Determination De La Composition Des Surfaces Planetaires Par Spectroscopie Gamma Et Neutron

Total Page:16

File Type:pdf, Size:1020Kb

Determination De La Composition Des Surfaces Planetaires Par Spectroscopie Gamma Et Neutron THÈSE En vue de l'obtention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par l'Université Toulouse III - Paul Sabatier Discipline ou spécialité : Planétologie Présentée et soutenue par Bénédicte Diez Le 25/06/2009 DETERMINATION DE LA COMPOSITION DES SURFACES PLANETAIRES PAR SPECTROSCOPIE GAMMA ET NEUTRON DETERMINATION OF PLANETARY SURFACES ELEMENTAL COMPOSITION BY GAMMA AND NEUTRON SPECTROSCOPY tel-00410365, version 1 - 20 Aug 2009 JURY Pr. Henri Reme professeur à l'université Toulouse III Président Dr. Johannes Brückner senior scientist au Max Planck Institut, Mainz Rapporteur Dr. Eric Chassefière directeur de recherche à l'université Paris 6 Rapporteur Pr. Philippe Paillou professeur à l'université Bordeaux I Examinateur Dr. David J. Lawrence research scientist à l'APL, Laurel, USA Examinateur Dr. Francis Rocard ingénieur CNES Examinateur Dr. Mike Toplis directeur de recherche à l'université Toulouse III Examinateur Dr. Sylvestre Maurice astronome à l'université Toulouse III Directeur Ecole doctorale : Sciences de l’Univers, de l’Environnement et de l’Espace Unité de recherche : Centre d’Etude Spatiale des Rayonnements Directeur de Thèse : Dr. Sylvestre Maurice Rapporteurs : Dr. Johannes Brückner et Dr. Eric Chassefière tel-00410365, version 1 - 20 Aug 2009 2 Avant propos Les premiers mots de cette thèse, qui sont chronologiquement les derniers, ne seront pas scientifiques. Je m’autorise une parenthèse de français, que de toute façon la plupart de mes amis anglophones comprennent mieux que je n’écris l’anglais. Le présent manuscrit constitue un résumé des travaux que j’ai effectué au cours de ces trois années de thèse. Que ce soit d’un point de vue professionnel ou personnel, il n’est le récit que de la partie émergée de ce qu’a été pour moi l’iceberg de ces trois ans. La description de la démarche scientifique ne reflète rien de ce qu’on pu être les collaborations avec nombre de chercheurs, que je peux maintenant non sans fierté nommer collègues. Je pense en premier lieu à mes amis de Los Alamos : Rick, Tom, David et surtout Bill, dont la patience, la disponibilité et l’infatigable ténacité au travail ont fait un mentor exemplaire. Si je peux, au fil des ans qui me restent pour rejoindre son âge respectable, acquérir un tant soit peu de sa vivacité intellectuelle et de ses qualités humaines, alors je m’estimerai la plus récompensée des créatures. Je pense également à mes amis d’Orsay : François, Véronique, Nicolas, Ana, Damien, Sandrine et Sylvain qui m’ont épaulé pendant mon passage à Paris. Contrairement à ce que laissaient présager les premiers mois de pataugeage complet, mon séjour chez les géologues s’est avéré très riche d’enseignements et a donné l’un des chapitres les plus aboutis de ma thèse. Je pense aussi à mes amis japonais, et il sera difficile de les nommer tous ici… La communication n’a pas été facile entre notre équipe et la leur, mais les liens se sont progressivement affirmés, et l’arrivée prochaine de Yuki est pleine de promesses pour l’avenir. Je pense enfin et surtout à l’équipe surfaces planétaires de Toulouse, dont je me sens tel-00410365, version 1 - 20 Aug 2009 membre à part entière aujourd’hui et qu’il va être difficile de devoir quitter. Claude, Olivier F., Agnès, Nath (et puis Benoit et Erwan qui ont déjà pris leur envol) il fait bon travailler à vos côtés ! J’ai mis de côté Olivier G. et Sylvestre pour des raisons qui dépassent le simple fait qu’on partage un même bureau… Olivier merci pour la constance de ta disponibilité et l’abondance de bons conseils que tu m’as divulgués. Sylvestre merci de m’avoir donné la latitude dont j’ai besoin, d’avoir su trouver les mots pour chacune des crises que j’ai traversée, bref d’avoir été là quand il fallait ! Même s’il y a eu des hauts et des bas au cours des trois ans et qu’il m’est arrivé de rechigner sur certains aspects de la recherche (tels que les corrections d’article que j’affectionne particulièrement…), je trouve le bilan plutôt très positif et j’ai le sentiment qu’on forme une bonne équipe ! D’un point de vue plus personnel, la thèse a aussi été l’occasion de nombreux voyages: Los Alamos, Berlin, Hawaï, Tucson, Noordwijk, Vienne, Tokyo, Münster… et de toutes les rencontres qui vont avec. Certaines très ponctuelles, et d’autres qui ont été amenées à durer quand j’ai réussi à faire taire les fourmis dans les pieds. Je pense aux doctorants 3 d’Orsay et de Toulouse qui sont trop nombreux pour être tous nommés. Mention spéciale pour quelques vieux de la veille avec qui j’ai plus particulièrement eu l’occasion de prendre des verres, manger des glaces ou fêter des anniversaires : Mathieu et Pat, Martatin, Pierrick, Céline et Nadège… Partout où j’ai été je me suis sentie bien entourée. Hors du cadre des laboratoires, j’ai aussi connu au cours de ces trois ans plusieurs tournants significatifs. Certains me laissent encore un peu nostalgique, ils m’ont amené à faire cavalier solitaire une grande partie de la thèse (une pensée particulièrement affectueuse pour Nico). Mais il en est d’autres plus réjouissants, tels que la découverte du swing qui a été un puissant moteur d’épanouissement ces deux dernières années, ainsi que l’occasion de rencontrer des personnes à qui je tiens beaucoup. Je repenserai par ailleurs aux années de thèse comme étant celles de la colocation avec Steph et Mathieu. Mathieu t’es un autiste du pc un brin ronchon à tes heures, mais on t’aime bien quand même. Steph, Julien a beau essayer de te voler mesquinement à nous, on ne te laissera pas partir comme ça, faudra me passer sur le corps auparavant. Merci à tous les deux, je pourrais citer douze mille anecdotes, mais je crois qu’il suffit de dire qu’on est bien ensemble. J’espère qu’il nous reste de nombreuses réunions à venir avec toute la bande ! Et puis j’ai gardé ma famille pour la fin, en dépit du fait qu’elle soit plutôt à l’origine de l’aventure. Durant ces années des évènements majeurs ont eu lieu : le mariage de Laurent avec Hélène, celui d’Alice avec Austin, et puis l’annonce d’autres encore plus importants à venir… Espérons que de nombreuses occasions de célébration nous attendent. Merci à mes proches et surtout à papa, maman et frangin qui me supportent et me soutiennent depuis encore plus longtemps que tous les autres ! tel-00410365, version 1 - 20 Aug 2009 4 Table of contents Avant propos .................................................................................................................... 3 Table of contents .............................................................................................................. 5 Introduction ...................................................................................................................... 9 Introduction (en français) ............................................................................................... 11 Chapter 1 Gamma ray and neutron spectroscopy in a planetary context .................. 13 1.1 Gamma ray and neutron spectroscopy principles ............................................ 13 1.1.1 Gamma rays and neutrons ........................................................................ 13 1.1.2 Neutron sources in planetary materials .................................................... 14 1.1.3 Gamma ray sources in planetary materials ............................................... 15 1.2 Instrumentation ................................................................................................ 17 1.2.1 Gamma ray spectroscopy.......................................................................... 17 1.2.2 Neutron spectroscopy ............................................................................... 19 1.2.3 History of gamma and neutron spectrometers onboard planetary missions 19 1.3 Planets of interest ............................................................................................. 22 1.3.1 Mars .......................................................................................................... 22 1.3.2 The Moon ................................................................................................. 29 Chapter 2 Constraints on the composition of the Martian surface provided by the Mars Odyssey Neutron Spectrometer ............................................................................. 34 2.1 Scope of the Mars Odyssey Neutron Spectrometer mission ............................ 35 tel-00410365, version 1 - 20 Aug 2009 2.1.1 The Mars Odyssey mission ...................................................................... 35 2.1.2 The Mars Odyssey Neutron Spectrometer (MONS) ................................ 36 2.2 Reduction of neutron data from Mars Odyssey ............................................... 39 2.2.1 Overview of the data reduction ................................................................ 39 2.2.2 Initial Processing ...................................................................................... 43 2.2.3 Peak extraction of event mode.................................................................. 47 2.2.4 Peak extraction of category 1 ................................................................... 50 2.2.5 Reduction of systematic uncertainties ...................................................... 56 2.2.6 Final data .................................................................................................. 68 2.2.7 Conclusion ................................................................................................ 75 2.3 H layering in the top meter of Mars ................................................................
Recommended publications
  • Lunar Ionosphere Exploration Method Using Auroral Kilometric Radiation
    Earth Planets Space, 63, 47–56, 2011 Lunar ionosphere exploration method using auroral kilometric radiation Yoshitaka Goto1, Takamasa Fujimoto1, Yoshiya Kasahara1, Atsushi Kumamoto2, and Takayuki Ono2 1Kanazawa University, Kanazawa, Japan 2Tohoku University, Sendai, Japan (Received June 3, 2009; Revised November 10, 2010; Accepted January 14, 2011; Online published February 21, 2011) The evidence of a lunar ionosphere provided by radio occultation experiments performed by the Soviet spacecraft Luna 19 and 22 has been controversial for the past three decades because the observed large density is difficult to explain theoretically without magnetic shielding from the solar wind. The KAGUYA mission provided an opportunity to investigate the lunar ionosphere with another method. The natural plasma wave receiver (NPW) and waveform capture (WFC) instruments, which are subsystems of the lunar radar sounder (LRS) on board the lunar orbiter KAGUYA, frequently observe auroral kilometric radiation (AKR) propagating from the Earth. The dynamic spectra of the AKR sometimes exhibit a clear interference pattern that is caused by phase differences between direct waves and waves reflected on a lunar surface or a lunar ionosphere if it exists. It was hypothesized that the electron density profiles above the lunar surface could be evaluated by comparing the observed interference pattern with the theoretical interference patterns constructed from the profiles with ray tracing. This method provides a new approach to examining the lunar ionosphere that does not involve the conventional radio occultation technique. Key words: KAGUYA, lunar ionosphere, auroral kilometric radiation. 1. Introduction 2001; Kurata et al., 2005). The dense plasma layers may The lunar atmosphere is extremely tenuous compared to be maintained by these strong fields.
    [Show full text]
  • Design and Analysis of a Spatial Neutron Modulator for Neutron Imaging Via Compressive Sensing
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 5-2019 Design and Analysis of a Spatial Neutron Modulator for Neutron Imaging via Compressive Sensing Daniel Taylor Garza University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Recommended Citation Garza, Daniel Taylor, "Design and Analysis of a Spatial Neutron Modulator for Neutron Imaging via Compressive Sensing. " Master's Thesis, University of Tennessee, 2019. https://trace.tennessee.edu/utk_gradthes/5470 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Daniel Taylor Garza entitled "Design and Analysis of a Spatial Neutron Modulator for Neutron Imaging via Compressive Sensing." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Mechanical Engineering. William R. Hamel, Major Professor We have read this thesis and recommend its acceptance: Jindong Tan, Eric Wade, Stephen Jesse Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Design and Analysis of a Spatial Neutron Modulator for Neutron Imaging via Compressive Sensing A Thesis Presented for the Master of Science Degree The University of Tennessee, Knoxville Daniel Taylor Garza May 2019 Acknowledgements First, I would like to thank my advisor Dr.
    [Show full text]
  • Alluvial Fans As Potential Sites for Preservation of Biosignatures on Mars
    Alluvial Fans as Potential Sites for Preservation of Biosignatures on Mars Phylindia Gant August 15, 2016 Candidate, Masters of Environmental Science Committee Chair: Dr. Deborah Lawrence Committee Member: Dr. Manuel Lerdau, Dr. Michael Pace 2 I. Introduction Understanding the origin of life Life on Earth began 3.5 million years ago as the temperatures in the atmosphere were cool enough for molten rocks to solidify (Mojzsis et al 1996). Water was then able to condense and fall to the Earth’s surface from the water vapor that collected in the atmosphere from volcanoes. Additionally, atmospheric gases from the volcanoes supplied Earth with carbon, hydrogen, nitrogen, and oxygen. Even though the oxygen was not free oxygen, it was possible for life to begin from the primordial ooze. The environment was ripe for life to begin, but how would it begin? This question has intrigued humanity since the dawn of civilization. Why search for life on Mars There are several different scientific ways to answer the question of how life began. Some scientists believe that life started out here on Earth, evolving from a single celled organism called Archaea. Archaea are a likely choice because they presently live in harsh environments similar to the early Earth environment such as hot springs, deep sea vents, and saline water (Wachtershauser 2006). Another possibility for the beginning of evolution is that life traveled to Earth on a meteorite from Mars (Whitted 1997). Even though Mars is anaerobic, carbonate-poor and sulfur rich, it was warm and wet when Earth first had organisms evolving (Lui et al.
    [Show full text]
  • Arxiv:1912.04482V1 [Physics.Space-Ph] 10 Dec 2019
    manuscript submitted to Radio Science Measuring the Earth's Synchrotron Emission from Radiation Belts with a Lunar Near Side Radio Array Alexander Hegedus1, Quentin Nenon2, Antoine Brunet3, Justin Kasper1, Ang´elicaSicard3, Baptiste Cecconi4, Robert MacDowall5, Daniel Baker6 1University of Michigan, Department of Climate and Space Sciences and Engineering, Ann Arbor, Michigan, USA 2Space Sciences Laboratory, University of California, Berkeley, CA, USA 3ONERA / DPHY, Universit´ede Toulouse, F-31055 Toulouse France 4LESIA, Observatoire de Paris, Universit PSL, CNRS, Sorbonne Universit, Univ. de Paris, Meudon, France 5NASA Goddard Space Flight Center, Greenbelt, MD, USA 6University of Colorado Boulder, Laboratory for Atmospheric and Space Physics, Boulder, Colorado, USA Key Points: • Synchrotron emission between 500-1000 kHz has a total flux density of 1.4-2 Jy at lunar distances • A 10 km radio array with 16000 elements could detect the emission in 12-24 hours with moderate noise • Changing electron density can make detections 10x faster at lunar night, 10x slower at lunar noon arXiv:1912.04482v1 [physics.space-ph] 10 Dec 2019 Corresponding author: Alexander Hegedus, [email protected] {1{ manuscript submitted to Radio Science Abstract The high kinetic energy electrons that populate the Earth's radiation belts emit synchrotron emissions because of their interaction with the planetary magnetic field. A lunar near side array would be uniquely positioned to image this emission and provide a near real time measure of how the Earth's radiation belts are responding to the current solar in- put. The Salammb^ocode is a physical model of the dynamics of the three-dimensional phase-space electron densities in the radiation belts, allowing the prediction of 1 keV to 100 MeV electron distributions trapped in the belts.
    [Show full text]
  • Photographs Written Historical and Descriptive
    CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY HAER FL-8-B BUILDING AE HAER FL-8-B (John F. Kennedy Space Center, Hanger AE) Cape Canaveral Brevard County Florida PHOTOGRAPHS WRITTEN HISTORICAL AND DESCRIPTIVE DATA HISTORIC AMERICAN ENGINEERING RECORD SOUTHEAST REGIONAL OFFICE National Park Service U.S. Department of the Interior 100 Alabama St. NW Atlanta, GA 30303 HISTORIC AMERICAN ENGINEERING RECORD CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY BUILDING AE (Hangar AE) HAER NO. FL-8-B Location: Hangar Road, Cape Canaveral Air Force Station (CCAFS), Industrial Area, Brevard County, Florida. USGS Cape Canaveral, Florida, Quadrangle. Universal Transverse Mercator Coordinates: E 540610 N 3151547, Zone 17, NAD 1983. Date of Construction: 1959 Present Owner: National Aeronautics and Space Administration (NASA) Present Use: Home to NASA’s Launch Services Program (LSP) and the Launch Vehicle Data Center (LVDC). The LVDC allows engineers to monitor telemetry data during unmanned rocket launches. Significance: Missile Assembly Building AE, commonly called Hangar AE, is nationally significant as the telemetry station for NASA KSC’s unmanned Expendable Launch Vehicle (ELV) program. Since 1961, the building has been the principal facility for monitoring telemetry communications data during ELV launches and until 1995 it processed scientifically significant ELV satellite payloads. Still in operation, Hangar AE is essential to the continuing mission and success of NASA’s unmanned rocket launch program at KSC. It is eligible for listing on the National Register of Historic Places (NRHP) under Criterion A in the area of Space Exploration as Kennedy Space Center’s (KSC) original Mission Control Center for its program of unmanned launch missions and under Criterion C as a contributing resource in the CCAFS Industrial Area Historic District.
    [Show full text]
  • Apollo Over the Moon: a View from Orbit (Nasa Sp-362)
    chl APOLLO OVER THE MOON: A VIEW FROM ORBIT (NASA SP-362) Chapter 1 - Introduction Harold Masursky, Farouk El-Baz, Frederick J. Doyle, and Leon J. Kosofsky [For a high resolution picture- click here] Objectives [1] Photography of the lunar surface was considered an important goal of the Apollo program by the National Aeronautics and Space Administration. The important objectives of Apollo photography were (1) to gather data pertaining to the topography and specific landmarks along the approach paths to the early Apollo landing sites; (2) to obtain high-resolution photographs of the landing sites and surrounding areas to plan lunar surface exploration, and to provide a basis for extrapolating the concentrated observations at the landing sites to nearby areas; and (3) to obtain photographs suitable for regional studies of the lunar geologic environment and the processes that act upon it. Through study of the photographs and all other arrays of information gathered by the Apollo and earlier lunar programs, we may develop an understanding of the evolution of the lunar crust. In this introductory chapter we describe how the Apollo photographic systems were selected and used; how the photographic mission plans were formulated and conducted; how part of the great mass of data is being analyzed and published; and, finally, we describe some of the scientific results. Historically most lunar atlases have used photointerpretive techniques to discuss the possible origins of the Moon's crust and its surface features. The ideas presented in this volume also rely on photointerpretation. However, many ideas are substantiated or expanded by information obtained from the huge arrays of supporting data gathered by Earth-based and orbital sensors, from experiments deployed on the lunar surface, and from studies made of the returned samples.
    [Show full text]
  • Managing Software Development – the Hidden Risk * Dr
    Managing Software Development – The Hidden Risk * Dr. Steve Jolly Sensing & Exploration Systems Lockheed Martin Space Systems Company *Based largely on the work: “Is Software Broken?” by Steve Jolly, NASA ASK Magazine, Spring 2009; and the IEEE Fourth International Conference of System of Systems Engineering as “System of Systems in Space 1 Exploration: Is Software Broken?”, Steve Jolly, Albuquerque, New Mexico June 1, 2009 Brief history of spacecraft development • Example of the Mars Exploration Program – Danger – Real-time embedded systems challenge – Fault protection 2 Robotic Mars Exploration 2011 Mars Exploration Program Search: Search: Search: Determine: Characterize: Determine: Aqueous Subsurface Evidence for water Global Extent Subsurface Bio Potential Minerals Ice Found Found of Habitable Ice of Site 3 Found Environments Found In Work Image Credits: NASA/JPL Mars: Easy to Become Infamous … 1. [Unnamed], USSR, 10/10/60, Mars flyby, did not reach Earth orbit 2. [Unnamed], USSR, 10/14/60, Mars flyby, did not reach Earth orbit 3. [Unnamed], USSR, 10/24/62, Mars flyby, achieved Earth orbit only 4. Mars 1, USSR, 11/1/62, Mars flyby, radio failed 5. [Unnamed], USSR, 11/4/62, Mars flyby, achieved Earth orbit only 6. Mariner 3, U.S., 11/5/64, Mars flyby, shroud failed to jettison 7. Mariner 4, U.S. 11/28/64, first successful Mars flyby 7/14/65 8. Zond 2, USSR, 11/30/64, Mars flyby, passed Mars radio failed, no data 9. Mariner 6, U.S., 2/24/69, Mars flyby 7/31/69, returned 75 photos 10. Mariner 7, U.S., 3/27/69, Mars flyby 8/5/69, returned 126 photos 11.
    [Show full text]
  • Getting to Mars How Close Is Mars?
    Getting to Mars How close is Mars? Exploring Mars 1960-2004 Of 42 probes launched: 9 crashed on launch or failed to leave Earth orbit 4 failed en route to Mars 4 failed to stop at Mars 1 failed on entering Mars orbit 1 orbiter crashed on Mars 6 landers crashed on Mars 3 flyby missions succeeded 9 orbiters succeeded 4 landers succeeded 1 lander en route Score so far: Earthlings 16, Martians 25, 1 in play Mars Express Mars Exploration Rover Mars Exploration Rover Mars Exploration Rover 1: Meridiani (Opportunity) 2: Gusev (Spirit) 3: Isidis (Beagle-2) 4: Mars Polar Lander Launch Window 21: Jun-Jul 2003 Mars Express 2003 Jun 2 In Mars orbit Dec 25 Beagle 2 Lander 2003 Jun 2 Crashed at Isidis Dec 25 Spirit/ Rover A 2003 Jun 10 Landed at Gusev Jan 4 Opportunity/ Rover B 2003 Jul 8 Heading to Meridiani on Sunday Launch Window 1: Oct 1960 1M No. 1 1960 Oct 10 Rocket crashed in Siberia 1M No. 2 1960 Oct 14 Rocket crashed in Kazakhstan Launch Window 2: October-November 1962 2MV-4 No. 1 1962 Oct 24 Rocket blew up in parking orbit during Cuban Missile Crisis 2MV-4 No. 2 "Mars-1" 1962 Nov 1 Lost attitude control - Missed Mars by 200000 km 2MV-3 No. 1 1962 Nov 4 Rocket failed to restart in parking orbit The Mars-1 probe Launch Window 3: November 1964 Mariner 3 1964 Nov 5 Failed after launch, nose cone failed to separate Mariner 4 1964 Nov 28 SUCCESS, flyby in Jul 1965 3MV-4 No.
    [Show full text]
  • Deep Space Chronicle Deep Space Chronicle: a Chronology of Deep Space and Planetary Probes, 1958–2000 | Asifa
    dsc_cover (Converted)-1 8/6/02 10:33 AM Page 1 Deep Space Chronicle Deep Space Chronicle: A Chronology ofDeep Space and Planetary Probes, 1958–2000 |Asif A.Siddiqi National Aeronautics and Space Administration NASA SP-2002-4524 A Chronology of Deep Space and Planetary Probes 1958–2000 Asif A. Siddiqi NASA SP-2002-4524 Monographs in Aerospace History Number 24 dsc_cover (Converted)-1 8/6/02 10:33 AM Page 2 Cover photo: A montage of planetary images taken by Mariner 10, the Mars Global Surveyor Orbiter, Voyager 1, and Voyager 2, all managed by the Jet Propulsion Laboratory in Pasadena, California. Included (from top to bottom) are images of Mercury, Venus, Earth (and Moon), Mars, Jupiter, Saturn, Uranus, and Neptune. The inner planets (Mercury, Venus, Earth and its Moon, and Mars) and the outer planets (Jupiter, Saturn, Uranus, and Neptune) are roughly to scale to each other. NASA SP-2002-4524 Deep Space Chronicle A Chronology of Deep Space and Planetary Probes 1958–2000 ASIF A. SIDDIQI Monographs in Aerospace History Number 24 June 2002 National Aeronautics and Space Administration Office of External Relations NASA History Office Washington, DC 20546-0001 Library of Congress Cataloging-in-Publication Data Siddiqi, Asif A., 1966­ Deep space chronicle: a chronology of deep space and planetary probes, 1958-2000 / by Asif A. Siddiqi. p.cm. – (Monographs in aerospace history; no. 24) (NASA SP; 2002-4524) Includes bibliographical references and index. 1. Space flight—History—20th century. I. Title. II. Series. III. NASA SP; 4524 TL 790.S53 2002 629.4’1’0904—dc21 2001044012 Table of Contents Foreword by Roger D.
    [Show full text]
  • NASA and Planetary Exploration
    **EU5 Chap 2(263-300) 2/20/03 1:16 PM Page 263 Chapter Two NASA and Planetary Exploration by Amy Paige Snyder Prelude to NASA’s Planetary Exploration Program Four and a half billion years ago, a rotating cloud of gaseous and dusty material on the fringes of the Milky Way galaxy flattened into a disk, forming a star from the inner- most matter. Collisions among dust particles orbiting the newly-formed star, which humans call the Sun, formed kilometer-sized bodies called planetesimals which in turn aggregated to form the present-day planets.1 On the third planet from the Sun, several billions of years of evolution gave rise to a species of living beings equipped with the intel- lectual capacity to speculate about the nature of the heavens above them. Long before the era of interplanetary travel using robotic spacecraft, Greeks observing the night skies with their eyes alone noticed that five objects above failed to move with the other pinpoints of light, and thus named them planets, for “wan- derers.”2 For the next six thousand years, humans living in regions of the Mediterranean and Europe strove to make sense of the physical characteristics of the enigmatic planets.3 Building on the work of the Babylonians, Chaldeans, and Hellenistic Greeks who had developed mathematical methods to predict planetary motion, Claudius Ptolemy of Alexandria put forth a theory in the second century A.D. that the planets moved in small circles, or epicycles, around a larger circle centered on Earth.4 Only partially explaining the planets’ motions, this theory dominated until Nicolaus Copernicus of present-day Poland became dissatisfied with the inadequacies of epicycle theory in the mid-sixteenth century; a more logical explanation of the observed motions, he found, was to consider the Sun the pivot of planetary orbits.5 1.
    [Show full text]
  • Mars Insight Launch Press Kit
    Introduction National Aeronautics and Space Administration Mars InSight Launch Press Kit MAY 2018 www.nasa.gov 1 2 Table of Contents Table of Contents Introduction 4 Media Services 8 Quick Facts: Launch Facts 12 Quick Facts: Mars at a Glance 16 Mission: Overview 18 Mission: Spacecraft 30 Mission: Science 40 Mission: Landing Site 53 Program & Project Management 55 Appendix: Mars Cube One Tech Demo 56 Appendix: Gallery 60 Appendix: Science Objectives, Quantified 62 Appendix: Historical Mars Missions 63 Appendix: NASA’s Discovery Program 65 3 Introduction Mars InSight Launch Press Kit Introduction NASA’s next mission to Mars -- InSight -- will launch from Vandenberg Air Force Base in California as early as May 5, 2018. It is expected to land on the Red Planet on Nov. 26, 2018. InSight is a mission to Mars, but it is more than a Mars mission. It will help scientists understand the formation and early evolution of all rocky planets, including Earth. A technology demonstration called Mars Cube One (MarCO) will share the launch with InSight and fly separately to Mars. Six Ways InSight Is Different NASA has a long and successful track record at Mars. Since 1965, it has flown by, orbited, landed and roved across the surface of the Red Planet. None of that has been easy. Only about 40 percent of the missions ever sent to Mars by any space agency have been successful. The planet’s thin atmosphere makes landing a challenge; its extreme temperature swings make it difficult to operate on the surface. But if a spacecraft survives the trip, there’s a bounty of science to be collected.
    [Show full text]
  • EPSC2017-933, 2017 European Planetary Science Congress 2017 Eeuropeapn Planetarsy Science Ccongress C Author(S) 2017
    EPSC Abstracts Vol. 11, EPSC2017-933, 2017 European Planetary Science Congress 2017 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2017 Radio science electron density profiles of lunar ionosphere based on the service module of circumlunar return and re- entry spacecraft M. Wang (1), S. Han (2), J. Ping (1), G. Tang (2) and Q. Zhang (2) (1) National Astronomical Observatories, Chinese Academy of Sciences, Beijng, China, (2) National Key Laboratory of Science and Technology on Aerospace Flight Dynamics, Beijng, China ([email protected]) Abstract The circumlunar return and reentry spacecraft is a Chinese precursor mission for the Chinese lunar The existence of lunar ionosphere has been under sample return mission. After the status analysis of the debate for a long time. Radio occultation experiments spaceborne microwave communication system, we had been performed by both Luna 19/22 and confirmed that the frequency source of the VLBI SELENE missions and electron column density of beacon in X-band and the signal in S-band is lunar ionosphere was provided. The Apollo 14 provided by the same frequency source onboard the mission also acquired the electron density with in situ satellite and its short-term stability is n*10-9. measurements. But the results of these missions don't Compared to the frequency source onboard SELENE well-matched. In order to explore the lunar whose short-term stability is n*10-7 [6], the service ionosphere, radio occultation with the service module module provides a stable and reliable signal source of Chinese circumlunar return and reentry spacecraft for dual frequency radio occultation.
    [Show full text]