Reprinted from ‘Molecular Spectroscopy and Quantum Dynamics’ , R. Marquardt and M.Quack eds. , pp.231-282, Elsevier, Amsterdam, 1st Edition, 2020, ISBN978-012-817234-6 (https://doi.org/10.1016/B978-0-12-817234-6.00012-X) CHAPTER 7 Atomic and Molecular Tunneling Processes in Chemistry MARTIN QUACK • GEORG SEYFANG Laboratorium für Physikalische Chemie, ETH Zürich, CH-8093 Zürich, Switzerland,
[email protected] Abstract The article presents an overview of atomic and molecular tunneling processes, where tunneling of “heavy” particles (i.e., nuclei, not electrons) is important. After an introductory tour d’horizon including a brief history of the tunnel effect, we discuss some topics of current interest. These include tunneling and parity violation in chiral molecules, tunneling in weakly bound complexes, and tunneling processes in slightly asymmetric potentials with tunneling switching and the development of a molecular quantum switch. We then present a selection of recent results for isomerization reactions, bimolecular reactions, tunneling in ions, radicals and electronically excited states, and of the motions of molecules inside a cage. We conclude with some remarks on certain general problems related to tunneling. 7.1 INTRODUCTION and an outlook. The present article is in part based on 7.1.1 Aim and Overview of the Article an earlier brief review (in German) (Seyfang and Quack, Tunneling is a fundamental quantum-mechanical phe- 2018). nomenon with a wide range of applications in chem- 7.1.2 The Quantum Mechanical Tunneling istry and physics, on which numerous books have been Process for “Heavy” Particles (Atoms written already. As far as atomic and molecular pro- and Molecules): a Tour d’Horizon cesses are concerned, one must distinguish phenomena where the “light” electrons are involved in tunneling Tunneling processes with the motion of electrons are (for instance, in redox reactions, tunneling ionization dominating many physical and chemical processes in strong fields, etc.) and processes, where the tunnel ef- due to the small mass of the electron.