Wong, Rigoberto; and Irmak, Suat, "Internet of underground things in precision agriculture: Architecture and technology aspects" (2018). CSE Journal Articles. 189. https://digitalcommons.unl.edu/csearticles/189 This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Journal Articles by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. digitalcommons.unl.edu Internet of underground things in precision agriculture: Architecture and technology aspects Mehmet C. Vuran,1 Abdul Salam,2 Rigoberto Wong,1 and Suat Irmak 3 1 Cyber-physical Networking Laboratory, Computer Science and Engineering, University of Nebraska–Lincoln, Lincoln, NE, USA 2 Department of Computer and Information Technology, Purdue University, West Lafayette, IN 47907, USA 3 Department of Biological Systems Engineering, University of Nebraska–Lincoln, Lincoln, NE 68583, USA Corresponding author — A. Salam, [email protected] Email addresses: [email protected] (M.C. -
System Performance of Wireless Sensor Network Using Lora…
Computers, Materials & Continua Tech Science Press DOI:10.32604/cmc.2021.016922 Article System Performance of Wireless Sensor Network Using LoRa–Zigbee Hybrid Communication Van-Truong Truong1, Anand Nayyar2,* and Showkat Ahmad Lone3 1Faculty of Electrical and Electronic Engineering, Duy Tan University, Da Nang, 550000, Vietnam; Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam 2Graduate School, Duy Tan University, Da Nang 550000, Vietnam; Faculty of Information Technology, Duy Tan University, Da Nang, Vietnam 3Department of Basic Science, College of Science and Theoretical Studies, Saudi Electronic University, Jeddah Campus, KSA *Corresponding Author: Anand Nayyar. Email: [email protected] Received: 15 January 2021; Accepted: 17 February 2021 Abstract: Wireless sensor network (WSN) is considered as the fastest growing technology pattern in recent years because of its applicability in var- ied domains. Many sensor nodes with different sensing functionalities are deployed in the monitoring area to collect suitable data and transmit it to the gateway. Ensuring communications in heterogeneous WSNs, is a critical issue that needs to be studied. In this research paper, we study the system performance of a heterogeneous WSN using LoRa–Zigbee hybrid communi- cation. Specifically, two Zigbee sensor clusters and two LoRa sensor clusters are used and combined with two Zigbee-to-LoRa converters to communicate in a network managed by a LoRa gateway. The overall system integrates many different sensors in terms of types, communication protocols, and accuracy, which can be used in many applications in realistic environments such as on land, under water, or in the air. In addition to this, a synchronous man- agement software on ThingSpeak Web server and Blynk app is designed. -
Thingspeak-Open Source Platform for Connected Products and Services
Chungnam National University Computer Science and Engineering Database System Laboratory ThingSpeak-Open Source Platform for Connected Products and Services 2012년 8월 29일 임형준([email protected]) 충남대학교 컴퓨터공학과 데이터베이스시스템연구실 TOC ioBridge, Inc. ThingSpeak ■ Goal ■ Features ■ Apps ■ Plugins ■ Devices Conclusion References Chungnam National University 2 Computer Science and Engineering Database System Laboratory ioBridge, Inc. ioBridge, Inc. offers technology and services that enable almost anything to be Web-enabled and monitored and controlled over the Internet ■ http://www.iobridge.com ioBridge's technology includes a Web services platform that customers can use to extend the technology of many applications ioBridge provides OEM and commercial integration services and licensing of core, patent-pending technologies Chungnam National University 3 Computer Science and Engineering Database System Laboratory ioBridge, Inc. Labs[1/4] - CheerLights Imagine millions of lights connected together ■ http://www.cheerlights.com/ CheerLights is a project that enables people all around the world to link lights and applications together based on social networking trends To control CheerLights, send a tweet to @cheerlights or include “cheerlights” somewhere in your message with the name of a color ■ Example Tweet: @CheerLights Paint the town red Chungnam National University 4 Computer Science and Engineering Database System Laboratory ioBridge, Inc. Labs[2/4] ‒ Tide Alerts Tide Alerts is a project developed by ioBridge to monitor and report tide -
Iot: the Next Evolution of Internet Refereed Journal Indexed Journal Impact Factor MJIF: 4.25 G
World Wide Journal of Multidisciplinary Research and Development WWJMRD 2018; 4(7): 11-15 www.wwjmrd.com International Journal Peer Reviewed Journal IoT: The Next Evolution of Internet Refereed Journal Indexed Journal Impact Factor MJIF: 4.25 G. Umarani, K.Sharmila E-ISSN: 2454-6615 Abstract G. Umarani Internet of Things (IoT) is a system of interrelated computing devices, mechanical and digital Guest Lecturer, Dept of machines, objects, animals or people that are provided with unique identifiers and the ability to computer Science K.N.Govt Arts College for Women (A), transfer data over a network without requiring human to human or human to computer interaction. Thanjavur, TamilNadu,India The basic idea of IoT is to allow objects to be sensed and controlled remotely across existing network infrastructure, creating opportunities for more direct integration between the physical world and K.Sharmila computer-based systems and resulting in improved efficiency, accuracy and economic benefit. This Guest Lecturer, Dept of article reports the various technologies of IoT, Applications and discuss the challenges shall be faced computer Science K.N.Govt by the research community. Arts College for Women (A), Thanjavur, TamilNadu, India Keywords: Internet of Things- IoT- Defy-RFID- Actuator-NFC I Introduction The Internet of Things is a network of physical objects or “things” embedded with electronics, software, sensors and network connectivity which enables to interact with each object to collect and exchange data. Internet of Things (IoT) is not a result of single novel technology; instead several complementary and technical developments provide capabilities that taken together help to bridge the gap between the virtual and physical world. -
Secure Authentication Protocol for Internet of Things Achraf Fayad
Secure authentication protocol for Internet of Things Achraf Fayad To cite this version: Achraf Fayad. Secure authentication protocol for Internet of Things. Networking and Internet Archi- tecture [cs.NI]. Institut Polytechnique de Paris, 2020. English. NNT : 2020IPPAT051. tel-03135607 HAL Id: tel-03135607 https://tel.archives-ouvertes.fr/tel-03135607 Submitted on 9 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Protocole d’authentification securis´ e´ pour les objets connectes´ These` de doctorat de l’Institut Polytechnique de Paris prepar´ ee´ a` Tel´ ecom´ Paris Ecole´ doctorale n◦626 Ecole´ doctorale de l’Institut Polytechnique de Paris (EDIPP) Specialit´ e´ de doctorat : Reseaux,´ informations et communications NNT : 2020IPPAT051 These` present´ ee´ et soutenue a` Palaiseau, le 14 decembre´ 2020, par ACHRAF FAYAD Composition du Jury : Ken CHEN Professeur, Universite´ Paris 13 Nord President´ Pascal LORENZ Professeur, Universite´ de Haute-Alsace (UHA) Rapporteur Ahmed MEHAOUA Professeur, Universite´ Paris Descartes Rapporteur Lyes KHOUKHI Professeur, Ecole´ Nationale Superieure´ d’Ingenieurs´ de Examinateur Caen-ENSICAEN Ahmad FADLALLAH Associate Professor, University of Sciences and Arts in Lebanon Examinateur (USAL) Rida KHATOUN Maˆıtre de conferences,´ Tel´ ecom´ Paris Directeur de these` Ahmed SERHROUCHNI Professeur, Tel´ ecom´ Paris Co-directeur de these` Badis HAMMI Associate Professor, Ecole´ pour l’informatique et les techniques Invite´ avancees´ (EPITA) 626 Acknowledgments First, I would like to thank my thesis supervisor Dr. -
A Review of Smart Cities Based on the Internet of Things Concept
energies Review A Review of Smart Cities Based on the Internet of Things Concept Saber Talari 1, Miadreza Shafie-khah 1,2,*, Pierluigi Siano 2, Vincenzo Loia 3, Aurelio Tommasetti 3 and João P. S. Catalão 1,4,5 1 C-MAST, University of Beira Interior, R. Fonte do Lameiro, 6201-001 Covilhã, Portugal; [email protected] (S.T.); [email protected] or [email protected] (J.P.S.C.) 2 Department of Industrial Engineering, University of Salerno, 84084 Fisciano (SA), Italy; [email protected] 3 Department of Management & Innovation Systems, University of Salerno, 84084 Fisciano (SA), Italy; [email protected] (V.L.); [email protected] (A.T.) 4 INESC TEC and Faculty of Engineering of the University of Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal 5 INESC-ID, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal * Correspondence: [email protected]; Tel.: +351-275-242055 Academic Editor: Joseph H. M. Tah Received: 8 January 2017; Accepted: 20 March 2017; Published: 23 March 2017 Abstract: With the expansion of smart meters, like the Advanced Metering Infrastructure (AMI), and the Internet of Things (IoT), each smart city is equipped with various kinds of electronic devices. Therefore, equipment and technologies enable us to be smarter and make various aspects of smart cities more accessible and applicable. The goal of the current paper is to provide an inclusive review on the concept of the smart city besides their different applications, benefits, and advantages. In addition, most of the possible IoT technologies are introduced, and their capabilities to merge into and apply to the different parts of smart cities are discussed. -
A Changing Landscape: the Internet of Things (Iot)
A Changing Landscape: the Internet of Things (IoT) Prof Sanjay Jha Deputy Director, Australian Center for Cyber Security, UNSW Director of Cyber Security and Privacy Laboratory, School of Computer Science and Engineering University Of New South Wales [email protected] http://www.cse.unsw.edu.au/~sanjay SecureCanberra@MilCIS 2014, Australia 13th Nov 2014 Internet of Things • Connected devices • Smoke alarms, light bulbs, power switches, motion sensors, door locks etc. 2 Outline • Introduction to IoT • History of IoT (and M2M) and Wireless Sensor Networks • Security Challenges in IoT • Sample Research Projects at UNSW History (IoT) • Early 90s or prior: SCADA systems, Telemetry applications • Late 90s- Products/services from mobile operators (Siemens) to connect devices via cellular network – Primarily automotive telematics • Mid- 2000s – Many tailored products for logistics, fleet management, car safety, healthcare, and smart metering of electricity consumption • Since 2010 – A large number of consortiums mushrooming up to bid for a large market share – ABI Projects US$198M by 2018 – Berg Insight US$187M by 2014…… History of Wireless Sensor Net • 1999: Kahn, Katz,Pister: Vision for Smart Dust • 2002 Sensys CFP: Wireless Sensor Network research as being composed of ”distributed systems of numerous smart sensors and actuators connecting computational capabilities to the physical world have the potential to revolutionise a wide array of application areas by providing an unprecedented density and fidelity of instrumentation”. Typical Application Roadmap to IoT • Supply Chain Applications – Routing, inventory, loss prevention. • Vertical Market Helpers – Healthcare, Transport, Energy, Agriculture, Security, Home Network. • Ubiquitous Position – Location of people and objects and possible tailored services • Teleoperations/Telepresence - Ability to interact/control with remote objects. -
Wireless Sensor Networks
White Paper ® Internet of Things: Wireless Sensor Networks Executive summary Today, smart grid, smart homes, smart water Section 2 starts with the historical background of networks, intelligent transportation, are infrastruc- IoT and WSNs, then provides an example from the ture systems that connect our world more than we power industry which is now undergoing power ever thought possible. The common vision of such grid upgrading. WSN technologies are playing systems is usually associated with one single con- an important role in safety monitoring over power cept, the internet of things (IoT), where through the transmission and transformation equipment and use of sensors, the entire physical infrastructure is the deployment of billions of smart meters. closely coupled with information and communica- Section 3 assesses the technology and charac- tion technologies; where intelligent monitoring and teristics of WSNs and the worldwide application management can be achieved via the usage of net- needs for them, including data aggregation and worked embedded devices. In such a sophisticat- security. ed dynamic system, devices are interconnected to transmit useful measurement information and con- Section 4 addresses the challenges and future trol instructions via distributed sensor networks. trends of WSNs in a wide range of applications in various domains, including ultra large sensing A wireless sensor network (WSN) is a network device access, trust security and privacy, and formed by a large number of sensor nodes where service architectures to name a few. each node is equipped with a sensor to detect physical phenomena such as light, heat, pressure, Section 5 provides information on applications. etc. WSNs are regarded as a revolutionary The variety of possible applications of WSNs to the information gathering method to build the real world is practically unlimited. -
Security Vulnerabilities in Lpwans—An Attack Vector Analysis for the Iot Ecosystem
applied sciences Article Security Vulnerabilities in LPWANs—An Attack Vector Analysis for the IoT Ecosystem Nuno Torres 1 , Pedro Pinto 1,2,3 and Sérgio Ivan Lopes 1,4,* 1 ADiT—Instituto Politécnico de Viana do Castelo, 4900-347 Viana do Castelo, Portugal; [email protected] (N.T.); [email protected] (P.P.) 2 Instituto Universitário da Maia, 4475-690 Maia, Portugal 3 INESC TEC, 4200-465 Porto, Portugal 4 IT—Instituto de Telecomunicações, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal * Correspondence: [email protected] Abstract: Due to its pervasive nature, the Internet of Things (IoT) is demanding for Low Power Wide Area Networks (LPWAN) since wirelessly connected devices need battery-efficient and long-range communications. Due to its low-cost and high availability (regional/city level scale), this type of network has been widely used in several IoT applications, such as Smart Metering, Smart Grids, Smart Buildings, Intelligent Transportation Systems (ITS), SCADA Systems. By using LPWAN technologies, the IoT devices are less dependent on common and existing infrastructure, can operate using small, inexpensive, and long-lasting batteries (up to 10 years), and can be easily deployed within wide areas, typically above 2 km in urban zones. The starting point of this work was an overview of the security vulnerabilities that exist in LPWANs, followed by a literature review with the main goal of substantiating an attack vector analysis specifically designed for the IoT ecosystem. This methodological approach resulted in three main contributions: (i) a systematic review regarding cybersecurity in LPWANs with a focus on vulnerabilities, threats, and typical defense strategies; (ii) a Citation: Torres, N.; Pinto, P.; Lopes, state-of-the-art review on the most prominent results that have been found in the systematic review, S.L. -
PDF-Vol-20-I-2
Scalable Computing: Practice and Experience Scientific International Journal for Parallel and Distributed Computing ISSN: 1895-1767 t ⑦ ⑦ ⑦ ⑦ ⑦⑦ Volume 20(2) June 2019 Editor-in-Chief Editorial Board Dana Petcu Peter Arbenz, Swiss Federal Institute of Technology, Z¨urich, Computer Science Department [email protected] West University of Timisoara Dorothy Bollman, University of Puerto Rico, and Institute e-Austria Timisoara [email protected] B-dul Vasile Parvan 4, 300223 Luigi Brugnano, Universit`adi Firenze, Timisoara, Romania [email protected] [email protected] Giacomo Cabri, University of Modena and Reggio Emilia, Managinig and [email protected] TEXnical Editor Bogdan Czejdo, Fayetteville State University, Silviu Panica [email protected] Computer Science Department Frederic Desprez, LIP ENS Lyon, [email protected] West University of Timisoara Yakov Fet, Novosibirsk Computing Center, [email protected] and Institute e-Austria Timisoara Giancarlo Fortino, University of Calabria, B-dul Vasile Parvan 4, 300223 [email protected] Timisoara, Romania Andrzej Goscinski, Deakin University, [email protected] [email protected] Frederic Loulergue, Northern Arizona University, [email protected] Book Review Editor Thomas Ludwig, German Climate Computing Center and Uni- Shahram Rahimi versity of Hamburg, [email protected] Department of Computer Science Svetozar Margenov, Institute for Parallel Processing and Bul- Southern Illinois University garian Academy of Science, [email protected] Mailcode 4511, Carbondale