Potentials and Limitations of Visual Methods for the Exploration of Complex Data Structures

Total Page:16

File Type:pdf, Size:1020Kb

Potentials and Limitations of Visual Methods for the Exploration of Complex Data Structures Dissertation zur Erlangung des Doktorgrades der Fakultät für Angewandte Wissenschaften der Albert-Ludwigs-Universität Freiburg im Breisgau Potentials and Limitations of Visual Methods for the Exploration of Complex Data Structures Tobias Lauer Betreuer: Prof. Dr. Thomas Ottmann Dekan der Fakultät für Angewandte Wissenschaften: Prof. Dr. Bernhard Nebel 1. Gutachter: Prof. Dr. Thomas Ottmann, Universität Freiburg 2. Gutachter: Prof. Dr. Amitava Datta, University of Western Australia Tag der Disputation: 29.01.2007 Zusammenfassung Sowohl bei der Analyse von Algorithmen und Datenstrukturen als auch bei deren Vermittlung in der Lehre werden häufig Visualisierungen eingesetzt. Im letzteren Fall werden diese meist zur Verdeutlichung von Sachverhalten oder für Beispiele verwendet, wobei die Visualisierungen in der Regel von den Lehrenden vorbereitet und den Lernenden präsentiert werden. Handelt es sich bei den Visualisierungen um interaktive Animationen oder Simulationen, so können diese auch dazu verwendet werden, den Lernenden ein selbständiges Explorieren der Datenstrukturen und Algorithmen zu ermöglichen, bei dem sie den Input der Algorithmen frei wählen und damit die Ergebnisse manipulieren können. Auf diese Weise erhofft man sich ein tiefer gehendes Verständnis und damit einen höheren Lernerfolg. In ähnlicher Weise können interaktive Visualisierungen auch in der Forschung bei der Analyse komplexer Datenstrukturen bzw. den darauf ausgeführten Operationen hilfreich sein. Für eine formale mathematische Analyse ist in der Regel der richtige Ansatz entscheidend, für den eine gewisse Grundvorstellung bzw. eine Beweisidee notwendig ist. Hier kann eine geeignete visuelle Repräsentation der Datenstruktur sowie der Dynamik der zu analysierenden Algorithmen eine wertvolle Unterstützung sein. Diese Arbeit verfolgt zwei Ziele. Zunächst wird am Beispiel einer relativ neuen und weniger bekannten Datenstruktur, Priority Search Pennants, aufgezeigt, wie mit Hilfe von Visualisierungen Algorithmen für komplexere geometrische Suchanfragen auf Mengen von Punkte in der Ebene analysiert werden können. Priority Search Pennants ähneln den bekannteren Prioritätssuchbäumen und sind insbesondere deshalb interessant, weil in ihnen die in einer Prioritätswarteschlange sonst übliche Heap- Ordung nur in einer abgeschwächten Form gilt. Dadurch ist diese Struktur einfacher zu handhaben, wenn die Menge der verwalteten Elemente dynamisch ist, also Punkte eingefügt und entfernt werden und die darunter liegende Baumstruktur rebalanciert werden muss. Allerdings unterstützt die Datenstruktur bestimmte Bereichanfragen an die Punktmenge in einer schlechteren asymptotischen Laufzeit als Prioritätssuchbäume. Unklar war bisher, ob dies auch für andere typische Arten von Bereichsanfragen gilt. Wir analysieren die Komplexität solcher Anfragen, die in einem gegebenen rechteckigen Anfragebereich den am weitesten rechts, links bzw. unten liegenden Punkt ermitteln, und weisen nach, dass diese dieselbe asymptotische Laufzeit aufweisen wie in Prioritätssuchbäumen. Darüber hinaus wird in Abhängigkeit von der Höhe des unterliegenden Baums eine scharfe obere und untere Grenze für die Suchpfadlänge im worst case ermittelt. iv Zu den Anwendungen für Bereichsanfragen gehören unter anderem IP-Routertabellen, in denen beispielsweise für die Zieladresse eines ankommenden Pakets der Filter mit dem spezifischsten Adressbereich ermittelt werden muss, der die gegebene Adresse enthält. Für einen existierenden Lösungsansatz auf der Basis von Prioritätssuchbäumen zeigen wir, dass das Ersetzen dieser Bäume durch Priority Search Pennants oder eine noch einfachere Struktur, Min-augmented Range Trees, einen Performancegewinn sowohl für Update- als auch für die Lookup-Operationen bringt. Überdies weisen wir nach, dass das von uns untersuchte Routertabellendesign eine redundante Datenstruktur enthält, die bei geeigneter Modifikation entfallen kann und dadurch ca. 50% sowohl beim Speicherplatzbedarf als auch bei der Laufzeit für Update-Operationen einspart. Das zweite Ziel dieser Arbeit ist es zu ermitteln, wie Visualisierungen in der Lehre gewinnbringend eingesetzt werden können, und mögliche Lösungen bereitzustellen. Dazu werden zunächst die Ergebnisse einer empirischen Untersuchung präsentiert, die durchgeführt wurde, um den Einfluss des Grades der Interaktion der Lernenden mit einer Algorithmenvisualisierung auf den Lernerfolg zu bestimmen. Frühere Studien haben Anlass zu der Vermutung gegeben, dass Algorithmenanimationen nur dann eine signifikante Verbesserung des Lernerfolgs erzielen, wenn die Lernenden diese nicht nur passiv betrachten, sondern sich aktiv mit ihnen beschäftigen. Unsere Untersuchung reiht sich in einen von der ACM Special Interest Group on Computer Science Education (SIGCSE) aufgestellten Forschungsrahmen ein, der das Ziel hat, diesen Zusammenhang im Detail zu untersuchen. Entgegen der Hypothese zeigen unsere Ergebnisse keine signifikanten Unterschiede zwischen Lernenden, die eine Animation lediglich betrachteten, solchen, die interaktiv die nächste auszuführende Operation bzw. deren Input bestimmen konnten, sowie denjenigen, die die Algorithmenanimation aus einer Menge „atomarer“ Bausteine selbst visuell konstruieren mussten. Dagegen wurde ein signifikanter Einfluss der dem Test vorausgehenden Vorlesung sowie der allgemeinen Leistung der Studierenden festgestellt. Zudem gibt es Hinweise, dass das Vorhandensein der Option, eine Animation zurückzuspulen bzw. diese schrittweise zu betrachten, den Lernerfolg möglicherweise ebenfalls signifikant beeinflusst. Aufgrund unserer eigenen Ergebnisse sowie der Resultate weiterer in jüngster Zeit durchgeführter Studien kommen wir außerdem zu dem Schluss, dass einige Verfeinerungen am verwendeten Forschungsrahmen sinnvoll sind, um bei zukünftigen Experimenten differenziertere Aussagen zu ermöglichen. Als Hauptgrund dafür, dass Algorithmenanimationen trotz Interesse auch der Lehrenden in der Lehrpraxis eher wenig eingesetzt werden, gilt der Zeit- und Arbeitsaufwand, um geeignete Visualisierungssysteme zu finden, den Umgang damit zu lernen und passende Beispiele vorzubereiten. Wir schlagen daher ein „radikal einfaches“ Prinzip vor, das Lehrenden die Möglichkeit gibt, Visualisierungen von Datenstrukturen ad hoc während einer Präsentation zu erstellen und mit diesen zu interagieren. Da Vorlesungen inzwischen oft mit Hilfe stiftbasierter elektronischer Eingabemedien gehalten werden, wurde ein System entwickelt, welches Freihandskizzen als Instanzen von vorgegebenen Datenstrukturen interpretiert. Die dazugehörigen Operationen können mit stiftbasierten Kommandos (Gesten) aufgerufen werden, wobei ihre Ausführung animiert dargestellt wird. Der letzte Teil dieser Arbeit präsentiert die Architektur des Systems und erläutert die Funktionsweise anhand ausgewählter Beispiele. Abstract Visualizations can be used for the analysis of algorithms and data structures as well as for algorithm teaching and learning. In the latter case, they are usually employed for clarification or as instructive examples. In practice, it is most often the teacher who prepares the visualizations and presents them to the students in a class. If interactive animations or simulations are available, learners can also explore the data structures and algorithms on their own by selecting the input or the next operation to be carried out on a data structure. By seeing how an algorithm reacts to different input sets, a deeper understanding and hence, better learning, is expected. Similarly, visualization can be a helpful research tool for the analysis of complex data structures and the algorithms operating on them. For a formal mathematical analysis, the right approach to the problem is often the most decisive step. A suitable visual representation of the structure and the dynamics of the involved algorithms can provide important clues for the initial idea. This work has two main goals. First, using the example of a relatively recent data structure, the priority search pennant, we show how visualizations can support the analysis of algorithms for complex geometric range queries on sets of point in the two- dimensional plane. Priority search pennants are similar to the better-known priority search trees; the structure is interesting, since the rigid heap order known from many implementations of priority queues is weakened. As a result, priority search pennants are easier to maintain than priority search trees when the set of points is dynamic, i.e. when points are inserted and deleted and the underlying tree has to be rebalanced. This advantage comes at a cost: certain range queries have been shown to have a higher asymptotic complexity for priority search pennants than for priority search trees. However, it has been unclear whether this is also true for other frequently occurring types of range queries. We analyze the complexity of those operations which, for a given rectangular query range, return the leftmost, rightmost, or bottommost point of the set, respectively. It is shown that these operations enjoy the same asymptotic bounds in priority search pennants as they do in priority search trees. In addition, a sharp upper and lower bound for the actual worst case search path lengths of these queries is established in relation to the height of the underlying tree. As an application for range queries, we consider so-called most-specific range queries in IP router tables, where, e.g., for the destination address of an incoming packet the filter containing the most specific range containing
Recommended publications
  • Space-Efficient Data Structures, Streams, and Algorithms
    Andrej Brodnik Alejandro López-Ortiz Venkatesh Raman Alfredo Viola (Eds.) Festschrift Space-Efficient Data Structures, Streams, LNCS 8066 and Algorithms Papers in Honor of J. Ian Munro on the Occasion of His 66th Birthday 123 Lecture Notes in Computer Science 8066 Commenced Publication in 1973 Founding and Former Series Editors: Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen Editorial Board David Hutchison Lancaster University, UK Takeo Kanade Carnegie Mellon University, Pittsburgh, PA, USA Josef Kittler University of Surrey, Guildford, UK Jon M. Kleinberg Cornell University, Ithaca, NY, USA Alfred Kobsa University of California, Irvine, CA, USA Friedemann Mattern ETH Zurich, Switzerland John C. Mitchell Stanford University, CA, USA Moni Naor Weizmann Institute of Science, Rehovot, Israel Oscar Nierstrasz University of Bern, Switzerland C. Pandu Rangan Indian Institute of Technology, Madras, India Bernhard Steffen TU Dortmund University, Germany Madhu Sudan Microsoft Research, Cambridge, MA, USA Demetri Terzopoulos University of California, Los Angeles, CA, USA Doug Tygar University of California, Berkeley, CA, USA Gerhard Weikum Max Planck Institute for Informatics, Saarbruecken, Germany Andrej Brodnik Alejandro López-Ortiz Venkatesh Raman Alfredo Viola (Eds.) Space-Efficient Data Structures, Streams, and Algorithms Papers in Honor of J. Ian Munro on the Occasion of His 66th Birthday 13 Volume Editors Andrej Brodnik University of Ljubljana, Faculty of Computer and Information Science Ljubljana, Slovenia and University of Primorska,
    [Show full text]
  • A Complete Bibliography of Publications in Nordisk Tidskrift for Informationsbehandling, BIT, and BIT Numerical Mathematics
    A Complete Bibliography of Publications in Nordisk Tidskrift for Informationsbehandling, BIT,andBIT Numerical Mathematics Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 09 June 2021 Version 3.54 Title word cross-reference [3105, 328, 469, 655, 896, 524, 873, 455, 779, 946, 2944, 297, 1752, 670, 2582, 1409, 1987, 915, 808, 761, 916, 2071, 2198, 1449, 780, 959, 1105, 1021, 497, 2589]. A(α) #24873 [1089]. [896, 2594, 333]. A∗ [2013]. A∗Ax = b [2369]. n A [1640, 566, 947, 1580, 1460]. A = a2 +1 − 0 n (3) [2450]. (A λB) [1414]. 0=1 [1242]. 1 [334]. α [824, 1580]. AN [1622]. A(#) [3439]. − 12 [3037, 2711]. 1 2 [1097]. 1:0 [3043]. 10 AX − XB = C [2195, 2006]. [838]. 11 [1311]. 2 AXD − BXC = E [1101]. B [2144, 1953, 2291, 2162, 3047, 886, 2551, 957, [2187, 1575, 1267, 1409, 1489, 1991, 1191, 2007, 2552, 1832, 949, 3024, 3219, 2194]. 2; 3 979, 1819, 1597, 1823, 1773]. β [824]. BN n − p − − [1490]. 2 1 [320]. 2 1 [100]. 2m 4 [1181]. BS [1773]. BSI [1446]. C0 [2906]. C1 [1105]. 3 [2119, 1953, 2531, 1351, 2551, 1292, [3202]. C2 [3108, 2422, 3000, 2036]. χ2 1793, 949, 1356, 2711, 2227, 570]. [30, 31]. Cln(θ); (n ≥ 2) [2929]. cos [228]. D 3; 000; 000; 000 [575, 637].
    [Show full text]
  • Fundamental Data Structures Contents
    Fundamental Data Structures Contents 1 Introduction 1 1.1 Abstract data type ........................................... 1 1.1.1 Examples ........................................... 1 1.1.2 Introduction .......................................... 2 1.1.3 Defining an abstract data type ................................. 2 1.1.4 Advantages of abstract data typing .............................. 4 1.1.5 Typical operations ...................................... 4 1.1.6 Examples ........................................... 5 1.1.7 Implementation ........................................ 5 1.1.8 See also ............................................ 6 1.1.9 Notes ............................................. 6 1.1.10 References .......................................... 6 1.1.11 Further ............................................ 7 1.1.12 External links ......................................... 7 1.2 Data structure ............................................. 7 1.2.1 Overview ........................................... 7 1.2.2 Examples ........................................... 7 1.2.3 Language support ....................................... 8 1.2.4 See also ............................................ 8 1.2.5 References .......................................... 8 1.2.6 Further reading ........................................ 8 1.2.7 External links ......................................... 9 1.3 Analysis of algorithms ......................................... 9 1.3.1 Cost models ......................................... 9 1.3.2 Run-time analysis
    [Show full text]
  • *Dictionary Data Structures 3
    CHAPTER *Dictionary Data Structures 3 The exploration efficiency of algorithms like A* is often measured with respect to the number of expanded/generated problem graph nodes, but the actual runtimes depend crucially on how the Open and Closed lists are implemented. In this chapter we look closer at efficient data structures to represent these sets. For the Open list, different options for implementing a priority queue data structure are consid- ered. We distinguish between integer and general edge costs, and introduce bucket and advanced heap implementations. For efficient duplicate detection and removal we also look at hash dictionaries. We devise a variety of hash functions that can be computed efficiently and that minimize the number of collisions by approximating uniformly distributed addresses, even if the set of chosen keys is not (which is almost always the case). Next we explore memory-saving dictionaries, the space requirements of which come close to the information-theoretic lower bound and provide a treatment of approximate dictionaries. Subset dictionaries address the problem of finding partial state vectors in a set. Searching the set is referred to as the Subset Query or the Containment Query problem. The two problems are equivalent to the Partial Match retrieval problem for retrieving a partially specified input query word from a file of k-letter words with k being fixed. A simple example is the search for a word in a crossword puzzle. In a state space search, subset dictionaries are important to store partial state vectors like dead-end patterns in Sokoban that generalize pruning rules (see Ch.
    [Show full text]
  • Seeking for the Best Priority Queue: Lessons Learnt
    Updated 20 October, 2013 Seeking for the best priority queue: Lessons learnt Jyrki Katajainen1; 2 Stefan Edelkamp3, Amr Elmasry4, Claus Jensen5 1 University of Copenhagen 4 Alexandria University 2 Jyrki Katajainen and Company 5 The Royal Library 3 University of Bremen These slides are available from my research information system (see http://www.diku.dk/~jyrki/ under Presentations). c Performance Engineering Laboratory Seminar 13391: Schloss Dagstuhl, Germany (1) Categorization of priority queues insert minimum input: locator input: none output: none output: locator Elementary delete extract-min minimum input: locator p minimum() insert output: none delete(p) extract-min Addressable delete decrease decrease input: locator, value Mergeable output: none union union input: two priority queues output: one priority queue c Performance Engineering Laboratory Seminar 13391: Schloss Dagstuhl, Germany (2) Structure of this talk: Research question What is the "best" priority queue? I: Elementary II: Addressable III: Mergeable c Performance Engineering Laboratory Seminar 13391: Schloss Dagstuhl, Germany (3) Binary heaps 0 minimum() 8 return a[0] 12 10 26 insert(x) 3 4 5 6 a[N] = x 75 46 7512 siftup(N) 7 N += 1 80 extract-min() N = 8 min = a[0] N −= 1 a 8 10 26 75 12 46 75 80 a[0] = a[N] 02341 675 siftdown(0) left-child(i) return min return 2i + 1 right-child(i) Elementary: array-based return 2i + 2 Addressable: pointer-based parent(i) Mergeable: forest of heaps return b(i − 1)=2c c Performance Engineering Laboratory Seminar 13391: Schloss Dagstuhl, Germany (4) Market analysis Efficiency binary binomial Fibonacci run-relaxed heap queue heap heap Operation [Wil64] [Vui78] [FT87] [DGST88] worst case worst case amortized worst case minimum Θ(1) Θ(1) Θ(1) Θ(1) insert Θ(lg N) Θ(1) Θ(1) Θ(1) decrease Θ(lg N) Θ(lg N) Θ(1) Θ(1) delete Θ(lg N) Θ(lg N) Θ(lg N) Θ(lg N) union Θ(lg M×lg N) Θ(minflg M; lg Ng) Θ(1) Θ(minflg M; lg Ng) Here M and N denote the number of elements in the priority queues just prior to the operation.
    [Show full text]
  • An English-Persian Dictionary of Algorithms and Data Structures
    An EnglishPersian Dictionary of Algorithms and Data Structures a a zarrabibasuacir ghodsisharifedu algorithm B A all pairs shortest path absolute p erformance guarantee b alphab et abstract data typ e alternating path accepting state alternating Turing machine d Ackermans function alternation d Ackermanns function amortized cost acyclic digraph amortized worst case acyclic directed graph ancestor d acyclic graph and adaptive heap sort ANSI b adaptivekdtree antichain adaptive sort antisymmetric addresscalculation sort approximation algorithm adjacencylist representation arc adjacencymatrix representation array array index adjacency list array merging adjacency matrix articulation p oint d adjacent articulation vertex d b admissible vertex assignmentproblem adversary asso ciation list algorithm asso ciative binary function asso ciative array binary GCD algorithm asymptotic b ound binary insertion sort asymptotic lower b ound binary priority queue asymptotic space complexity binary relation binary search asymptotic time complexity binary trie asymptotic upp er b ound c bingo sort asymptotically equal to bipartite graph asymptotically tightbound bipartite matching
    [Show full text]
  • Lazy Search Trees
    Lazy Search Trees Bryce Sandlund1 and Sebastian Wild2 1David R. Cheriton School of Computer Science, University of Waterloo 2Department of Computer Science, University of Liverpool October 20, 2020 Abstract We introduce the lazy search tree data structure. The lazy search tree is a comparison- based data structure on the pointer machine that supports order-based operations such as rank, select, membership, predecessor, successor, minimum, and maximum while providing dynamic operations insert, delete, change-key, split, and merge. We analyze the performance of our data structure based on a partition of current elements into a set of gaps {∆i} based on rank. A query falls into a particular gap and splits the gap into two new gaps at a rank r associated with the query operation. If we define B = ∑i S∆iS log2(n~S∆iS), our performance over a sequence of n insertions and q distinct queries is O(B + min(n log log n; n log q)). We show B is a lower bound. Effectively, we reduce the insertion time of binary search trees from Θ(log n) to O(min(log(n~S∆iS) + log log S∆iS; log q)), where ∆i is the gap in which the inserted element falls. Over a sequence of n insertions and q queries, a time bound of O(n log q + q log n) holds; better bounds are possible when queries are non-uniformly distributed. As an extreme case of non-uniformity, if all queries are for the minimum element, the lazy search tree performs as a priority queue with O(log log n) time insert and decrease-key operations.
    [Show full text]
  • The Algorithms and Data Structures Course Multicomponent Complexity and Interdisciplinary Connections
    Technium Vol. 2, Issue 5 pp.161-171 (2020) ISSN: 2668-778X www.techniumscience.com The Algorithms and Data Structures course multicomponent complexity and interdisciplinary connections Gregory Korotenko Dnipro University of Technology, Ukraine [email protected] Leonid Korotenko Dnipro University of Technology, Ukraine [email protected] Abstract. The experience of modern education shows that the trajectory of preparing students is extremely important for their further adaptation in the structure of widespread digitalization, digital transformations and the accumulation of experience with digital platforms of business and production. At the same time, there continue to be reports of a constant (catastrophic) lack of personnel in this area. The basis of the competencies of specialists in the field of computing is the ability to solve algorithmic problems that they have not been encountered before. Therefore, this paper proposes to consider the features of teaching the course Algorithms and Data Structures and possible ways to reduce the level of complexity in its study. Keywords. learning, algorithms, data structures, data processing, programming, mathematics, interdisciplinarity. 1. Introduction The analysis of electronic resources and literary sources allows for the conclusion that the Algorithms and Data Structures course is one of the cornerstones for the study programs related to computing. Moreover, this can be considered not only from the point of view of entering the profession, but also from the point of view of preparation for an interview in hiring as a programmer, including at a large IT organization (Google, Microsoft, Apple, Amazon, etc.) or for a promising startup [1]. As a rule, this course is characterized by an abundance of complex data structures and various algorithms for their processing.
    [Show full text]
  • Weak Heaps and Friends Recent Developments Edelkamp, Stefan; Elmasry, Amr; Katajainen, Jyrki; Weiß, Armin
    Weak heaps and friends recent developments Edelkamp, Stefan; Elmasry, Amr; Katajainen, Jyrki; Weiß, Armin Published in: Combinatorial Algorithms DOI: 10.1007/978-3-642-45278-9_1 Publication date: 2013 Document version Peer reviewed version Document license: Other Citation for published version (APA): Edelkamp, S., Elmasry, A., Katajainen, J., & Weiß, A. (2013). Weak heaps and friends: recent developments. In T. Lecroq, & L. Mouchard (Eds.), Combinatorial Algorithms: 24th International Workshop, IWOCA 2013, Rouen, France, July 10-12, 2013, Revised Selected Papers (pp. 1-6). Springer. Lecture notes in computer science Vol. 8288 https://doi.org/10.1007/978-3-642-45278-9_1 Download date: 30. sep.. 2021 Weak Heaps and Friends: Recent Developments Stefan Edelkamp1, Amr Elmasry2, Jyrki Katajainen3, and Armin Weiß4 1 Faculty 3|Mathematics and Computer Science, University of Bremen PO Box 330 440, 28334 Bremen, Germany 2 Department of Computer Engineering and Systems, Alexandria University Alexandria 21544, Egypt 3 Department of Computer Science, University of Copenhagen Universitetsparken 5, 2100 Copenhagen East, Denmark 4 Institute for Formal Methods in Computer Science, University of Stuttgart Universit¨atstraße 38, 70569 Stuttgart, Germany Abstract. A weak heap is a variant of a binary heap where, for each node, the heap ordering is enforced only for one of its two children. In 1993, Dutton showed that this data structure yields a simple worst- case-efficient sorting algorithm. In this paper we review the refinements proposed to the basic data structure that improve the efficiency even further. Ultimately, minimum and insert operations are supported in O(1) worst-case time and extract-min operation in O(lg n) worst-case time involving at most lg n + O(1) element comparisons.
    [Show full text]
  • Lazy Search Trees §1 Introduction ⋅ 1
    Lazy Search Trees Bryce Sandlund1 and Sebastian Wild2 1David R. Cheriton School of Computer Science, University of Waterloo 2Department of Computer Science, University of Liverpool October 20, 2020 Abstract We introduce the lazy search tree data structure. The lazy search tree is a comparison- based data structure on the pointer machine that supports order-based operations such as rank, select, membership, predecessor, successor, minimum, and maximum while providing dynamic operations insert, delete, change-key, split, and merge. We analyze the performance of our data structure based on a partition of current elements into a set of gaps {∆i} based on rank. A query falls into a particular gap and splits the gap into two new gaps at a rank r associated with the query operation. If we define B = ∑i S∆iS log2(n~S∆iS), our performance over a sequence of n insertions and q distinct queries is O(B + min(n log log n,n log q)). We show B is a lower bound. Effectively, we reduce the insertion time of binary search trees from Θ(log n) to O(min(log(n~S∆iS) + log log S∆iS, log q)), where ∆i is the gap in which the inserted element falls. Over a sequence of n insertions and q queries, a time bound of O(n log q + q log n) holds; better bounds are possible when queries are non-uniformly distributed. As an extreme case of non-uniformity, if all queries are for the minimum element, the lazy search tree performs as a priority queue with O(log log n) time insert and decrease-key operations.
    [Show full text]
  • Weak Updates and Separation Logic
    Weak updates and separation logic Gang Tan1, Zhong Shao2, Xinyu Feng3, and Hongxu Cai4 1Lehigh University, 2Yale University 3Toyota Technological Institute at Chicago, 4Google Inc. Abstract. Separation Logic (SL) provides a simple but powerful technique for reasoning about imperative programs that use shared data structures. Unfortu- nately, SL supports only “strong updates”, in which mutation to a heap location is safe only if a unique reference is owned. This limits the applicability of SL when reasoning about the interaction between many high-level languages (e.g., ML, Java, C#) and low-level ones since these high-level languages do not support strong updates. Instead, they adopt the discipline of “weak updates”, in which there is a global “heap type” to enforce the invariant of type-preserving heap up- dates. We present SLw, a logic that extends SL with reference types and elegantly reasons about the interaction between strong and weak updates. We also describe a semantic framework for reference types; this framework is used to prove the soundness of SLw. 1 Introduction Reasoning about mutable, aliased heap data structures is essential for proving properties or checking safety of imperative programs. Two distinct approaches perform such kind of reasoning: Separation Logic, and a type-based approach employed by many high- level programming languages. Extending Hoare Logic, the seminal work of Separation Logic (SL [10, 13]) is a powerful framework for proving properties of low-level imperative programs. Through its separating conjunction operator and frame rule, SL supports local reasoning about heap updates, storage allocation, and explicit storage deallocation. SL supports “strong updates”: as long as a unique reference to a heap cell is owned, the heap-update rule of SL allows the cell to be updated with any value: {(e 7→ −) ∗ p}[e] := e′{(e 7→ e′) ∗ p} (1) In the above heap-update rule, there is no restriction on the new value e′.
    [Show full text]
  • Data Structures
    KARNATAKA STATE OPEN UNIVERSITY DATA STRUCTURES BCA I SEMESTER SUBJECT CODE: BCA 04 SUBJECT TITLE: DATA STRUCTURES 1 STRUCTURE OF THE COURSE CONTENT BLOCK 1 PROBLEM SOLVING Unit 1: Top-down Design – Implementation Unit 2: Verification – Efficiency Unit 3: Analysis Unit 4: Sample Algorithm BLOCK 2 LISTS, STACKS AND QUEUES Unit 1: Abstract Data Type (ADT) Unit 2: List ADT Unit 3: Stack ADT Unit 4: Queue ADT BLOCK 3 TREES Unit 1: Binary Trees Unit 2: AVL Trees Unit 3: Tree Traversals and Hashing Unit 4: Simple implementations of Tree BLOCK 4 SORTING Unit 1: Insertion Sort Unit 2: Shell sort and Heap sort Unit 3: Merge sort and Quick sort Unit 4: External Sort BLOCK 5 GRAPHS Unit 1: Topological Sort Unit 2: Path Algorithms Unit 3: Prim‘s Algorithm Unit 4: Undirected Graphs – Bi-connectivity Books: 1. R. G. Dromey, ―How to Solve it by Computer‖ (Chaps 1-2), Prentice-Hall of India, 2002. 2. M. A. Weiss, ―Data Structures and Algorithm Analysis in C‖, 2nd ed, Pearson Education Asia, 2002. 3. Y. Langsam, M. J. Augenstein and A. M. Tenenbaum, ―Data Structures using C‖, Pearson Education Asia, 2004 4. Richard F. Gilberg, Behrouz A. Forouzan, ―Data Structures – A Pseudocode Approach with C‖, Thomson Brooks / COLE, 1998. 5. Aho, J. E. Hopcroft and J. D. Ullman, ―Data Structures and Algorithms‖, Pearson education Asia, 1983. 2 BLOCK I BLOCK I PROBLEM SOLVING Computer problem-solving can be summed up in one word – it is demanding! It is an intricate process requiring much thought, careful planning, logical precision, persistence, and attention to detail.
    [Show full text]