Technology Working Group Report

Total Page:16

File Type:pdf, Size:1020Kb

Technology Working Group Report Canadian SMR Roadmap Technology Working Group Report Prepared by: SMR Roadmap Technology working group Issued: October 26, 2018 The information provided herein is for general information purposes only. The information within this report is provided in good faith, however no representation or warranty of any kind, express or implied, regarding the accuracy, adequacy, validity, reliability, availability, or completeness of any information within this report is made. Under no circumstances shall any party have any liability for any loss or damage of any kind as result of the use of any material within this report or reliance of any information contained therein. Any use of this report and reliance of any information is solely at the risk of the reader. The views and opinions expressed in this report are those of the authors and do not necessarily reflect the official policy or position of any associated organizations or companies. Canadian SMR Roadmap Outline of Final Report 1. Introduction ........................................................................................................................................ 1 1.1 Technology Working Group Mandate and Membership ......................................................... 1 1.2 Introduction to Some Key Concepts ......................................................................................... 3 1.2.1 Fast Reactors vs. Thermal Reactors ...................................................................... 3 1.2.2 Passive and Inherent Safety ................................................................................. 3 1.2.3 Fuel Recycling and Advanced Fuel Cycles ............................................................. 4 2. Canadian SMR Applications ................................................................................................................ 6 2.1 General requirements .............................................................................................................. 6 2.2 Requirements for On-Grid Deployment ................................................................................... 7 2.3 Remote Community Application .............................................................................................. 9 2.3.1 Description of the Canadian Remote Community Application ............................ 9 2.3.2 Requirements for Remote Communities ............................................................ 10 2.4 Requirements for Heavy Industry Applications ...................................................................... 13 2.4.1 Mineral Mining ................................................................................................... 13 2.4.2 Oil & Gas ............................................................................................................... 1 2.5 Technology Features that May Impact Public Acceptance ...................................................... 4 2.6 Schedule and Technology Readiness Requirements ................................................................ 6 2.7 Findings and Recommendations .............................................................................................. 7 3. Technology Development and Deployment ....................................................................................... 9 3.1 SMR Technology Development Process ................................................................................... 9 3.1.1 Development process and steps .......................................................................... 9 3.1.2 Factory Manufacturing: Paradigm Shift.............................................................. 12 3.2 Deployment of an SMR Project .............................................................................................. 13 3.2.1 On Grid Project ................................................................................................... 13 3.2.2 Resource Project ................................................................................................. 14 3.2.3 Off Grid Project ................................................................................................... 15 3.2.4 Canadian Example of Fleet Deployment: Slowpoke Reactors ............................ 17 3.2.5 Potential Non-Terrestrial Deployment Methodologies ...................................... 18 3.3 Key Findings and Recommendations...................................................................................... 19 4. Overview of SMR Technologies and Benefits ................................................................................... 21 ii 4.1 Methodology .......................................................................................................................... 21 4.2 Overview of the SMR Technologies ........................................................................................ 23 4.2.1 Water-Cooled Reactors ...................................................................................... 23 4.2.2 High Temperature Gas-Cooled Reactors ............................................................ 26 4.2.3 Sodium-Cooled Fast Reactor .............................................................................. 26 4.2.4 Lead-Cooled Fast Reactor ................................................................................... 27 4.2.5 Molten Salt Reactors .......................................................................................... 27 4.2.6 Heat-Pipe Reactors ............................................................................................. 28 4.3 New Fuel Types ...................................................................................................................... 29 4.4 General benefits from all SMR technologies .......................................................................... 32 4.4.1 Higher Technological Readiness Designs ............................................................ 34 4.4.2 Lower Technological Readiness Designs ............................................................ 34 4.5 Cross-Cutting Enabling Technologies ..................................................................................... 35 4.5.1 Cross-Cutting Enabling Technologies Development for SMRs in Canada .......... 38 4.6 Findings & Recommendations ................................................................................................ 39 5. SMR Technology Gaps With Respect to Applications ....................................................................... 41 5.1 Light Water Reactors .............................................................................................................. 42 5.1.1 LWR: General Requirements .............................................................................. 42 5.1.2 LWR: On-Grid Power Generation ....................................................................... 43 5.1.3 LWR: Heavy Industries ........................................................................................ 43 5.1.4 LWR: Remote Communities ................................................................................ 44 5.2 Sodium Cooled Fast Reactors ................................................................................................. 44 5.2.1 SFR: General Requirements ................................................................................ 44 5.2.2 SFR: On-Grid Power Generation ......................................................................... 46 5.2.3 SFR: Heavy Industries ......................................................................................... 46 5.2.4 SFR: Remote Communities ................................................................................. 47 5.3 Lead Cooled Fast Reactors ..................................................................................................... 47 5.3.1 LFR: General Requirements ................................................................................ 47 5.3.2 LFR: On-Grid Power Generation ......................................................................... 49 5.3.3 LFR: Heavy Industries.......................................................................................... 49 5.3.4 LFR: Remote Communities ................................................................................. 50 5.4 Molten Salt Reactors .............................................................................................................. 50 5.4.1 MSR: General Requirements .............................................................................. 50 iii 5.4.2 MSR: On-Grid Power Generation ....................................................................... 52 5.4.3 MSR: Heavy Industries ........................................................................................ 52 5.4.4 MSR: Remote Communities ................................................................................ 53 5.5 High Temperature Gas Cooled Reactors ................................................................................ 53 5.5.1 HTGR: General Requirements............................................................................. 53 5.5.2 HTGR: On-Grid Power Generation ...................................................................... 55 5.5.3 HTGR: Heavy Industries ...................................................................................... 55 5.5.4 HTGR: Remote Communities .............................................................................. 56 5.6 Heat Pipe Reactors ................................................................................................................
Recommended publications
  • CHAPTER 13 Reactor Safety Design and Safety Analysis Prepared by Dr
    1 CHAPTER 13 Reactor Safety Design and Safety Analysis prepared by Dr. Victor G. Snell Summary: The chapter covers safety design and safety analysis of nuclear reactors. Topics include concepts of risk, probability tools and techniques, safety criteria, design basis accidents, risk assessment, safety analysis, safety-system design, general safety policy and principles, and future trends. It makes heavy use of case studies of actual accidents both in the text and in the exercises. Table of Contents 1 Introduction ............................................................................................................................ 6 1.1 Overview ............................................................................................................................. 6 1.2 Learning Outcomes............................................................................................................. 8 1.3 Risk ...................................................................................................................................... 8 1.4 Hazards from a Nuclear Power Plant ................................................................................ 10 1.5 Types of Radiation in a Nuclear Power Plant.................................................................... 12 1.6 Effects of Radiation ........................................................................................................... 12 1.7 Sources of Radiation ........................................................................................................
    [Show full text]
  • SAFETY RE-ASSESSMENT of AECL TEST and RESEARCH REACTORS D. J. WINFIELD Chalk River Nuclear Laboratories ATOMIC ENERGY of CANADA
    309 IAEA-SM-310/ 94 SAFETY RE-ASSESSMENT OF AECL TEST AND RESEARCH REACTORS D. J. WINFIELD Chalk River Nuclear Laboratories ATOMIC ENERGY OF CANADA LIMITED 310 IAEA-SM-310/94 SAFETY RE-ASSESSMENT OF AECL TEST AND RESEARCH REACTORS ABSTRACT Atomic Energy of Canada Limited currently has four operating engineering test/research reactors of various sizes and ages; a new isotope-production reactor MAPLE-X10, under construction at Chalk River Nuclear Laboratories (CRNL), and a heating demonstration/test reactor, SDR, undergoing high-power commissioning at Whiteshell Nuclear Research Establishment (WNRE). The company is also performing design studies of small reactors for hot water and electricity production. The older reactors are ZED-2, PTR, NRX and NRU; these range in age from 42 years (NRX) to 29 years (ZED-2). Since 1984, limited-scope safety re-assessments have been underway on three of these reactors (ZED-2, NRX and NRU). ZED-2 and PTR are operated by the Reactor Physics Branch, all other reactors are operated by the respective site Reactor Operations Branches. For the older reactors the original safety reports produced were entirely deterministic in nature and based on the design-basis accident concept. The limited scope safety re-assessments for these older reactors, carried out over the past 5 years, have comprised both quantitative probabilistic safety-assessment techniques, such as event tree and fault tree analysis, and/or qualitative techniques, such as failure mode and effect analysis. The technique used for an individual assessment was dependent upon the specific scope required. This paper discusses the types of analyses carried out, specific insights/recommendations resulting from the analysis and indicates the plan for future analysis.
    [Show full text]
  • Heu Repatriation Project
    HEU REPATRIATION PROJECT RATIONALE In April 2010, the governments of Canada and the United States (U.S.) committed to work cooperatively to repatriate spent highly- enriched uranium (HEU) fuel currently stored at the Chalk River Laboratories in Ontario to the U.S. as part of the Global Threat Reduction Initiative, a broad international effort to consolidate HEU inventories in fewer locations around the world. This initiative PROJECT BACKGROUND promotes non-proliferation This HEU is the result of two decades of nuclear fuel use at the by removing existing weapons Chalk River Laboratories for Canadian Nuclear Laboratories (CNL) grade material from Canada research reactors, the National Research Experimental (NRX) and and transferring it to the National Research Universal (NRU), and for the production of U.S., which has the capability medical isotopes in the NRU, which has benefitted generations of to reprocess it for peaceful Canadians. Returning this material to the U.S. in its existing solid purposes. In March 2012, and liquid forms ensures that this material is stored safely in a Prime Minister Harper secure highly guarded location, or is reprocessed into other forms announced that Canada and that can be used for peaceful purposes. the U.S. were expanding their efforts to return additional Alternative approaches have been carefully considered and inventories of HEU materials, repatriation provides the safest, most secure, and fastest solution including those in liquid form. for the permanent disposition of these materials, thereby eliminating a liability for future generations of Canadians. For more information on this project contact: Email: [email protected] Canadian Nuclear Laboratories 1-866-886-2325 or visit: www.cnl.ca persons who have a legitimate need to PROJECT GOAL know, such as police or emergency response To repatriate highly-enriched uranium forces.
    [Show full text]
  • Small Modular Reactor Design and Deployment
    INL/MIS-15-34247 Small Modular Reactor Design and Deployment Curtis Wright Symposium xx/xx/xxxx www.inl.gov INL SMR Activities • INL works with all vendors to provide fair access to the laboratory benefits • INL works with industry on SMR technology and deployment • INL is supporting multiple LWR SMR vendors – Small, <300MWe reactors and less expensive reactors compared to current LWR reactors (Small) – Often, but not always, multiple reactors at the same site that can be deployed as power is needed (Modular) – Primary cooling system and reactor core in a single containment structure, but not always (Reactors) – Factory built, usually, which improves quality and costs • Integrated PWR SMR’s are closest to deployment – designed to be inherently safer and simple – primary reactor system inside a single factory built containment vessel – Higher dependence on passive systems to simplify operation and design Reactor Power Nuclear Plant Power Los Angeles Class Submarine -26 MW 5000 Enterprise Class Aircraft Carrier 8x 4000 Unit Power Nimitz Class Aircraft Carrier 2x97MW, 194MW 3000 Plant Power NuScale Reactor 12 x 150MW, 1800MW 2000 Cooper BWR, 1743MW PowerThermal MW 1000 Westinghouse AP-1000, 3000MW 0 European Pressurized Reactor, 4953MW SMRs are Smaller VC Summer • Power less than 300MWe. Dearater – Current Plants 1000MWe – Physically smaller – Fewer inputs – Fits on power grid with less infrastructure – Built in a factory – Simplified designs VC Summer • Passive systems Core • Fewer components NuScale Reactor Multiple Units • SMR Nuclear
    [Show full text]
  • Nuclear Power Plant Organization and Staffing for Lessons Learned
    IAEA-TECDOC-1052 minium XA9848504 Nuclear power plant organization staffingand for improved performance: lessons learned INTERNATIONAL ATOMIC ENERGY AGENCY fl/U Lr\^ The originating Section of this publication in the IAEA was: Nuclear Power Engineering Section International Atomic Energy Agency Wagramer Strasse5 P.O. Box 100 A-1400 Vienna, Austria NUCLEAR POWER PLANT ORGANIZATION AND STAFFING FOR IMPROVED PERFORMANCE: LESSONS LEARNED IAEA, VIENNA, 1998 IAEA-TECDOC-1052 ISSN 1011-4289 ©IAEA, 1998 Printe IAEe th AustriAn y i d b a November 1998 The IAEA does not normally maintain stocks of reports in this series. However, microfiche copies of these reports can be obtained from INIS Clearinghouse International Atomic Energy Agency Wagramerstrasse5 0 10 P.Ox Bo . A-1400 Vienna, Austria Orders shoul accompaniee db prepaymeny db f Austriao t n Schillings 100, fore for e chequa th f mth IAEmf o n i n o i r eAo microfiche service coupons which may be ordered separately from the INIS Clearinghouse. FOREWORD Experience from well operated nuclear power plants (NPPs) aroun worle dth d indicates that an organizational structure that effectively supports plant operation s i essentias n i l economically achieving high level f safet so operationa d yan l performance same th t e A .time , in many Member States, energy market e beinar s g opene o competitiont d n i s i t I . consideration of this new competitive energy market that this publication focuses on organization and staffing of NPPs to improve efficiency and effectiveness. This publication is primarily intended for senior NPP and utility managers.
    [Show full text]
  • 038 12 Conduct of Operations
    TMI-1 UFSAR CHAPTER 12 – CONDUCT OF OPERATIONS TABLE OF CONTENTS SECTION TITLE 12.0 CONDUCT OF OPERATIONS 12.1 ORGANIZATIONAL STRUCTURE 12.1.1 OFFSITE ORGANIZATION 12.1.2 OPERATING ORGANIZATION 12.1.2.1 PLANT DIVISION 12.1.2.1.1 OPERATIONS DEPARTMENT 12.1.2.1.2 MAINTENANCE DEPARTMENT 12.1.2.1.3 WORK MANAGEMENT DEPARTMENT 12.1.2.1.4 RADIOLOGICAL HEALTH AND SAFETY DEPARTMENT 12.1.2.1.5 CHEMISTRY DEPARTMENT 12.1.2.2 SECURITY DEPARTMENT 12.1.2.3 SITE ENGINEERING DEPARTMENT 12.1.2.3.1 PLANT ENGINEERING SECTION 12.1.2.3.2 DESIGN ENGINEERING SECTION 12.1.2.3.3 PROGRAMS SECTION 12.1.2.4 TRAINING DEPARTMENT 12.1.2.5 BUSINESS OPERATIONS DEPARTMENT 12.1.2.6 REGULATORY ASSURANCE DEPARTMENT 12.1.2.7 MANAGER – HUMAN RESOURCES 12.1.2.8 PROJECT MANAGEMENT DEPARTMENT 12.1.3 QUALIFICATION OF NUCLEAR PLANT PERSONNEL 12.1.4 SAFETY REVIEWS 12.2 TRAINING 12.2.1 TRAINING PROGRAMS 12.2.2 TECHNICAL TRAINING 12.2.2.1 MAINTENANCE TRAINING 12.2.2.2 RADIOLOGICAL CONTROLS/CHEMISTRY TRAINING PROGRAMS 12.2.3 OPERATIONS TRAINING 12.2.3.1 REPLACEMENT OPERATOR TRAINING PROGRAM (AO/CRO/SRO) 12.2.3.2 LICENSED OPERATOR REQUALIFICATION TRAINING PROGRAM (CRO/SRO) 12.2.3.3 SHIFT TECHNICAL ADVISOR (STA) TRAINING PROGRAM 12.2.3.4 AUXILIARY OPERATOR (AO) REQUALIFICATION TRAINING PROGRAM 12.2.4 TRAINING SUPPORT 12.2.4.1 GENERAL EMPLOYEE TRAINING PROGRAMS 12.2.4.2 FIRE PROTECTION TRAINING PROGRAM 12.2.4.3 EMERGENCY PREPAREDNESS TRAINING PROGRAMS 12.2.4.4 NOT USED 12.2.5 ENGINEERING SUPPORT PERSONNEL (ESP)TRAINING PROGRAM 12.2.6 TRAINING RECORDS CHAPTER 12 12-i REV.
    [Show full text]
  • Deployability of Small Modular Nuclear Reactors for Alberta Applications Report Prepared for Alberta Innovates
    PNNL-25978 Deployability of Small Modular Nuclear Reactors for Alberta Applications Report Prepared for Alberta Innovates November 2016 SM Short B Olateju (AI) SD Unwin S Singh (AI) A Meisen (AI) DISCLAIMER NOTICE This report was prepared under contract with the U.S. Department of Energy (DOE), as an account of work sponsored by Alberta Innovates (“AI”). Neither AI, Pacific Northwest National Laboratory (PNNL), DOE, the U.S. Government, nor any person acting on their behalf makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by AI, PNNL, DOE, or the U.S. Government. The views and opinions of authors expressed herein do not necessarily state or reflect those of AI, PNNL, DOE or the U.S. Government. Deployability of Small Modular Nuclear Reactors for Alberta Applications SM Short B Olateju (AI) SD Unwin S Singh (AI) A Meisen (AI) November 2016 Prepared for Alberta Innovates (AI) Pacific Northwest National Laboratory Richland, Washington 99352 Executive Summary At present, the steam requirements of Alberta’s heavy oil industry and the Province’s electricity requirements are predominantly met by natural gas and coal, respectively. On November 22, 2015 the Government of Alberta announced its Climate Change Leadership Plan to 1) phase out all pollution created by burning coal and transition to more renewable energy and natural gas generation by 2030 and 2) limit greenhouse gas (GHG) emissions from oil sands operations.
    [Show full text]
  • CMD19-H100-8.Pdf
    CMD 19-H100.8 File/dossier : 6.01.07 Date : 2019-08-30 Edocs pdf : 5983279 Oral Presentation Exposé oral Submission from Nuclear Waste Mémoire d’Action Déchets Nucléaires et Watch and Inter-Church Uranium Inter-Church Uranium Committee Committee Educational Cooperative Educational Cooperative In the Matter of À l’égard de Saskatchewan Research Council, Saskatchewan Research Council SLOWPOKE-2 Reactor Installation nucléaire SLOWPOKE-2 Request by the Saskatchewan Research Demande du Saskatchewan Research Council Council to authorize the decommissioning of afin d’autoriser le déclassement du réacteur the SLOWPOKE-2 reactor SLOWPOKE-2 Commission Public Hearing Audience publique de la Commission September 26, 2019 Le 26 septembre 2019 This page was intentionally Cette page a été intentionnellement left blank laissée en blanc Decommissioning of Saskatchewan Research Council SLOWPOKE-2 Reactor (Ref. 2019-H-100) Nuclear Waste Watch and Inter-Church Uranium Committee Educational Cooperative’s Submission to the Canadian Nuclear Safety Commission Prepared by: Jessica Karban Legal Counsel, Canadian Environmental Law Association August 30, 2019 ISBN: 978-1-77189-996-3 Publication No. 1290 Report from NWW & ICUCEC | 2 SUMMARY OF RECOMMENDATIONS Recommendation 1: In order to facilitate public participation, all Commission Member Documents (CMDs) and accompanying references should be made available on the CNSC’s website at least 60 days in advance of intervention deadlines and remain on the website for future public use. Recommendation 2: Based on our review of applicable requirements governing decommissioning in Canada, we request that the CNSC: 1. Develop a principled overall policy framework underpinning a robust, clear, and enforceable regulatory regime for the decommissioning of nuclear facilities as well as the waste that arises from nuclear and decommissioning activities; 2.
    [Show full text]
  • A Comparison of Advanced Nuclear Technologies
    A COMPARISON OF ADVANCED NUCLEAR TECHNOLOGIES Andrew C. Kadak, Ph.D MARCH 2017 B | CHAPTER NAME ABOUT THE CENTER ON GLOBAL ENERGY POLICY The Center on Global Energy Policy provides independent, balanced, data-driven analysis to help policymakers navigate the complex world of energy. We approach energy as an economic, security, and environmental concern. And we draw on the resources of a world-class institution, faculty with real-world experience, and a location in the world’s finance and media capital. Visit us at energypolicy.columbia.edu facebook.com/ColumbiaUEnergy twitter.com/ColumbiaUEnergy ABOUT THE SCHOOL OF INTERNATIONAL AND PUBLIC AFFAIRS SIPA’s mission is to empower people to serve the global public interest. Our goal is to foster economic growth, sustainable development, social progress, and democratic governance by educating public policy professionals, producing policy-related research, and conveying the results to the world. Based in New York City, with a student body that is 50 percent international and educational partners in cities around the world, SIPA is the most global of public policy schools. For more information, please visit www.sipa.columbia.edu A COMPARISON OF ADVANCED NUCLEAR TECHNOLOGIES Andrew C. Kadak, Ph.D* MARCH 2017 *Andrew C. Kadak is the former president of Yankee Atomic Electric Company and professor of the practice at the Massachusetts Institute of Technology. He continues to consult on nuclear operations, advanced nuclear power plants, and policy and regulatory matters in the United States. He also serves on senior nuclear safety oversight boards in China. He is a graduate of MIT from the Nuclear Science and Engineering Department.
    [Show full text]
  • Of Operation and Control Ion-Exchange Processes For
    TECHNICAL REPORTS SERIES No. 78 Operation and Control Of Ion-Exchange Processes for Treatment of Radioactive Wastes INTERNATIONAL ATOMIC ENERGY AGENCY,VIENNA, 1967 OPERATION AND CONTROL OF ION-EXCHANGE PROCESSES FOR TREATMENT OF RADIOACTIVE WASTES The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GERMANY, FEDERAL NIGERIA ALBANIA REPUBLIC OF NORWAY ALGERIA GHANA PAKISTAN ARGENTINA GREECE PANAMA AUSTRALIA GUATEMALA PARAGUAY AUSTRIA HAITI PERU BELGIUM HOLY SEE PHILIPPINES BOLIVIA HUNGARY POLAND BRAZIL ICELAND PORTUGAL BULGARIA INDIA ROMANIA BURMA INDONESIA SAUDI ARABIA BYELORUSSIAN SOVIET IRAN SENEGAL SOCIALIST REPUBLIC IRAQ SIERRA LEONE CAMBODIA ISRAEL SINGAPORE CAMEROON ITALY SOUTH AFRICA CANADA IVORY COAST SPAIN CEYLON JAMAICA SUDAN CHILE JAPAN SWEDEN CHINA JORDAN SWITZERLAND COLOMBIA KENYA SYRIAN ARAB REPUBLIC CONGO, DEMOCRATIC KOREA, REPUBLIC OF THAILAND REPUBLIC OF KUWAIT TUNISIA COSTA RICA LEBANON TURKEY CUBA LIBERIA UKRAINIAN SOVIET SOCIALIST CYPRUS LIBYA REPUBLIC CZECHOSLOVAK SOCIALIST LUXEMBOURG UNION OF SOVIET SOCIALIST REPUBLIC MADAGASCAR REPUBLICS DENMARK MALI UNITED ARAB REPUBLIC DOMINICAN REPUBLIC MEXICO UNITED KINGDOM OF GREAT ECUADOR MONACO BRITAIN AND NORTHERN IRELAND EL SALVADOR MOROCCO UNITED STATES OF AMERICA ETHIOPIA NETHERLANDS URUGUAY FINLAND NEW ZEALAND VENEZUELA FRANCE NICARAGUA VIET-NAM GABON YUGOSLAVIA The Agency's Statute was approved on 26 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957, The Headquarters of the Agency are situated in Vienna. Its principal objective is "to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world". © IAEA, 1967 Permission to reproduce or translate the information contained in this publication may be obtained by writing to the International Atomic Energy Agency, Kamtner Ring 11, A-1010 Vienna I, Austria.
    [Show full text]
  • Upgrading Water Treatment Plants
    Upgrading Water Treatment Plants E. G. Wagner and R. G. Pinheiro ISBN 0-419-26050-1 (pbk) 0-419-26040-4 Published on behalf of the WORLD HEALTH ORGANIZATION London and New York First published 2001 by Spon Press 11 New Fetter Lane, London EC4P 4EE Simultaneously published in the USA and Canada by Spon Press 29 West 35th Street, New York, NY 10001 Spon Press is an imprint of the Taylor & Francis Group © 2001 World Health Organization The authors alone are responsible for the views expressed in this publication. Printed and bound in Great Britain by TJ International Ltd, Padstow, Cornwall All rights reserved. No part of this book may be reprinted or reproduced or utilised in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers. The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made. Publisher's Note This book has been prepared from camera-ready copy provided by the authors. British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Cataloging in Publication Data A catalogue record has been requested Foreword The availability of safe water, and in particular safe drinking water, has been an area of concern to the World Health Organization for many years.
    [Show full text]
  • NPR81: South Korea's Shifting and Controversial Interest in Spent Fuel
    JUNGMIN KANG & H.A. FEIVESON Viewpoint South Korea’s Shifting and Controversial Interest in Spent Fuel Reprocessing JUNGMIN KANG & H.A. FEIVESON1 Dr. Jungmin Kang was a Visiting Research Fellow at the Center for Energy and Environmental Studies (CEES), Princeton University in 1999-2000. He is the author of forthcoming articles in Science & Global Security and Journal of Nuclear Science and Technology. Dr. H.A. Feiveson is a Senior Research Scientist at CEES and a Co- director of Princeton’s research Program on Nuclear Policy Alternatives. He is the Editor of Science and Global Security, editor and co-author of The Nuclear Turning Point: A Blueprint for Deep Cuts and De-alerting of Nuclear Weapons (Brookings Institution, 1999), and co-author of Ending the Threat of Nuclear Attack (Stanford University Center for International Security and Arms Control, 1997). rom the beginning of its nuclear power program could reduce dependence on imported uranium. During in the 1970s, the Republic of Korea (South Ko- the 1990s, the South Korean government remained con- Frea) has been intermittently interested in the cerned about energy security but also began to see re- reprocessing of nuclear-power spent fuel. Such repro- processing as a way to address South Korea’s spent fuel cessing would typically separate the spent fuel into three disposal problem. Throughout this entire period, the constituent components: the unfissioned uranium re- United States consistently and effectively opposed all maining in the spent fuel, the plutonium produced dur- reprocessing initiatives on nonproliferation grounds. We ing reactor operation, and the highly radioactive fission review South Korea’s evolving interest in spent fuel re- products and transuranics other than plutonium.
    [Show full text]