Interview with John Milnor Martin Raussen and Christian Skau

Total Page:16

File Type:pdf, Size:1020Kb

Interview with John Milnor Martin Raussen and Christian Skau Interview with John Milnor Martin Raussen and Christian Skau John W. Milnor is the recipient of the 2011 Abel Prize of the Norwegian Academy of Science and Letters. This in- terview, conducted by Martin Raussen and Christian Skau, took place in Oslo in conjunction with the Abel Prize celebration on May 25, 2011, and originally appeared in the September 2011 issue of the Newsletter of the European Mathematical Society. Raussen & Skau: Professor John Milnor, on behalf of Fenchel, and later Karol Borsuk, had proved the the Norwegian and Danish Mathematical Societies, we following statement: the total curvature of a closed would like to congratulate you for being selected as the curve in space is always at least 2π, with equality Abel Prize Laureate in 2011. only if the curve bounds a convex subset of some Milnor: Thank you very much. plane. Borsuk, a famous Polish topologist, had asked what one could say about total curvature if Student at Princeton University the curve was knotted? I thought about this for a R & S: What kindled your interest in mathematics and few days and came up with a proof that the total when did you discover that you had an extraordinary curvature is always greater than 4π. (I think I did aptitude for mathematics? a poor job explaining the proof in the published Milnor: I can place that quite clearly. The first time paper, but one has to learn how to explain math- that I developed a particular interest in mathematics ematics.) The Hungarian mathematician István was as a freshman at Princeton University. I had been Fáry had produced a similar proof at more or rather socially maladjusted and did not have too many less the same time, but this was still a wonderful friends, but when I came to Princeton, I found myself introduction to mathematics. very much at home in the atmosphere of the math- R & S: That was quite an achievement! When ematics common room. People were chatting about you started your studies at Princeton in 1948, you mathematics, playing games, and one could come by met John Nash, three years your senior, who was at any time and just relax. I found the lectures very a Ph.D. student. John Nash is well known through interesting. I felt more at home there than I ever had the book and movie A Beautiful Mind. Did you have before and I have stayed with mathematics ever since. any interaction with him? And how was it to be a Princeton student? R & S: You were named a Putnam Fellow as one of Milnor: As I said, I spent a great deal of time the top scorers of the Putnam competition in math- in the common room, and so did Nash. He was a ematics in 1949 and 1950. Did you like solving math- very interesting character and full of ideas. He also ematics problems and puzzles? used to wander in the corridors whistling things Milnor: I think I always approached mathematics like Bach, which I had never really heard before—a as interesting problems to be solved, so I certainly strange way to be introduced to classical music! found that congenial. I saw quite a bit of him over those years and I R & S: Your first important paper was accepted al- also became interested in game theory, in which ready in 1949 and published in 1950 in the prestigious he was an important contributor. He was a very journal Annals of Mathematics. You were only 18 interesting person. years of age at the time and this is rather exceptional. R & S: At Princeton, you played Kriegspiel, Go, The title of the paper was “On the Total Curvature and a game called Nash? of Knots”. Could you tell us how you got the idea for Milnor: That is true. Kriegspiel is a game of that paper? chess in which the two players are back-to-back Milnor: I was taking a course in differential geom- and do not see each other’s boards. There is a etry under Albert Tucker. We learned that Werner referee who tells whether the moves are legal or not. It is very easy for the referee to make a Martin Raussen is associate professor of mathematics at mistake, and it often happened that we could Aalborg University, Denmark. His email address is raussen@ not finish because he got confused. In that case math.aau.dk. we said that the referee won the game! It was a Christian Skau is professor of mathematics at the Norwegian marvelous game. University of Science and Technology, Trondheim, Norway. The game of Go was also very popular there. My His email address is [email protected]. first professor, Ralph Fox, was an expert in Go. So DOI: http://dx.doi.org/10.1090/noti803 I learned something of it from him and also from 400 NOTICES OF THE AMS VOLUME 59, NUMBER 3 many other people who played. The game that we famous unsolved problem until called Nash had actually been developed earlier in 1957, when Papakyriakopoulus Denmark by Piet Hein, but Nash invented it inde- developed completely new meth- pendently. This game, also called Hex, is based on ods and managed to give a proof topology. It is very interesting from a mathemati- of “Dehn’s Lemma” and related cal point of view. It is not hard to prove that the theorems. first player will always win if he plays correctly, That was a big step in math- but there is no constructive proof. In fact, when ematics and an example of a case you play, it often happens that the first player in which someone working in isola- does not win. tion made tremendous progress. R & S: You even published some papers on game There are relatively few examples theory with John Nash? of that. Andrew Wiles’s proof of Milnor: We often talked about game theory, Fermat’s last theorem is also an Photo by Knut Falch. but there was only one joint paper. Together with example of someone who had been John Milnor C. Kalish and E. D. Nering, we carried out an ex- working by himself and surprised periment with a group of people playing a many- everyone when he came up with the proof. Another person game. This experiment convinced me that example is Grigori Perelman in Russia who was work- many-person game theory is not just a subject of ing very much by himself and produced a proof of mathematics. It is also about social interactions the Poincaré hypothesis. These are isolated examples. and things far beyond mathematics, so I lost my Usually mathematicians work in a much more social enthusiasm for studying it mathematically. context, communicating ideas to each other. In fact, One paper written on my own described a theo- ideas often travel from country to country very rap- retical model for the game of Go. This was further idly. We are very fortunate that mathematics is usually developed by Olof Hanner and much later by Ber- totally divorced from political situations. Even at the lekamp and Wolfe. (John Conway’s construction of height of the Cold War, we received information from “surreal numbers” is closely related.) the Soviet Union and people in the Soviet Union were eagerly reading papers from outside. Mathematics Knot Theory was much more open than most scientific subjects. R & S: You wrote your Ph.D. thesis under the su- R & S: As a footnote to what you said: Max Dehn pervision of Ralph Fox; the title of the thesis was was a student of David Hilbert and he solved Hilbert’s “Isotopy of links”. Did you get the idea to work on third problem about three-dimensional polyhedra of this topic yourself? And what was the impact of equal volume, showing that you cannot always split this work? them up into congruent polyhedra. No wonder people Milnor: Fox was an expert in knot theory, so I trusted his proof because of his name. learned a great deal about knots and links from Milnor: It’s a cautionary tale because we tend to be- him. There were many people in the department lieve in mathematics that when something is proved, then that were active in this area, although there it stays proved. Cases like Dehn’s Lemma, where a were also other people at the department that false proof was accepted for many years, are very rare. considered it a low-class subject and not very inter- esting. I think it’s strange that, although it wasn’t Manifolds considered a very central subject then, today it’s a R & S: For several years after your Ph.D. your research subject which is very much alive and active. concentrated on the theory of manifolds. Could you As one example, I often saw a quiet Greek explain what a manifold is and why manifolds are gentleman Christos Papakyriakopoulus around the important? common room, but I never got to know him very Milnor: In low dimensions manifolds are things well. I had no idea he was doing important work, that are easily visualized. A curve in space is an ex- but Fox had managed to find money to support ample of a one-dimensional manifold; the surfaces him for many years, while he did research more of a sphere and of a doughnut are examples of two- or less by himself. He finally succeeded in solving dimensional manifolds. But for mathematicians a very important problem in knot theory which, the dimensions one and two are just the beginning; perhaps, was the beginning of a rebirth of the things get more interesting in higher dimensions.
Recommended publications
  • Dedicated to Lou Kauffman for His 70Th Birthday 1. Knot Theory
    Dedicated to Lou Kauffman for his 70th birthday KNOT THEORY: FROM FOX 3-COLORINGS OF LINKS TO YANG-BAXTER HOMOLOGY AND KHOVANOV HOMOLOGY JOZEF´ H. PRZYTYCKI Abstract: This paper is an extended account of my “Introductory Plenary talk at Knots in Hellas 2016” conference1. We start from the short introduction to Knot Theory from the historical perspective, starting from Heraclas text (the first century AD), mentioning R.Llull (1232-1315), A.Kircher (1602-1680), Leibniz idea of Geometria Situs (1679), and J.B.Listing (student of Gauss) work of 1847. We spend some space on Ralph H. Fox (1913-1973) elementary introduction to diagram colorings (1956). In the second section we describe how Fox work was generalized to distributive colorings (racks and quandles) and eventually in the work of Jones and Turaev to link invariants via Yang-Baxter operators; here the importance of statistical mechanics to topology will be mentioned. Finally we describe recent developments which started with Mikhail Khovanov work on categorification of the Jones polynomial. By analogy to Khovanov homology we build homology of distributive structures (including homology of Fox colorings) and generalize it to homology of Yang-Baxter operators. We speculate, with supporting evidence, on co-cycle invariants of knots coming from Yang-Baxter homology. Here the work of Fenn-Rourke-Sanderson (geometric realization of pre-cubic sets of link diagrams) and Carter-Kamada-Saito (co-cycle invariants of links) will be discussed and ex- panded. No deep knowledge of Knot Theory, homological algebra, or statistical mechanics is assumed as we work from basic principles. Because of this, some topics will be only briefly described.
    [Show full text]
  • Commentary on the Kervaire–Milnor Correspondence 1958–1961
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 52, Number 4, October 2015, Pages 603–609 http://dx.doi.org/10.1090/bull/1508 Article electronically published on July 1, 2015 COMMENTARY ON THE KERVAIRE–MILNOR CORRESPONDENCE 1958–1961 ANDREW RANICKI AND CLAUDE WEBER Abstract. The extant letters exchanged between Kervaire and Milnor during their collaboration from 1958–1961 concerned their work on the classification of exotic spheres, culminating in their 1963 Annals of Mathematics paper. Michel Kervaire died in 2007; for an account of his life, see the obituary by Shalom Eliahou, Pierre de la Harpe, Jean-Claude Hausmann, and Claude We- ber in the September 2008 issue of the Notices of the American Mathematical Society. The letters were made public at the 2009 Kervaire Memorial Confer- ence in Geneva. Their publication in this issue of the Bulletin of the American Mathematical Society is preceded by our commentary on these letters, provid- ing some historical background. Letter 1. From Milnor, 22 August 1958 Kervaire and Milnor both attended the International Congress of Mathemati- cians held in Edinburgh, 14–21 August 1958. Milnor gave an invited half-hour talk on Bernoulli numbers, homotopy groups, and a theorem of Rohlin,andKer- vaire gave a talk in the short communications section on Non-parallelizability of the n-sphere for n>7 (see [2]). In this letter written immediately after the Congress, Milnor invites Kervaire to join him in writing up the lecture he gave at the Con- gress. The joint paper appeared in the Proceedings of the ICM as [10]. Milnor’s name is listed first (contrary to the tradition in mathematics) since it was he who was invited to deliver a talk.
    [Show full text]
  • George W. Whitehead Jr
    George W. Whitehead Jr. 1918–2004 A Biographical Memoir by Haynes R. Miller ©2015 National Academy of Sciences. Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. GEORGE WILLIAM WHITEHEAD JR. August 2, 1918–April 12 , 2004 Elected to the NAS, 1972 Life George William Whitehead, Jr., was born in Bloomington, Ill., on August 2, 1918. Little is known about his family or early life. Whitehead received a BA from the University of Chicago in 1937, and continued at Chicago as a graduate student. The Chicago Mathematics Department was somewhat ingrown at that time, dominated by L. E. Dickson and Gilbert Bliss and exhibiting “a certain narrowness of focus: the calculus of variations, projective differential geometry, algebra and number theory were the main topics of interest.”1 It is possible that Whitehead’s interest in topology was stimulated by Saunders Mac Lane, who By Haynes R. Miller spent the 1937–38 academic year at the University of Chicago and was then in the early stages of his shift of interest from logic and algebra to topology. Of greater importance for Whitehead was the appearance of Norman Steenrod in Chicago. Steenrod had been attracted to topology by Raymond Wilder at the University of Michigan, received a PhD under Solomon Lefschetz in 1936, and remained at Princeton as an Instructor for another three years. He then served as an Assistant Professor at the University of Chicago between 1939 and 1942 (at which point he moved to the University of Michigan).
    [Show full text]
  • Campus Profile Sept 2018.Indd
    CAMPUS PROFILE AND POINTS OF DISTINCTION campus profileOCTOBER 2018 CAMPUS PROFILE AND POINTS OF DISTINCTION At the University of California San Diego, we constantly push boundaries and challenge expectations. Established in 1960, UC San Diego has been shaped by exceptional scholars who aren’t afraid to take risks and redefine conventional wisdom. Today, as one of the top 15 research universities in the world, we are driving innovation and change to advance society, propel economic growth, and make our world a better place. UC San Diego’s main campus is located near the Pacific Ocean on 1,200 acres of coastal woodland in La Jolla, California. The campus sits on land formerly inhabited by Kumeyaay tribal members, the original native inhabitants of San Diego County. UC San Diego’s rich academic portfolio includes six undergraduate colleges, five academic divisions, and five graduate and professional schools. BY THE NUMBERS • 36,624 Total campus enrollment (as of Fall 2017); • 16 Number of Nobel laureates who have taught the largest number of students among colleges on campus and universities in San Diego County. • 201 Memberships held by current and emeriti • 97,670 Total freshman applications for 2018 faculty in the National Academy of Sciences (73), National Academy of Engineering (84), • 4.13 Admitted freshman average high school GPA and National Academy of Medicine (44). • $4.7 billion Fiscal year 2016-17 revenues; • 4 Scripps Institution of Oceanography operates 20 percent of this total is revenue from contracts three research vessels and an innovative Floating and grants, most of which is from the federal Instrument Platform (FLIP), enabling faculty, government for research.
    [Show full text]
  • FIELDS MEDAL for Mathematical Efforts R
    Recognizing the Real and the Potential: FIELDS MEDAL for Mathematical Efforts R Fields Medal recipients since inception Year Winners 1936 Lars Valerian Ahlfors (Harvard University) (April 18, 1907 – October 11, 1996) Jesse Douglas (Massachusetts Institute of Technology) (July 3, 1897 – September 7, 1965) 1950 Atle Selberg (Institute for Advanced Study, Princeton) (June 14, 1917 – August 6, 2007) 1954 Kunihiko Kodaira (Princeton University) (March 16, 1915 – July 26, 1997) 1962 John Willard Milnor (Princeton University) (born February 20, 1931) The Fields Medal 1966 Paul Joseph Cohen (Stanford University) (April 2, 1934 – March 23, 2007) Stephen Smale (University of California, Berkeley) (born July 15, 1930) is awarded 1970 Heisuke Hironaka (Harvard University) (born April 9, 1931) every four years 1974 David Bryant Mumford (Harvard University) (born June 11, 1937) 1978 Charles Louis Fefferman (Princeton University) (born April 18, 1949) on the occasion of the Daniel G. Quillen (Massachusetts Institute of Technology) (June 22, 1940 – April 30, 2011) International Congress 1982 William P. Thurston (Princeton University) (October 30, 1946 – August 21, 2012) Shing-Tung Yau (Institute for Advanced Study, Princeton) (born April 4, 1949) of Mathematicians 1986 Gerd Faltings (Princeton University) (born July 28, 1954) to recognize Michael Freedman (University of California, San Diego) (born April 21, 1951) 1990 Vaughan Jones (University of California, Berkeley) (born December 31, 1952) outstanding Edward Witten (Institute for Advanced Study,
    [Show full text]
  • Millennium Prize for the Poincaré
    FOR IMMEDIATE RELEASE • March 18, 2010 Press contact: James Carlson: [email protected]; 617-852-7490 See also the Clay Mathematics Institute website: • The Poincaré conjecture and Dr. Perelmanʼs work: http://www.claymath.org/poincare • The Millennium Prizes: http://www.claymath.org/millennium/ • Full text: http://www.claymath.org/poincare/millenniumprize.pdf First Clay Mathematics Institute Millennium Prize Announced Today Prize for Resolution of the Poincaré Conjecture a Awarded to Dr. Grigoriy Perelman The Clay Mathematics Institute (CMI) announces today that Dr. Grigoriy Perelman of St. Petersburg, Russia, is the recipient of the Millennium Prize for resolution of the Poincaré conjecture. The citation for the award reads: The Clay Mathematics Institute hereby awards the Millennium Prize for resolution of the Poincaré conjecture to Grigoriy Perelman. The Poincaré conjecture is one of the seven Millennium Prize Problems established by CMI in 2000. The Prizes were conceived to record some of the most difficult problems with which mathematicians were grappling at the turn of the second millennium; to elevate in the consciousness of the general public the fact that in mathematics, the frontier is still open and abounds in important unsolved problems; to emphasize the importance of working towards a solution of the deepest, most difficult problems; and to recognize achievement in mathematics of historical magnitude. The award of the Millennium Prize to Dr. Perelman was made in accord with their governing rules: recommendation first by a Special Advisory Committee (Simon Donaldson, David Gabai, Mikhail Gromov, Terence Tao, and Andrew Wiles), then by the CMI Scientific Advisory Board (James Carlson, Simon Donaldson, Gregory Margulis, Richard Melrose, Yum-Tong Siu, and Andrew Wiles), with final decision by the Board of Directors (Landon T.
    [Show full text]
  • APRIL 2014 ● Official Newsletter of the LSU College of Science E-NEWS
    APRIL 2014 ● Official newsletter of the LSU College of Science e-NEWS NEWS/EVENTS LSU Museum of Natural Science Research Shows Hummingbird Diversity Is Increasing Research relying heavily on the genetic tissue collection housed at LSU’s Museum of Natural Science (one of the world’s largest collections of vertebrate tissues) has provided a newly constructed family tree of hummingbirds, with the research demonstrating that hummingbird diversity appears to be increasing rather than reaching a plateau. The work, started more than 12 years ago at LSU, culminated with a publication in the journal Current Biology. - LSU Office of Research Communications More LSU Geologist's Innovative Use of Magnetic Susceptibility Helps Uncover Burial Site of Notorious Texas Outlaw Brooks Ellwood, Robey H. Clark Distinguished Professor of Geology & Geophysics, was featured in a recent edition of Earth, for his innovative use of magnetic susceptibility (MS) for high- resolution interpretation of sedimentary sequences. Magnetic susceptibility is essentially how easily a material is magnetized in an inducing magnetic field. MS has proved useful for dating archeological sites more than 40,000 years old. One of Ellwood's more unusual applications of MS was when he was approached by Doug Owsley, forensic anthropologist at the Smithsonian Institution, to help search for the burial site of notorious Texas outlaw William Preston Longley, or 'Wild Bill." Ellwood, Owsley and their research team excavate the grave site of More "Wild Bill." LSU Alum, MacArthur Fellow Susan Murphy Gives Porcelli Lectures LSU mathematics graduate and 2013 MacArthur Fellow Susan Murphy was the featured speaker for the 2014 Porcelli Lectures held April 28 in the LSU Digital Media Center.
    [Show full text]
  • Interview of Albert Tucker
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange About Harlan D. Mills Science Alliance 9-1975 Interview of Albert Tucker Terry Speed Evar Nering Follow this and additional works at: https://trace.tennessee.edu/utk_harlanabout Part of the Mathematics Commons Recommended Citation Speed, Terry and Nering, Evar, "Interview of Albert Tucker" (1975). About Harlan D. Mills. https://trace.tennessee.edu/utk_harlanabout/13 This Report is brought to you for free and open access by the Science Alliance at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in About Harlan D. Mills by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. The Princeton Mathematics Community in the 1930s (PMC39)The Princeton Mathematics Community in the 1930s Transcript Number 39 (PMC39) © The Trustees of Princeton University, 1985 ALBERT TUCKER CAREER, PART 2 This is a continuation of the account of the career of Albert Tucker that was begun in the interview conducted by Terry Speed in September 1975. This recording was made in March 1977 by Evar Nering at his apartment in Scottsdale, Arizona. Tucker: I have recently received the tapes that Speed made and find that these tapes carried my history up to approximately 1938. So the plan is to continue the history. In the late '30s I was working in combinatorial topology with not a great deal of results to show. I guess I was really more interested in my teaching. I had an opportunity to teach an undergraduate course in topology, combinatorial topology that is, classification of 2-dimensional surfaces and that sort of thing.
    [Show full text]
  • Prospects in Topology
    Annals of Mathematics Studies Number 138 Prospects in Topology PROCEEDINGS OF A CONFERENCE IN HONOR OF WILLIAM BROWDER edited by Frank Quinn PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY 1995 Copyright © 1995 by Princeton University Press ALL RIGHTS RESERVED The Annals of Mathematics Studies are edited by Luis A. Caffarelli, John N. Mather, and Elias M. Stein Princeton University Press books are printed on acid-free paper and meet the guidelines for permanence and durability of the Committee on Production Guidelines for Book Longevity of the Council on Library Resources Printed in the United States of America by Princeton Academic Press 10 987654321 Library of Congress Cataloging-in-Publication Data Prospects in topology : proceedings of a conference in honor of W illiam Browder / Edited by Frank Quinn. p. cm. — (Annals of mathematics studies ; no. 138) Conference held Mar. 1994, at Princeton University. Includes bibliographical references. ISB N 0-691-02729-3 (alk. paper). — ISBN 0-691-02728-5 (pbk. : alk. paper) 1. Topology— Congresses. I. Browder, William. II. Quinn, F. (Frank), 1946- . III. Series. QA611.A1P76 1996 514— dc20 95-25751 The publisher would like to acknowledge the editor of this volume for providing the camera-ready copy from which this book was printed PROSPECTS IN TOPOLOGY F r a n k Q u in n , E d it o r Proceedings of a conference in honor of William Browder Princeton, March 1994 Contents Foreword..........................................................................................................vii Program of the conference ................................................................................ix Mathematical descendants of William Browder...............................................xi A. Adem and R. J. Milgram, The mod 2 cohomology rings of rank 3 simple groups are Cohen-Macaulay........................................................................3 A.
    [Show full text]
  • AMERICAN MATHEMATICAL SOCIETY Business Office: P.O. Box 6248, Providence, Rhode Island 02940 William J
    AMERICAN MATHEMATICAL SOCIETY Business Office: P.O. Box 6248, Providence, Rhode Island 02940 William J. LeVeque, Executive Director Lincoln K. Durst, Deputy Director OFFICERS President: R. H. Bing, Dept. of Mathematics, University of Texas at Austin, Austin, TX 78712 President-elect: Peter D. Lax, Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012 Vice-Presidents: William Browder, Dept. of Mathematics, Box 708, Fine Hall, Princeton University, Princeton, NJ 08540; Julia B. Robinson, 243 Lake Dr., Berkeley, CA 94708; George W. Whitehead, Dept. of Mathematics, Room 2-284, Massachusetts Institute of Technology, Cambridge, MA 02139 Secretary: Everett Pitcher, Dept. of Mathematics, Lehigh University, Bethelehem, PA 18015 Associate Secretaries: Raymond G. Ayoub, Dept. of Mathematics, 203 McAllister Building, Pennsylvania State University, University Park, PA 16802; Paul T. Bateman, Dept. of Mathematics, University of Illinois, Urbana, IL 61801; Frank T. Birtel, College of Arts and Sciences, Tulane University, New Orleans, LA 70118; Kenneth A. Ross, Dept. of Mathema­ tics, University of Oregon, Eugene, OR 97403 Treasurer: Franklin P. Peterson, Dept. of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139 Associate Treasurer: Steve Armentrout, Dept. of Mathematics, 230 McAllister Building, Penn­ sylvania State University, University Park, PA 16802 Board of Trustees: Steve Armentrout (ex officio); R. H. Bing (ex officio); Joseph J. Kohn, Dept. of Mathematics, Princeton University, Princeton, NJ 08540; Calvin C. Moore, Dept. of Mathematics, University of California, Berkeley, CA 94720; Cathleen S. Morawetz, Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012; Richard S. Palais, Dept. of Mathematics, Brandeis University, Waltham, MA 02154; Franklin P.
    [Show full text]
  • The History of the Abel Prize and the Honorary Abel Prize the History of the Abel Prize
    The History of the Abel Prize and the Honorary Abel Prize The History of the Abel Prize Arild Stubhaug On the bicentennial of Niels Henrik Abel’s birth in 2002, the Norwegian Govern- ment decided to establish a memorial fund of NOK 200 million. The chief purpose of the fund was to lay the financial groundwork for an annual international prize of NOK 6 million to one or more mathematicians for outstanding scientific work. The prize was awarded for the first time in 2003. That is the history in brief of the Abel Prize as we know it today. Behind this government decision to commemorate and honor the country’s great mathematician, however, lies a more than hundred year old wish and a short and intense period of activity. Volumes of Abel’s collected works were published in 1839 and 1881. The first was edited by Bernt Michael Holmboe (Abel’s teacher), the second by Sophus Lie and Ludvig Sylow. Both editions were paid for with public funds and published to honor the famous scientist. The first time that there was a discussion in a broader context about honoring Niels Henrik Abel’s memory, was at the meeting of Scan- dinavian natural scientists in Norway’s capital in 1886. These meetings of natural scientists, which were held alternately in each of the Scandinavian capitals (with the exception of the very first meeting in 1839, which took place in Gothenburg, Swe- den), were the most important fora for Scandinavian natural scientists. The meeting in 1886 in Oslo (called Christiania at the time) was the 13th in the series.
    [Show full text]
  • The Arf-Kervaire Invariant Problem in Algebraic Topology: Introduction
    THE ARF-KERVAIRE INVARIANT PROBLEM IN ALGEBRAIC TOPOLOGY: INTRODUCTION MICHAEL A. HILL, MICHAEL J. HOPKINS, AND DOUGLAS C. RAVENEL ABSTRACT. This paper gives the history and background of one of the oldest problems in algebraic topology, along with a short summary of our solution to it and a description of some of the tools we use. More details of the proof are provided in our second paper in this volume, The Arf-Kervaire invariant problem in algebraic topology: Sketch of the proof. A rigorous account can be found in our preprint The non-existence of elements of Kervaire invariant one on the arXiv and on the third author’s home page. The latter also has numerous links to related papers and talks we have given on the subject since announcing our result in April, 2009. CONTENTS 1. Background and history 3 1.1. Pontryagin’s early work on homotopy groups of spheres 3 1.2. Our main result 8 1.3. The manifold formulation 8 1.4. The unstable formulation 12 1.5. Questions raised by our theorem 14 2. Our strategy 14 2.1. Ingredients of the proof 14 2.2. The spectrum Ω 15 2.3. How we construct Ω 15 3. Some classical algebraic topology. 15 3.1. Fibrations 15 3.2. Cofibrations 18 3.3. Eilenberg-Mac Lane spaces and cohomology operations 18 3.4. The Steenrod algebra. 19 3.5. Milnor’s formulation 20 3.6. Serre’s method of computing homotopy groups 21 3.7. The Adams spectral sequence 21 4. Spectra and equivariant spectra 23 4.1.
    [Show full text]