The Reflector Newsletter of the Peterborough Astronomical Association Minor Mergers Have Massive Consequences for Black Holes

Total Page:16

File Type:pdf, Size:1020Kb

The Reflector Newsletter of the Peterborough Astronomical Association Minor Mergers Have Massive Consequences for Black Holes Volume 14 • Issue 2 February 2015 ISSN 1712-4425 peterboroughastronomy.com twitter.com/PtbAstronomical The Reflector Newsletter of the Peterborough Astronomical Association Minor mergers have massive consequences for black holes Images credit: NGC 3393 in the optical (L) by M. Malkan (UCLA), HST, NASA (L); NGC 3393 in the X-ray and optical (R), composite by NASA / CXC / SAO / G. Fabbiano et al. (X-ray) and NASA/STScI (optical). DR. ETHAN SEIGEL hen you think of our of our sun or smaller, a rare but the Milky Way, houses a supermas- sun, the nearest star to significant fraction are ultra-mas- sive black hole that weighs in at Wour world, you think of sive, containing tens or even hun- about four million solar masses, an isolated entity, with more than dreds of times the mass our star while our big sister, Andromeda, four light years separating it from contains. When these stars run out has one nearly twenty times as its next nearest neighbor. But it of fuel in their cores, they explode massive. But even relatively iso- wasn’t always so: billions of years in a fantastic Type II supernova, lated galaxies didn’t simply form ago, when our sun was first creat- where the star’s core collapses. In from the monolithic collapse of an ed, it very likely formed in concert the most massive cases, this forms isolated clump of matter, but by hi- with thousands of other stars, a black hole. erarchical mergers of smaller gal- when a giant molecular cloud con- Over time, many generations axies over tremendous timescales. taining perhaps a million times the of stars — and hence, many black If galaxies with large amounts of mass of our solar system collapsed. holes — form, with the majority stars all have black holes at their While the vast majority of stars eventually migrating towards the centers, then we should be able to that the universe forms — some centres of their host galaxies and see some fraction of Milky Way- ninety-five percent — are the mass merging together. Our own galaxy, see “Chandra” on page 16 2 • peterboroughastronomy.com President’s Message Executive Meeting Results our executive met in January to ing “Bring your telescopes for a night of ob- discuss and act on a number of busi- serving” following a brief meeting indoors. ness related issues for the paa. A Ken Sunderland proposed the acquisi- Ysynopsis of the discussion is here. tion of lanyards to replace the strings used We plan to have “The President’s bbq” on on our badges. More on this at the February Saturday June 20th at the Robinson Road Meeting. Observatory. Details will follow in the com- There was discussion about the flow of ing weeks. information with ideas like Facebook tossed The website has been moved, Boyd will around. No decision made. fill us in at the February meeting. Rodger Forsyth The theme for the Library Display this PAA President year will be “Our Changing Solar System.” The date for the April meeting will be the 10th at Fairview Church with the focus be- Letter from the Editor Commenting on Comets e have something almost like a Our contributors were so productive last theme this month: comets. Yes, month that I’ve had to hold back some of W we have lots of photos of Comet their submissions for next month and be- Lovejoy C/2014 Q2. Brian McGaffney and yond. So come back next time and we’ll see John Chumak took some fine photos of this what else our writers have penned for you. faintly visible dirty snowball in the sky. John Phillip Chee Crossen describes Brian’s photo in a short Editor, The Reflector article but also begins a much longer three- part series on the Rosetta mission, that, you guessed it, landed on a comet. Comet 67P to be precise and John is not lost for words as he also has an article on 67P itself. Rick Stankiewicz has been back from China awhile and has his second China The Reflector Travel Tour article, this time about the Great Wall of China. While back in Canada The Reflector is a publication of the Peterborough Astronomi- he also tried to observe last month’s triple cal Association (P.A.A.) Founded in 1970, the P.A.A. is your local group for astronomy in Peterborough and the Kawarthas. transit across Jupiter’s surface. Read on to www.peterboroughastronomy.com • [email protected] see how he fared. Phone: 705.292.0729 Club Mailing Address Ken Sunderland returns with another Rodger Forsyth, President Peterborough Astronomical Association book review, this one concerning Lee 536 Robinson Road RR #1 Billngs’s Five Billion Years of Solitude. Peterborough, ON K9J 6X2 Vol 14 • Issue no. 2 • February 2015 • 3 The Reflector The Rosetta Mission — Part 1 Catch a Comet by the Tail JOHN CROSSEN he rosetta mission has seen Comet Halley. A number of countries sent more ups, downs and plot swaps probes to analyse the comet’s tail materials. than a bad murder mystery. For A few years later esa’s Giotto Probe of yet Tstarters the comet to catch was Comet another comet brought new knowledge of 47P Wirtanen. But launch delays caused the origin and composition of these cosmic scientists to switch targets to Comet 67P/ interlopers. The Giotto Probe also inspired Churyumov–Gerasimenko. For sanity’s interest in future missions to these messen- sake, let’s just refer to this snowball from gers from the outskirts of our solar system. outer space as Comet 67P. As originally proposed in the late 1980s, Unless you’ve spent the last 2 months the mission was to be a duet staring nasa watching the and the Sleep Network, European you know that Space Agen- the mission to cy — esa. reach Comet 67P The nasa was successful. version was What you prob- a simple fly- ably don’t know by mission is the intriguing called craf trail of events for Comet that unravelled Rendezvous during the Ro- Asteroid Fly- setta Mission’s by. The esa decade-long version was a trek. more ambi- The mission tious mission takes its name calling for the from the Rosetta spacecraft Stone which to land on a was the key that comet and re- unlocked the turn samples translation and to Earth for understanding examination. of hieroglyphics. To minimize The similarity expenses the here is that land- two agen- ing on Comet ARIANE ROSETTA ROCKET LAUNCH. From its inception in 1984 the Rosetta cies would 67P will help Mission has overcome a myriad of near-fatal challenges. Pictured here is share design the Rosetta Mission aboard an Ariane 5 rocket as it finally launched from us understand French Guiana. Photo was taken by the Blue Planet Chanel. knowledge as more about how well as rock- our solar system formed. It will be our new etry. Rosetta Stone revealing the 4.5-billion-year- However nasa’s funding was drastically old secrets of our origins. cut, leaving esa to shoulder the whole load. The seeds of the Rosetta Mission were It also caused esa to do a lot of rethinking planted in 1984 during the close approach of See “Rosetta” on page 15 4 • peterboroughastronomy.com Can you see the Great Wall of China from the Moon? RICK STANKIEWICZ hat do you think? Let’s start height of 7.6 m (25’). The length of the Wall by explaining what the Great is also punctuated with watchtowers at ir- Wall is, before discussing what regular intervals. Through its connection to Wit isn’t. folklore, it is easy to see how the Great Wall The Great Wall of China (in Chinese might follow the track of a dragon up and means Long Wall) is a series of long forti- down the spiny ridges of the rugged terrain fications made of stone, brick, compacted it has now become part of. From what I saw earth, wood, and natural barriers, basically of this longest fortification structure in the along an east-to-west line across the histor- world, it is indeed an impressive sight. ical northern border of China and southern On my recent trip to China in the fall of border of Inner Mongolia. This was done 2014, I was fortunate to have had the oppor- in part to protect the Chinese Empire or tunity to walk on the Great Wall on a cool its states, against various military incur- sunny morning in November (see attached sions by warlike peoples (Mongols). The images). Declared a unesco World Heri- Great Wall construction was started be- tage Site in 1987 the Great Wall receives a tween 220–206 BC by the first Emperor of large daily dose of visitors and tens of mil- China, Qin Shi Huang (Qin — pronounced lions annually. “chin” — Dynasty). However, most of the Since as early as 1754 there has been a Great Wall seen today is from the Ming space-based urban myth about the Great Dynasty (1368-1644 ad). The length of the Wall of China being the only manmade Great Wall with all its various branches and structure you can see from the Moon. In segments (not a continuous structure) mea- 1932, Ripley’s Believe it or Not cemented this sures over 21,000 km (13,000+ mi). The Wall myth in our pop culture. Given my view averages a width of 9 m (30’) at the base and of the Great Wall as I flew from Beijing to 4.6m (15’) across the top, with an average continued on next page Vol 14 • Issue no.
Recommended publications
  • Optical Astronomy Catalogues, Coordinates Visible Objects on the Sky • Stars • Planets • Comets & Asteroids • Nebulae & Galaxies
    Astrophysics Content: 2+2, 2×13×90 = 2 340 minutes = 39 hours Tutor: Martin Žáček [email protected] department of Physics, room 49 On-line informations: http://fyzika.feld.cvut.cz/~zacek/ … this presentation Many years (20?) teaching astrophysics (Prof. Petr Kulhanek), many texts and other materials but mostly in Czech (for example electronic journal Aldebaran Bulletin). 2011 … first year of teaching Astrophysics in English 2012-16 … 2017 … about 6 students, lextures on Thursday 11:00 lecture and 12:45 exercise https://www.fel.cvut.cz/cz/education/bk/predmety/12/77/p12773704.html ... AE0B02ASF https://www.fel.cvut.cz/cz/education/bk/predmety/12/78/p12784304.html ... AE0M02ASF Syllabus Classes: Astronomy & astrophysics 1. Astrophysics, history and its place in context of natural sciences. 2. Foundations of astronomy, history, its methods, instruments. 3. Solar system, inner and outer planets, Astronomical coordinates. Physics of stars 4. Statistics of stars, HR diagram. The star formation and evolution. Hyashi line. 5. Final evolutionary stages. White dwarfs, neutron stars, black holes. 6. Variable stars. Cepheids. Novae and supernovae stars. Binary systems. 7. Other galactic and extragalactic objects, nebulae, star clusters, galaxies. Cosmology 8. Principle of special and general theory of relativity. Relativistic experiments. 9. Cosmology. The Universe evolution, cosmological principle. Friedman models. 10. Supernovae Ia, cosmological parameters of the Universe, dark matter and dark energy. 11. Elementary particles, fundamental forces, quantum field theory, Feynman diagrams. 12. The origin of the Universe. Quark-gluon plasma. Nucleosynthesis. Microwave background radiation. 13. Cosmology with the inflationary phase, long-scale structure of the Universe. 14. Reserve Syllabus Practices: Astronomy & astrophysics 1.
    [Show full text]
  • Messier Objects
    Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun.
    [Show full text]
  • 1 the Comets of Caroline Herschel (1750-1848)
    Inspiration of Astronomical Phenomena, INSAP7, Bath, 2010 (www.insap.org) 1 publication: Culture and Cosmos, Vol. 16, nos. 1 and 2, 2012 The Comets of Caroline Herschel (1750-1848), Sleuth of the Skies at Slough Roberta J. M. Olson1 and Jay M. Pasachoff2 1The New-York Historical Society, New York, NY, USA 2Hopkins Observatory, Williams College, Williamstown, MA, USA Abstract. In this paper, we discuss the work on comets of Caroline Herschel, the first female comet-hunter. After leaving Bath for the environs of Windsor Castle and eventually Slough, she discovered at least eight comets, five of which were reported in the Philosophical Transactions of the Royal Society. We consider her public image, astronomers' perceptions of her contributions, and the style of her astronomical drawings that changed with the technological developments in astronomical illustration. 1. General Introduction and the Herschels at Bath Building on the research of Michael Hoskini and our book on comets and meteors in British art,ii we examine the comets of Caroline Herschel (1750-1848), the first female comet-hunter and the first salaried female astronomer (Figure 1), who was more famous for her work on nebulae. She and her brother William revolutionized the conception of the universe from a Newtonian one—i.e., mechanical with God as the great clockmaker watching over its movements—to a more modern view—i.e., evolutionary. Figure 1. Silhouette of Caroline Herschel, c. 1768, MS. Gunther 36, fol. 146r © By permission of the Oxford University Museum of the History of Science Inspiration of Astronomical Phenomena, INSAP7, Bath, 2010 (www.insap.org) 2 publication: Culture and Cosmos, Vol.
    [Show full text]
  • Alexandre Amorim -.:: GEOCITIES.Ws
    Alexandre Amorim (org) 2 3 PREFÁCIO O Boletim Observe! é uma iniciativa da Coordenação de Observação Astronômica do Núcleo de Estudo e Observação Astronômica “José Brazilício de Souza” (NEOA-JBS). Durante a reunião administrativa do NEOA-JBS em maio de 2010 foi apresentada a edição de Junho de 2010 para apreciação dos demais coordenadores do Núcleo onde houve aprovação unânime em usar o Boletim Observe! como veículo de informação das atividades e, principalmente, observações astronômicas. O Boletim Observe! é publicado mensalmente em formato eletrônico ou impresso separadamente, prezando pela simplicidade das informações e encorajando os leitores a observar, registrar e publicar os eventos astronômicos. Desde a sua primeira edição o Boletim Observe! conta com a colaboração espontânea de diversos astrônomos amadores e profissionais. Toda edição do Observe! do mês de dezembro é publicado um índice dos artigos do respectivo ano. Porém, desde aquela edição de Junho de 2010 foram publicados centenas de artigos e faz-se necessário consultar assuntos que foram tratados nas edições anteriores do Observe! e seus respectivos autores. Para isso publicaremos anualmente esse Índice de Assuntos, permitindo a consulta rápida dos temas abordados. Florianópolis, 1º de dezembro de 2018 Alexandre Amorim Coordenação de Observação Astronômica do NEOA-JBS 4 Ano I (2010) Nº 1 – Junho 2010 Eclipse da Lua em 26 de junho de 2010 Amorim, A. Júpiter sem a Banda Equatorial Sul Amorim, A. Conjunção entre Júpiter e Urano Amorim, A. Causos do Avelino Alves, A. A. Quem foi Eugênia de Bessa? Amorim, A. Nº 2 – Julho 2010 Aprendendo a dimensionar as distâncias angulares no céu Neves, M.
    [Show full text]
  • OCTOBER 2011 Next Meeting
    PRET ORI A CENT RE ASSA - OCT OBER 2011 PAGE 1 NEWSLETTER OCTOBER 2011 Next meeting Venue: The auditorium behind the main building at Christian Brothers College (CBC), Mount Edmund, Pretoria Road, Silverton, Pretoria. Date and time: Wednesday 26 October at 19h15. Programme: • Beginner’s Corner: "Introduction to spectroscopy" by Tom Field. (See bottom of page 10 of this newsletter.) • What’s Up? by Danie Barnardo. • 10 minute break — library will be open. • Main talk: "Destination Moon" by Patricia Skelton. • Socializing over tea/coffee and biscuits. The chairperson at the meeting will be Pat Kühn. Next observing evening: Friday 21 October at the Pretoria Centre Observatory, which is also situated at CBC. Turn left immediately after entering the main gate and follow the road. Arrive from sunset onwards. CONTENTS OF THIS NEWSLETTER Chairman's report of last month’s meeting 2 Solar eclipse series 2 Last month’s observing evening 3 The Crab Nebula viewing season Is almost upon us 4 Photographing the Moon’s parallax 5 Summary of “What’s Up?” to be presented on 26 October 6 For the Pretoria ASSA Deep Sky Observers (or any observer) 7 Feature of the month: Comet Elenin 8 News items 9 Basics: The blink comparator 10 Note about “Beginner’s Corner” on 26 October 10 Arp 273 - two interacting galaxies 11 Pretoria Centre committee 11 PAGE 2 PRET ORI A CENT RE ASSA - OCT OBER 2011 Chairman's report of last month’s meeting Beginner’s corner featured a fascinating presentation which amounted to an exposition of astronomical sleuthing by James Thomas.
    [Show full text]
  • The Comet's Tale
    THE COMET’S TALE Journal of the Comet Section of the British Astronomical Association Number 33, 2014 January Not the Comet of the Century 2013 R1 (Lovejoy) imaged by Damian Peach on 2013 December 24 using 106mm F5. STL-11k. LRGB. L: 7x2mins. RGB: 1x2mins. Today’s images of bright binocular comets rival drawings of Great Comets of the nineteenth century. Rather predictably the expected comet of the century Contents failed to materialise, however several of the other comets mentioned in the last issue, together with the Comet Section contacts 2 additional surprise shown above, put on good From the Director 2 appearances. 2011 L4 (PanSTARRS), 2012 F6 From the Secretary 3 (Lemmon), 2012 S1 (ISON) and 2013 R1 (Lovejoy) all Tales from the past 5 th became brighter than 6 magnitude and 2P/Encke, 2012 RAS meeting report 6 K5 (LINEAR), 2012 L2 (LINEAR), 2012 T5 (Bressi), Comet Section meeting report 9 2012 V2 (LINEAR), 2012 X1 (LINEAR), and 2013 V3 SPA meeting - Rob McNaught 13 (Nevski) were all binocular objects. Whether 2014 will Professional tales 14 bring such riches remains to be seen, but three comets The Legacy of Comet Hunters 16 are predicted to come within binocular range and we Project Alcock update 21 can hope for some new discoveries. We should get Review of observations 23 some spectacular close-up images of 67P/Churyumov- Prospects for 2014 44 Gerasimenko from the Rosetta spacecraft. BAA COMET SECTION NEWSLETTER 2 THE COMET’S TALE Comet Section contacts Director: Jonathan Shanklin, 11 City Road, CAMBRIDGE. CB1 1DP England. Phone: (+44) (0)1223 571250 (H) or (+44) (0)1223 221482 (W) Fax: (+44) (0)1223 221279 (W) E-Mail: [email protected] or [email protected] WWW page : http://www.ast.cam.ac.uk/~jds/ Assistant Director (Observations): Guy Hurst, 16 Westminster Close, Kempshott Rise, BASINGSTOKE, Hampshire.
    [Show full text]
  • Just What Are Those Sky Chart "M" and "NGC" Numbers? by Barry D
    Just what are those Sky Chart "M" and "NGC" Numbers? By Barry D. Malpas – Special to the Williams-Grand Canyon News – 2014 November One of the pastimes for some early sky observers was to locate new comets. Charles Messier (1730-1817) was a French comet hunter during the late 1700s, and discovered 13 new comets between 1760 and 1785. His interest in astronomy, and comets in particular, was influenced by seeing the great comet of 1744, and the comet of 1759 (of which Edmond Halley had believed the comets of 1531, 1607, and 1682 were the same and had predicted the comet’s 1759 apparition which is now known as Halley's Comet.) At this time telescopes were relatively small. The understanding of supernovae, or galaxies, was not yet in the current knowledge, as such objects only appeared as blurry smudges that did not move across the sky. In order not to waste time and become frustrated with viewing fuzzy objects that resembled, but were not, comets, Messier compiled a list of 110 of these celestial blurs which we now refer to as Messier, or "M Objects." The Messier Catalog has become a very popular list of "Deep Sky Objects" among amateur astronomers around the world because it consists of most of the galaxies, nebulae and star clusters easily observable with binoculars or small telescopes in the northern skies. Now, however, the objects in the list are the source of interest, as opposed to the reason the compilation was originally intended by Messier. At large astronomical get-togethers, known as "star parties", there is often a "Messier Marathon" competition to view the most Messier Objects during one observing night.
    [Show full text]
  • Finding Long Lost Lexellʼs Comet: the Fate of the First Discovered Near-Earth Object
    The Astronomical Journal, 155:163 (13pp), 2018 April https://doi.org/10.3847/1538-3881/aab1f6 © 2018. The American Astronomical Society. All rights reserved. Finding Long Lost Lexellʼs Comet: The Fate of the First Discovered Near-Earth Object Quan-Zhi Ye (叶泉志)1,2 , Paul A. Wiegert3,4 , and Man-To Hui (许文韬)5 1 Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA; [email protected] 2 Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125, USA 3 Department of Physics and Astronomy, The University of Western Ontario, London, Ontario N6A 3K7, Canada 4 Centre for Planetary Science and Exploration, The University of Western Ontario, London, Ontario N6A 5B8, Canada 5 Department of Earth, Planetary and Space Sciences, UCLA, Los Angeles, CA 90095-1567, USA Received 2017 December 14; revised 2018 February 16; accepted 2018 February 20; published 2018 March 22 Abstract Jupiter-family Comet D/1770 L1 (Lexell) was the first discovered Near-Earth Object (NEO) and passed the Earth on 1770 July 1 at a recorded distance of 0.015 au. The comet was subsequently lost due to unfavorable observing circumstances during its next apparition followed by a close encounter with Jupiter in 1779. Since then, the fate of D/Lexell has attracted interest from the scientific community, and now we revisit this long-standing question. We investigate the dynamical evolution of D/Lexell based on a set of orbits recalculated using the observations made by Charles Messier, the comet’s discoverer, and find that there is a 98% chance that D/Lexell remains in the solar system by the year of 2000.
    [Show full text]
  • Snake River Skies the Newsletter of the Magic Valley Astronomical Society
    Snake River Skies The Newsletter of the Magic Valley Astronomical Society www.mvastro.org Membership Meeting MVAS President’s Message June 2018 Saturday, June 9th 2018 7:00pm at the Toward the end of last month I gave two presentations to two very different groups. Herrett Center for Arts & Science College of Southern Idaho. One was at the Sawtooth Botanical Gardens in their central meeting room and covered the spring constellations plus some simple setups for astrophotography. Public Star Party Follows at the The other was for the Sun Valley Company and was a telescope viewing session Centennial Observatory given on the lawn near the outdoor pavilion. The composition of the two groups couldn’t be more different and yet their queries and interests were almost identical. Club Officers Both audiences were genuinely curious about the universe and their questions covered a wide range of topics. How old is the moon? What is a star made of? Tim Frazier, President How many exoplanets are there? And, of course, the big one: Is there life out [email protected] there? Robert Mayer, Vice President The SBG’s observing session was rained out but the skies did clear for the Sun [email protected] Valley presentation. As the SV guests viewed the moon and Jupiter, I answered their questions and pointed out how one of Jupiter’s moons was disappearing Gary Leavitt, Secretary behind the planet and how the mountains on our moon were casting shadows into [email protected] the craters. Regardless of their age, everyone was surprised at the details they 208-731-7476 could see and many expressed their amazement at what was “out there”.
    [Show full text]
  • Charles Messier
    Cambridge University Press 0521803861 - The Observing Guide to the Messier Marathon: A Handbook and Atlas Don Machholz Excerpt More information Part 1 Handbook © Cambridge University Press www.cambridge.org Cambridge University Press 0521803861 - The Observing Guide to the Messier Marathon: A Handbook and Atlas Don Machholz Excerpt More information 1 Charles Messier Charles Messier lived and worked during a pivotal point in visual astronomical history. He was one of the first comet hunters, discovering new comets over a span of four decades, and recording nearly every observable comet during his career. His comet hunting resulted in an extensive knowledge of the night sky, enabling him to organize a catalog of galaxies, clusters and nebulae. This list of heavenly wonders, known as the Messier Catalogue, has become one of the most popular lists of its kind. It includes many of the brightest and best-known objects in the night sky. Yet the 110 marvels are few enough that even the beginning amateur astronomer of today can find them all, or nearly all, of them in one night. Born on June 26, 1730, in Lorraine, France, Charles was the tenth of twelve children.1 His father died when he was eleven. Three years later, in early 1744, the young Charles observed the brilliant multi- tailed comet of 1744. A month after his eighteenth birthday, in July 1748, he observed an annular solar eclipse from his home town. In October 1751 he went to Paris in search of a new life. His skill in penmanship and drafting landed him employment as a record keeper at a small observatory at the Hotel de Cluny.
    [Show full text]
  • Comet Resources Comet Books Cometography: a Catalog of Comets, by Gary Kronk
    APPENDIX Comet Resources Comet Books Cometography: A Catalog of Comets, by Gary Kronk. Cometography Volume 1. Ancient – 1799. Cambridge University Press 1999. ISBN-13: 978-0521585040. Cometography Volume 2. 1800 – 1899. Cambridge University Press 2003. ISBN-13: 978-0521585057. Cometography Volume 3. 1900 – 1932. Cambridge University Press 2007. ISBN-13: 978-0521585064. Cometography Volume 4. 1933 – 1959. Cambridge University Press 2008. ISBN-13: 978-0521585071. Cometography Volume 5. 1960 – 1982. Cambridge University Press 2010. ISBN-13: 978-0521872263. David Levy's Guide to Observing and Discovering Comets. Cambridge University Press 2003. ISBN-13: 978-0521520515. The Greatest Comets in History: Broom Stars and Celestial Scimitars by David Seargent. Springer. ISBN-13: 978-0387095127. 2008. Comets: A Chronological History of Observation, Science, Myth, and Folklore by Donald K. Yeomans. John Wiley & Sons 1991. ISBN-13: 978-0471610113. Great Comets by Robert Burnham. Cambridge University Press 2000. ISBN-13: 978-0521646000. 383 384 Appendix Comets and How to Observe Them by Richard Schmude. Springer 2010. ISBN-13: 978-1441957894. Observing Comets by Nick James and Gerald North. Springer 2002. ISBN-13: 978-1852335571. Comets, Popular Culture, and the Birth of Modern Cosmology by Sara Schechner Genuth. Princeton University Press 1999. ISBN-13: ­978-0691009254. Fire in the Sky: Comets and Meteors, the Decisive Centuries in British Art and Science by Olson and Pasachoff. Cambridge University Press 1999. ISBN-13: 978-0521663595. Comets II (University
    [Show full text]
  • The Comets Are Here!
    Comets in the sky in 2014 As of July 2013 there were 4,894 known comets, and this number is steadily increasing. However, this represents only a tiny fraction of the total potential comet population, as the reservoir of comet-like bodies in the outer Solar System may number one trillion. Roughly one comet per year is visible to the naked eye, though many of these are faint and unspectacular. Particularly bright examples are called "Great Comets". A comet goes by many names, the most important of which to its discoverer is his or her surname. Many bright comets that frequently return retain their popular names, such as Comet Halley. (Halley did not discover the comet, but he predicted its orbit and return.) Frequently, two or more observers discover a comet simultaneously or independently. The names of the first three observers to report their discovery properly are affixed to the new comet. The rapid growth in the number of known comets has prompted the International Astronomical Union (IAU) to catalogue them according to precise rules. A new cometary designation system was adopted 1 January 1995. The new system resembles that of minor planets, with objects recorded by the half-month. Thus the third comet reported as discovered during the second half of February 1997 would be designated 1997 D3. When appropriate, the nature (or suggested nature) of an object can be indicated by preceding the designation with A/ (for minor planet), C/ (for comet), P/ (for periodic comet), etc. Hence, under the new cometary designation system, Comet Hale-Bopp was designated C/1995 O1.
    [Show full text]