Cholesterol in Health and Disease
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
• Our Bodies Make All the Cholesterol We Need. • 85 % of Our Blood
• Our bodies make all the cholesterol we need. • 85 % of our blood cholesterol level is endogenous • 15 % = dietary from meat, poultry, fish, seafood and dairy products. • It's possible for some people to eat foods high in cholesterol and still have low blood cholesterol levels. • Likewise, it's possible to eat foods low in cholesterol and have a high blood cholesterol level SYNTHESIS OF CHOLESTEROL • LOCATION • All tissues • Liver • Cortex of adrenal gland • Gonads • Smooth endoplasmic reticulum Cholesterol biosynthesis and degradation • Diet: only found in animal fat • Biosynthesis: primarily synthesized in the liver from acetyl-coA; biosynthesis is inhibited by LDL uptake • Degradation: only occurs in the liver • Cholesterol is only synthesized by animals • Although de novo synthesis of cholesterol occurs in/ by almost all tissues in humans, the capacity is greatest in liver, intestine, adrenal cortex, and reproductive tissues, including ovaries, testes, and placenta. • Most de novo synthesis occurs in the liver, where cholesterol is synthesized from acetyl-CoA in the cytoplasm. • Biosynthesis in the liver accounts for approximately 10%, and in the intestines approximately 15%, of the amount produced each day. • Since cholesterol is not synthesized in plants; vegetables & fruits play a major role in low cholesterol diets. • As previously mentioned, cholesterol biosynthesis is necessary for membrane synthesis, and as a precursor for steroid synthesis including steroid hormone and vitamin D production, and bile acid synthesis, in the liver. • Slightly less than half of the cholesterol in the body derives from biosynthesis de novo. • Most cells derive their cholesterol from LDL or HDL, but some cholesterol may be synthesize: de novo. -
Of Yeast, Mice and Men: Mams Come in Two Flavors Maria Sol Herrera-Cruz and Thomas Simmen*
Herrera-Cruz and Simmen Biology Direct (2017) 12:3 DOI 10.1186/s13062-017-0174-5 REVIEW Open Access Of yeast, mice and men: MAMs come in two flavors Maria Sol Herrera-Cruz and Thomas Simmen* Abstract The past decade has seen dramatic progress in our understanding of membrane contact sites (MCS). Important examples of these are endoplasmic reticulum (ER)-mitochondria contact sites. ER-mitochondria contacts have originally been discovered in mammalian tissue, where they have been designated as mitochondria-associated membranes (MAMs). It is also in this model system, where the first critical MAM proteins have been identified, including MAM tethering regulators such as phospho-furin acidic cluster sorting protein 2 (PACS-2) and mitofusin-2. However, the past decade has seen the discovery of the MAM also in the powerful yeast model system Saccharomyces cerevisiae.Thishas led to the discovery of novel MAM tethers such as the yeast ER-mitochondria encounter structure (ERMES), absent in the mammalian system, but whose regulators Gem1 and Lam6 are conserved. While MAMs, sometimes referred to as mitochondria-ER contacts (MERCs), regulate lipid metabolism, Ca2+ signaling, bioenergetics, inflammation, autophagy and apoptosis, not all of these functions exist in both systems or operate differently. This biological difference has led to puzzling discrepancies on findings obtained in yeast or mammalian cells at the moment. Our review aims to shed some light onto mechanistic differences between yeast and mammalian MAM and their underlying causes. Reviewers: This article was reviewed by Paola Pizzo (nominated by Luca Pellegrini), Maya Schuldiner and György Szabadkai (nominated by Luca Pellegrini). Keywords: Mitochondria-associated membrane, MAM, Mitochondria-ER contacts, MERCs, Human, S. -
Dysregulation of Cholesterol Balance in the Brain: Contribution to Neurodegenerative Diseases
PERSPECTIVE Disease Models & Mechanisms 5, 746-755 (2012) doi:10.1242/dmm.010124 Dysregulation of cholesterol balance in the brain: contribution to neurodegenerative diseases Jean E. Vance1 Dysregulation of cholesterol homeostasis in the brain is increasingly being linked to chronic neurodegenerative disorders, including Alzheimer’s disease (AD), Huntington’s disease (HD), Parkinson’s disease (PD), Niemann-Pick type C (NPC) disease and Smith-Lemli Opitz syndrome (SLOS). However, the molecular mechanisms underlying the correlation between altered cholesterol metabolism and the neurological deficits are, for the most part, not clear. NPC disease and SLOS are caused by mutations in genes involved in the biosynthesis or intracellular trafficking of cholesterol, respectively. However, the types of neurological impairments, and the areas of the brain that are most affected, differ between these diseases. Some, but not all, studies indicate that high levels of plasma cholesterol correlate with increased risk of developing AD. Moreover, inheritance of the E4 isoform of apolipoprotein E (APOE), a cholesterol- carrying protein, markedly increases the risk of developing AD. Whether or not treatment of AD with statins is beneficial remains controversial, and any benefit of statin treatment might be due to anti-inflammatory properties of the drug. Cholesterol balance is also altered in HD and PD, although no causal link between dysregulated cholesterol DMM homeostasis and neurodegeneration has been established. Some important considerations for treatment of neurodegenerative diseases are the impermeability of the blood-brain barrier to many therapeutic agents and difficulties in reversing brain damage that has already occurred. This article focuses on how cholesterol balance in the brain is altered in several neurodegenerative diseases, and discusses some commonalities and differences among the diseases. -
33 34 35 Lipid Synthesis Laptop
BI/CH 422/622 Liver cytosol ANABOLISM OUTLINE: Photosynthesis Carbohydrate Biosynthesis in Animals Biosynthesis of Fatty Acids and Lipids Fatty Acids Triacylglycerides contrasts Membrane lipids location & transport Glycerophospholipids Synthesis Sphingolipids acetyl-CoA carboxylase Isoprene lipids: fatty acid synthase Ketone Bodies ACP priming 4 steps Cholesterol Control of fatty acid metabolism isoprene synth. ACC Joining Reciprocal control of b-ox Cholesterol Synth. Diversification of fatty acids Fates Eicosanoids Cholesterol esters Bile acids Prostaglandins,Thromboxanes, Steroid Hormones and Leukotrienes Metabolism & transport Control ANABOLISM II: Biosynthesis of Fatty Acids & Lipids Lipid Fat Biosynthesis Catabolism Fatty Acid Fatty Acid Synthesis Degradation Ketone body Utilization Isoprene Biosynthesis 1 Cholesterol and Steroid Biosynthesis mevalonate kinase Mevalonate to Activated Isoprenes • Two phosphates are transferred stepwise from ATP to mevalonate. • A third phosphate from ATP is added at the hydroxyl, followed by decarboxylation and elimination catalyzed by pyrophospho- mevalonate decarboxylase creates a pyrophosphorylated 5-C product: D3-isopentyl pyrophosphate (IPP) (isoprene). • Isomerization to a second isoprene dimethylallylpyrophosphate (DMAPP) gives two activated isoprene IPP compounds that act as precursors for D3-isopentyl pyrophosphate Isopentyl-D-pyrophosphate all of the other lipids in this class isomerase DMAPP Cholesterol and Steroid Biosynthesis mevalonate kinase Mevalonate to Activated Isoprenes • Two phosphates -
Steroid Interference with Antifungal Activity of Polyene Antibiotics
APPLIED MICROBIOLOGY, Nov., 1966 Vol. 14, No. 6 Copyright © 1966 American Society for Microbiology Printed in U.S.A. Steroid Interference with Antifungal Activity of Polyene Antibiotics WALTER A. ZYGMUNT AND PETER A. TAVORMINA Department of Microbiology and Natural Products Research, Mead Johnson & Company, Evansville, Indiana Received for publication 21 April 1966 ABSTRACT ZYGMUNT, WALTER A. (Mead Johnson & Co., Evansville, Ind.), AND PETER A. TAVORMINA. Steroid interference with antifungal activity of polyene antibiotics. Appl. Microbiol. 14:865-869. 1966.-Wide differences exist among the polyene antibiotics, nystatin, rimocidin, filipin, pimaricin, and amphotericin B, with ref- erence to steroid interference with their antifungal activities against Candida albicans. Of the numerous steroids tested, ergosterol was the only one which ef- fectively antagonized the antifungal activity of all five polyene antibiotics. The antifungal activities of nystatin and amphotericin B were the least subject to vitia- tion by the addition of steroids other than ergosterol, and those of filipin, rimo- cidin, and pimaricin were the most sensitive to interference. Attempts to delineate the structural requirements of steroids possessing polyene-neutralizing activity in growing cultures of C. albicans are discussed. The ultraviolet absorbance of certain antibiotic steroid combinations was also studied. It has been suggested (1, 9, 13) that the polyene While studying the effects of various steroids antibiotics become bound to the fungal cell mem- on the antimonilial activity of pimaricin, we brane and cause permeability changes with observed that ergostenol was almost as effective attendant depletion of essential cellular con- as the above A5-3/3-hydroxy steroids in antag- stituents. Loss of potassium and ammonium onizing pimaricin. -
BB 451/551 Lecture 35 Highlights
Kevin Ahern's Biochemistry (BB 451/551) at Oregon State University http://oregonstate.edu/instruct/bb451/summer13/lectures/highlightsglycer... Glycerolipid and Sphingolipid Metabolism 1. Phosphatidic acid is an immediate precursor of CDP-diacylglycerol, which is a precursor of the various glycerophospholipids . CTP combines with phosphatidic acid to yield a pyrophosphate and CDP-Diacylglycerol. Activation by CDP yields a high energy activated intermediate that can be readily converted to phosphatidyl glycerophospholipids. 2. From CDP-diacylglycerol, phosphatidyl serine can be made, as canphosphatidyl ethanolamine and phosphatidyl choline. Synthesis of phosphatidyl choline from phosphatidyl ethanolamine requires methyl groups donated by S-Adenoysyl-Methionine (SAM). Loss of the methyl groups by SAM yields S-Adenosyl-Homocysteine (I incorrectly said S-adenosyl-homoserine in the lecture). 3. Phosphatidyl ethanolamine (and phosphatidyl choline - derived from phosphatidyl ethanolamine) can both be made independently of phosphatidic acid biosynthesis. For this pathway, CDP-ethanolamine is the activated intermediate and the phosphoethanolamine of it is added to diacylglycerol to form phosphatidylethanolamine. Phosphatidyl choline can be made by the same methylation scheme in point 4. 4. Sphingolipids are synthesized beginning with palmitoyl-CoA and serine. Addition of a fatty acid to the amine group yields a ceramide. Addition of sugars to a ceramide yields either a cerebroside (single sugar added) or a ganglioside (complex sugar added). 5. Deficiencies in enzymes that degrade sphingolipids (particularly cerebrosides and gangliosides) are linked to neural disorders. One such disorder is Tay-Sachs disease. 6. Cholesterol is an important component of membranes, particularly in the brain. Cholesterol can be synthesized totally from acetyl-CoA. 7. Steroids include all compounds synthesized from cholesterol. -
Steroidal Triterpenes of Cholesterol Synthesis
Molecules 2013, 18, 4002-4017; doi:10.3390/molecules18044002 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Steroidal Triterpenes of Cholesterol Synthesis Jure Ačimovič and Damjana Rozman * Centre for Functional Genomics and Bio-Chips, Faculty of Medicine, Institute of Biochemistry, University of Ljubljana, Zaloška 4, Ljubljana SI-1000, Slovenia; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +386-1-543-7591; Fax: +386-1-543-7588. Received: 18 February 2013; in revised form: 19 March 2013 / Accepted: 27 March 2013 / Published: 4 April 2013 Abstract: Cholesterol synthesis is a ubiquitous and housekeeping metabolic pathway that leads to cholesterol, an essential structural component of mammalian cell membranes, required for proper membrane permeability and fluidity. The last part of the pathway involves steroidal triterpenes with cholestane ring structures. It starts by conversion of acyclic squalene into lanosterol, the first sterol intermediate of the pathway, followed by production of 20 structurally very similar steroidal triterpene molecules in over 11 complex enzyme reactions. Due to the structural similarities of sterol intermediates and the broad substrate specificity of the enzymes involved (especially sterol-Δ24-reductase; DHCR24) the exact sequence of the reactions between lanosterol and cholesterol remains undefined. This article reviews all hitherto known structures of post-squalene steroidal triterpenes of cholesterol synthesis, their biological roles and the enzymes responsible for their synthesis. Furthermore, it summarises kinetic parameters of enzymes (Vmax and Km) and sterol intermediate concentrations from various tissues. Due to the complexity of the post-squalene cholesterol synthesis pathway, future studies will require a comprehensive meta-analysis of the pathway to elucidate the exact reaction sequence in different tissues, physiological or disease conditions. -
Two Metabolically-Related Aminophospholipids Jean E. Vance
Phosphatidylserine and Phosphatidylethanolamine in Mammalian Cells: Two Metabolically-related Aminophospholipids Downloaded from Jean E. Vance1 www.jlr.org by guest, on September 9, 2017 Group on the Molecular and Cell Biology of Lipids and Department of Medicine, University of Alberta, Edmonton, AB, Canada T6G 2S2 1 Key words apoptosis, phosphatidylserine decarboxylation, phosphatidylserine synthase, CDP- ethanolamine pathway Abbreviations CHO, Chinese hamster ovary; ER, endoplasmic reticulum; MAM, mitochondria- associated membranes; PS, phosphatidylserine; PSD, phosphatidylserine decarboxylase; PE phosphatidylethanolamine Downloaded from Footnotes 1To whom correspondence should be addressed www.jlr.org email: [email protected] by guest, on September 9, 2017 2 Abstract Phosphatidylserine (PS) and phosphatidylethanolamine (PE) are two aminophospholipids whose metabolism is inter-related. Both phospholipids are components of mammalian cell membranes and play important roles in biological processes such as apoptosis and cell signaling. PS is synthesized in mammalian cells by base-exchange reactions in which polar head-groups of pre-existing phospholipids are replaced by serine. PS synthase activity resides primarily on mitochondria- associated membranes and is encoded by two distinct genes. Studies in mice in which Downloaded from each gene has been individually disrupted are beginning to elucidate the importance of these two synthases for biological functions in intact animals. PE is made in mammalian cells by two completely independent major pathways. In one pathway, PS www.jlr.org is converted into PE by the mitochondrial enzyme PS decarboxylase. In addition, PE is by guest, on September 9, 2017 made via the CDP-ethanolamine pathway in which the final reaction occurs on the endoplasmic reticulum and nuclear envelope. -
Interorganelle Communication, Aging, and Neurodegeneration
Downloaded from genesdev.cshlp.org on October 9, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Interorganelle communication, aging, and neurodegeneration Maja Petkovic,1 Caitlin E. O’Brien,2 and Yuh Nung Jan1,2,3 1Department of Physiology, University of California at San Francisco, San Francisco, California 94158, USA; 2Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California 94158, USA; 3Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA Our cells are comprised of billions of proteins, lipids, and ular transport cannot account for the exchange of certain other small molecules packed into their respective subcel- biomolecules. For example, delivery of several classes of lip- lular organelles, with the daunting task of maintaining cel- ids from their site of synthesis in the endoplasmic reticu- lular homeostasis over a lifetime. However, it is becoming lum (ER) to their steady-state location is unaffected by increasingly evident that organelles do not act as autono- pharmacological and genetic manipulations that deplete mous discrete units but rather as interconnected hubs cellular ATP levels, disrupt vesicular transport, and alter that engage in extensive communication through mem- cytoskeletal dynamics (Kaplan and Simoni 1985; Vance brane contacts. In the last few years, our understanding et al. 1991; Hanada et al. 2003; Baumann et al. 2005; Lev of how these contacts coordinate organelle function has re- 2012). Moreover, intracellular compartments like the ER defined our view of the cell. This review aims to present and mitochondria refill their depleted calcium (Ca2+) stores novel findings on the cellular interorganelle communica- through low-affinity calcium channels that require much tion network and how its dysfunction may contribute to higher local concentrations of calcium than global cytosol- aging and neurodegeneration. -
Antioxidant, Antimicrobial Effects and Phenolic Profile of Lycium Barbarum L
Molecules 2015, 20, 15060-15071; doi:10.3390/molecules200815060 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article Antioxidant, Antimicrobial Effects and Phenolic Profile of Lycium barbarum L. Flowers Andrei Mocan 1, Laurian Vlase 2,*, Dan Cristian Vodnar 3, Ana-Maria Gheldiu 2, Radu Oprean 4 and Gianina Crișan 1 1 Department of Pharmaceutical Botany, Iuliu Hațieganu University of Medicine and Pharmacy, 23 Ghe. Marinescu Street, Cluj-Napoca 400010, Romania; E-Mails: [email protected] (A.M.); [email protected] (G.C.) 2 Department of Pharmaceutical Technology and Biopharmaceutics, Iuliu Hațieganu University of Medicine and Pharmacy, 12 I. Creangă Street, Cluj-Napoca 400010, Romania; E-Mail: [email protected] 3 Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 3-5 Manăştur Street, Cluj-Napoca 400372, Romania; E-Mail: [email protected] 4 Department of Analytical Chemistry and Instrumental Analysis, Iuliu Hațieganu University of Medicine and Pharmacy, 4 L. Pasteur Street, Cluj-Napoca 400010, Romania; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +40-264-595-770. Academic Editor: Milen I. Georgiev Received: 28 June 2015 / Accepted: 10 August 2015 / Published: 17 August 2015 Abstract: L. barbarum L. is a widely-accepted nutraceutical presenting highly advantageous nutritive and antioxidant properties. Its flowers have been previously described as a source of diosgenin, β-sitosterol and lanosterol that can be further pharmaceutically developed, but no other data regarding their composition is available. The purpose of this work was to investigate the chemical constituents, antioxidant and antimicrobial activities of L. -
Cholesterol, Phytosterols, Marine Sterols… 2
LIPIDS sterol lipids Marek Vecka CLASSIFICATION OF LIPIDS - molecular structure N of known Abbreviation Lipid class structures Fatty acyls FA 5869 Glycerolipids GL 7541 Glycerophospholipids GP 8002 Sphingolipids SP 4338 Sterol lipids ST 2715 Prenol lipids PL 1259 Other – saccharolipids, polyketides SL, PK 1293+6742 Fahy 2005, Fahy 2009 STEROL LIPIDS STEROL LIPIDS = lipid molecules with backbone derived from cyclopenta[a]phenanthrene (?) Division according to biochemical function 1. Sterols cholesterol, phytosterols, marine sterols… 2. Bile acids and derivatives C24, C26, C27, C28 bile acids, bile alcohols 3. Steroids C18 steroids, C19 steroids, C21 steroids 4.Secosteroids vitamins D Other groups conjugates, hopanoids, … STEROL LIPIDS Structures 1. Numbering system for C27 four-ring system first C´s on attached methyls side chain STEROL LIPIDS Structures 2. Stereochemistry Ring position b- a- substituent position Conventions: 1. Ring position: cis- (remaining 4th bonds of common C-C are cis-) (A-B cis-: bile acids) vs. trans- (remaining 4th bonds of common C-C are trans-) (all : cholesterol) 2. Substituents: a- (below cycle plane) vs. b- (above cycle plane) STEROL LIPIDS Structures 3. Important hydrocarbon structures C18 structures: estra- steroid hormones C19 structures: androsta- steroid hormones C21 structures: pregna- steroid hormones C24 structures: chola- bile acids/alcohols C27 structures: cholesta- cholesterol, oxysterols CLASSIFICATION OF LIPIDS - biosynthetic route Lipid class Biosynthetic route Fatty acyls condensation of thioesters Glycerolipids Glycerophospholipids Sphingolipids Sterol lipids condensation of activated isoprene units Prenol lipids Other – saccharolipids, polyketides other types STEROLS Biosynthesis of sterols (cholesterol) 1. Biosynthesis of isopentenyldiphosphate = activated isoprene unit 2. Condensation of isopentenyldiphosphate units 6 units are needed (C30) 3. -
(2020) Impact of PCSK9 Inhibition with Evolocumab on the Postprandial Responses of Triglyceride-Rich Lipoproteins in Type 2 Diabetic Subjects
Taskinen, M.-R. et al. (2020) Impact of PCSK9 inhibition with evolocumab on the postprandial responses of triglyceride-rich lipoproteins in type 2 diabetic subjects. Journal of Clinical Lipidology, 14(1), pp. 77-87. (doi: 10.1016/j.jacl.2019.12.003). This is the author’s final accepted version. There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it. http://eprints.gla.ac.uk/207797/ Deposited on: 15 January 2020 Enlighten – Research publications by members of the University of Glasgow http://eprints.gla.ac.uk Impact of PCSK9 inhibition with evolocumab on the postprandial responses of triglyceride- rich lipoproteins in type 2 diabetic subjects Marja-Riitta Taskinen1, Elias Björnson2, Linda Andersson2, Juhani Kahri3, Kimmo Porthan1, Niina Matikainen1,4, Sanni Söderlund1,4, Kirsi Pietiläinen1,4, Antti Hakkarainen5, Nina Lundbom5, Ralf Nilsson6, Marcus Ståhlman2, Martin Adiels2, Paolo Parini7, Chris Packard8 and Jan Borén2,9 1Research Programs Unit, Clinical and Molecular Medicine, University of Helsinki, Helsinki, Finland; 2Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sweden; 3Department of Internal Medicine and Rehabilitation, Helsinki University Hospital, Helsinki, Finland; 4Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland; 5HUS Medical Imaging Center, Radiology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland; 6Discovery Sciences, IMED