Nobel Prizes?

Total Page:16

File Type:pdf, Size:1020Kb

Nobel Prizes? Université de Neuchâtel Nobel Prizes? Which? What? Who? Where? 1/12/2010 Reinhard Neier 1 Neier/12/01/2010 Nobel Prizes? Nobel prize 2009 in Chemistry Which? What? Who? Where? Nobel prize 2008 in Chemistry 1/12/2010 Reinhard Neier 2 Neier/12/01/2010 12/01/2010 Université de Neuchâtel Nobel Prizes ? « for studies of the structure and function of the ribosome » (2009 biochemistry) Which? What? Who? Where? « for the discovery and development of the green fluorescent protein, GFP » (2008 biochemistry) 1/12/2010 Reinhard Neier 3 Neier/12/01/2010 Nobel Prizes ? Which? What? Who? Where? Venkatraman Ramakrishnan (1952) Thomas A. Steitz (1940) Ada E. Yonath (1939) MRC Laboratory, Cambridge, UK Yale, New Haven, US Weizmann Institute, Rehovot, IS Osamu Shimomura (1928) Martin Chalfie (1947) Roger Y. Tsien (1952) Woods Hole, MA, USA Columbia, NY, USA UC San Diego, CA, USA 1/12/2010 Reinhard Neier 4 Neier/12/01/2010 12/01/2010 Université de Neuchâtel Nobel Prizes 2009? Which? What? Who? Where? 1/12/2010 Reinhard Neier 5 Neier/12/01/2010 Nobel Prizes 2009? Which? What? Who? Where? 1/12/2010 Reinhard Neier 6 Neier/12/01/2010 12/01/2010 Université de Neuchâtel Nobel Prizes: Chemistry 2007 - Gerhard Ertl, GE « for his studies of chemical processes on solid surfaces » 2006 - Roger D. Kornberg, USA « for his studies of the molecular basis of eukaryotic transcription » 2005 - Yves Chauvin, FR , Robert H. Grubbs, USA, Richard R. Schrock, USA « for the development of the metathesis method in organic synthesis » 2004 - Aaron Ciechanover, IS, Avram Hershko, IS, Irwin Rose, USA « for the discovery of ubiquitin-mediated protein degradation » 2003 - Peter Agre, USA, Roderick MacKinnon, USA « for discoveries concerning channels in cell membranes » 1/12/2010 Reinhard Neier 7 Neier/12/01/2010 Swiss Nobel Prizes 2002 - Kurt Wüthrich Chemistry 1996 - Rolf M. Zinkernagel Medecine 1991 - Richard R. Ernst Chemistry 1987 - J. Georg Bednorz, K. Alex Müller Physics 1986 - Gerd Binnig, Heinrich Rohrer Physics 1978 - Werner Arber Medecine Total in Science: 15 1975 - Vladimir Prelog Chemistry 6 Chemistry 1957 - Daniel Bovet Medecine 5 Medecine (2 chemistry) 1952 - Felix Bloch Physics 4 Physics 1950 - Tadeus Reichstein Medecine 1948 - Paul Müller Medecine 1945 - Wolfgang Pauli Physics 1939 - Leopold Ruzicka Chemistry 1937 - Paul Karrer Chemistry 1913 - Alfred Werner Chemistry 1/12/2010 Reinhard Neier 8 Neier/12/01/2010 12/01/2010 Université de Neuchâtel Nobel Prizes 2009? Venkatraman Ramakrishnan Thomas A. Steitz Ada E. Yonath Born 1952 in Chidambaram, Born 1940 the USA. Ph.D. Born 1939 in Israel. Ph.D. 1968 Tamil Nadu, India Ph.D. in 1966 from Harvard X-ray crystallography, 1976 Ph.D. (Physics) Ohio University. Sterling Weizmann Institute, University University. Professor of Molecular of Jerusalem. MRC Laboratory of Molecular Biophysics and Biochemistry Professor, Dept. of Structural Biology, Cambridge since at Yale University, New Biology at Weizman Institute, 1999 , UK and Senior Haven, CT, USA, since Rehovot, Israel, since 1988. Research Fellow, Trinity 1970. College. 1/12/2010 Reinhard Neier 9 Neier/12/01/2010 Nobel Prizes: Chemistry Translation: the process whereby the genetic code carried by mRNA is read and used to construct proteins. This process is carried out by ribosomes. The ribosomes recruit appropriate 4S or transfer RNAs (tRNAs) which are (conceptually) molecules with an amino acid at one end and an "anticodon" at the other. 1/12/2010 Reinhard Neier 10 Neier/12/01/2010 12/01/2010 Université de Neuchâtel Nobel Prizes: Chemistry 1/12/2010 Reinhard Neier 11 Neier/12/01/2010 Nobel Prizes: Chemistry 1/12/2010 Reinhard Neier 12 Neier/12/01/2010 12/01/2010 Université de Neuchâtel Nobel Prizes: Chemistry The large subunit creates the peptide bonds and the small subunit has key roles in initiating the biosynthetic process and in controlling the fidelity of codon-anti-codon base pairing. The ribosome contains three tRNA binding sites, designated the A (aminoacyl), P (peptidyl) and E (exit), which are located on both subunits. During the elongation cycle both ribosomal subunits work together to translocate all three tRNAs molecules together with the associated mRNA chain by precisely one codon. In this motion each of the tRNA molecules passes through the three ribosomal binding sites, from A- to P-to E-site. 1/12/2010 Reinhard Neier 13 Neier/12/01/2010 Nobel Prizes: Chemistry You can see how a tRNA interacts with the 30S subunit because of anticodon-codon bonds; and it interacts with the 50S subunit throught the positioning of the attached amino-acid for catalysis. In each case, you can see the three tRNA binding sites and you can easily imagine how a tRNA moves through the ribosome from the A-site to the P-site to the E-site. 1/12/2010 Reinhard Neier 14 Neier/12/01/2010 12/01/2010 Université de Neuchâtel Nobel Prizes: Chemistry The ribosome is the cellular organelle catalyzing the translation of genetic code into proteins. It is a protein/RNA assembly arranged in two subunits that associate for performing protein biosynthesis. The prokaryotic large ribosomal subunit, which migrates with sedimentation coefficient of 50S and is of molecular weight 1.5 mega Dalton, contains 3000 nucleotides in two RNA chains and ~35 proteins. The smaller ribosomal subunit, which migrates as 30S and is of 0.85 mega Dalton, contains 1500 nucleotides in one RNA chain and ~20 proteins. 1/12/2010 Reinhard Neier 15 Neier/12/01/2010 Nobel Prizes: Chemistry In 2001, several research groups were able to get structures of a ribosome—a very complex nucleic acid structure and an enormous protein-RNA complex that is responsible for synthesizing proteins. These images, produced by Harry Noller at the University of California Santa Cruz, Venki Ramakrishnan at the University of Cambridge, England, and Thomas Steitz at Yale University are worthy of a Nobel Prize. 1/12/2010 Reinhard Neier 16 Neier/12/01/2010 12/01/2010 Université de Neuchâtel Nobel Prizes: Chemistry The atomic structure of the 50 S: Ban N, Nissen P, Hansen J, Moore PB, Steitz TA Science. 2000 Aug 11; 289 (5481): 905-20 1/12/2010 Reinhard Neier 17 Neier/12/01/2010 Nobel Prizes: Chemistry The atomic structure of the 50 S: Ban N, Nissen P, Hansen J, Moore PB, Steitz TA Science. 2000 Aug 11; 289 (5481): 905-20 Prof. Nenad Ban Inst. f. Molekularbiologie u. Biophysik ETH Zürich 1/12/2010 Reinhard Neier 18 Neier/12/01/2010 12/01/2010 Université de Neuchâtel Nobel Prizes: Chemistry The atomic structure of the 30 S: Schluenzen F, Tocilj A, Zarivach R, Harms J, Gluehmann M, Janell D, Bashan A, Bartels H, Agmon I, Franceschi F, Yonath A Cell 2000, 102 (5): 615–23 Wimberly BT, Brodersen DE, Clemons WM Jr, Morgan-Warren RJ, Carter AP, Vonrhein C, Hartsch T, Ramakrishnan V Nature. 2000 Sep 21;407(6802):327-39 1/12/2010 Reinhard Neier 19 Neier/12/01/2010 Nobel Prizes: Chemistry Molecular model of a ribosome, Molecular model of a bacterial ribosome showing the RNA and protein components in the form of ribbon models. In the large (50S) subunit the 23S RNA is shown in cyan, the 5S RNA in green and the associated proteins in purple. In the small (30S) subunit the 16S RNA is shown in yellow and the proteins in orange. 1/12/2010 Reinhard Neier 20 Neier/12/01/2010 12/01/2010 Université de Neuchâtel Nobel Prizes: Chemistry Molecular model of a ribosome: The three solid elements in the centre of the ribosome, coloured green, red and reddish brown are the transfer RNAs (tRNAs) in the A, P and E sites respectively. The anticodon loops of the tRNAs are buried in a cleft in the small subunit where they interact with mRNA. The other ends of the tRNA, which carry the peptide and amino acid, are buried in the peptidyl transferase centre of the large subunit, where peptide bond formation occurs. 1/12/2010 Reinhard Neier 21 Neier/12/01/2010 Nobel Prizes: Chemistry http://rna.ucsc.edu/rnacenter/noller_lab.html 1/12/2010 Reinhard Neier 22 Neier/12/01/2010 12/01/2010.
Recommended publications
  • CRISPR-Cas9 a New Tool for Genome Editing.Pdf
    CRICRICRISSPSPEPERERRCCCaasas9s99 AA ANe Ne Neww wT To Toool olf olf orf orGe rGe Gennonomomem eE eEd Editdiitinitngingg ByB JyBen Jyen Jneninferinfer iDofer Do uDodunduand,a nK, aeK,v eKivnei nvDi noD xoDzxoezxnez,n ea,n a,d na dMn dMa rMatirnati rnJti nJie nJkienkek A AK eAKy eK yEe xEyp xEepxrepimreimenriment enpt rpto rpdorudocudecudec dbe ydb Tyb hTye hT eEh xeEp xElpoxlrpoelrore’srre ’Gsr ’uGs iuGdieud ietdo et oB t ioBo ilBooilgooylgoygy 2 The Explorer’s Guide to Biology https://explorebiology.org/ CRISPR-Cas9 A New Tool for Genome Editing Jennifer Doudna, Kevin Doxzen, and Martin Jinek Jennifer Doudna Jennifer Doudna is a professor in the Departments of Molecular and Cell Biology and the Chemistry and Chemical Engineering at the University of California, Berkeley. For her studies on CRISPR-Cas9, Dr. Doudna has received several awards including the Breakthrough Prize in the Life Sciences, the Japan Prize, and the Canada Gairdner Award. She has been leading efforts to discuss ethical uses of genome editing technologies. Doudna teaches in Bio 1A, an introductory biology class at UC Berkeley. Kevin Doxzen Kevin Doxzen, a former graduate student with Jennifer Doudna, is a sci- ence communications specialist at the Innovative Genomics Institute, which is advancing genome engineering using CRISPR technologies. 3 Martin Jinek Martin Jinek, born in Czechoslovakia and a former postdoctoral fellow with Jennifer Doudna, is now an associate professor in the Department of Biochemistry at the University of Zurich. Jinek received the EMBL John Kendrew Young Scientist Award and the Friedrich Miescher Award of the Swiss Society for Molecular and Cellular Biosciences.
    [Show full text]
  • Download This Issue As A
    MICHAEL GERRARD ‘72 COLLEGE HONORS FIVE IS THE GURU OF DISTINGUISHED ALUMNI CLIMATE CHANGE LAW WITH JOHN JAY AWARDS Page 26 Page 18 Columbia College May/June 2011 TODAY Nobel Prize-winner Martin Chalfie works with College students in his laboratory. APassion for Science Members of the College’s science community discuss their groundbreaking research ’ll meet you for a I drink at the club...” Meet. Dine. Play. Take a seat at the newly renovated bar grill or fine dining room. See how membership in the Columbia Club could fit into your life. For more information or to apply, visit www.columbiaclub.org or call (212) 719-0380. The Columbia University Club of New York 15 West 43 St. New York, N Y 10036 Columbia’s SocialIntellectualCulturalRecreationalProfessional Resource in Midtown. Columbia College Today Contents 26 20 30 18 73 16 COVER STORY ALUMNI NEWS DEPARTMENTS 2 20 A PA SSION FOR SCIENCE 38 B OOKSHELF LETTERS TO THE Members of the College’s scientific community share Featured: N.C. Christopher EDITOR Couch ’76 takes a serious look their groundbreaking work; also, a look at “Frontiers at The Joker and his creator in 3 WITHIN THE FA MILY of Science,” the Core’s newest component. Jerry Robinson: Ambassador of By Ethan Rouen ’04J, ’11 Business Comics. 4 AROUND THE QU A DS 4 Reunion, Dean’s FEATURES 40 O BITU A RIES Day 2011 6 Class Day, 43 C L A SS NOTES JOHN JA Y AW A RDS DINNER FETES FIVE Commencement 2011 18 The College honored five alumni for their distinguished A LUMNI PROFILES 8 Senate Votes on ROTC professional achievements at a gala dinner in March.
    [Show full text]
  • Chemistry and Spectroscopy of the Transition Metals
    Chemistry and Spectroscopy of the Transition Metals • Structure of metal complexes • Oxidation states of metals • Color/Spectroscopy • Magnetic Properties • Chelate Effects • Electron Transfer Chemistry Nobel Prize in Chemistry, 1913 Alfred Werner "in recognition of his work on the linkage of atoms in molecules by which he has thrown new light on earlier investigations and opened up new fields of research especially in inorganic chemistry” Zurich University Stereochemistry of Coordination Complexes Pt (NH3)2Cl2 Cl NH 3 NH3 Cl Pt Pt Cl NH Cl 3 NH3 Orange-Yellow Pale Yellow (dipole moment) No dipole (cis-platin) Inner Sphere vs Outer Sphere Coordination H3 H3 N N NH H N NH H3N 3 [Cl- ] 3 3 - Co 3 Co [Cl 2] H N NH3 H N NH3 [ 3 ] [ 3 ] N Cl H3 H3 H3 N N Cl H3N Cl H3N Co [Cl- ] Co [Cl-] H N Cl Cl NH3 [ 3 ] N [ N ] H3 H3 Transition Metal Chemistry • Multiple Oxidation States • Coordination Chemistry/Stereochemistry • Crystal Field Splitting: Optical and Magnetic Properties • Ligand Field Splitting: Spectrochemical Series • Distortion to Tetragonal, Square Planar • Ligand Field Stabilization Energy • Hard and Soft Acids and Bases • Chelate Effect • Stereochemical Control of Binding Affinity • Water Exchange • Electron Exchange Organization of Periodic Chart 1s 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 5d 6p 7s 6d 4f 5f Shielding r2Ψ2 1s 3d 3p 3s Penetration: 3s > 3p > 3d r 3d orbitals are shielded and not exposed much; Outside world won’t know as much how many d e- there are Transition Metals Are Found in Several Oxidation States Charge to mass ratio - of ions: current e which passes through circuit divided by mass gained on electrode.
    [Show full text]
  • Quantum Objects: Sculpture Inspired by the Deeper Nature of Reality
    Article Frontispiece: Birth of an Idea, steel, glass, and wood, 60 x 32 x 32 in (150 x 80 x 80 cm), 2007. (<c> Julian Voss-Andreae. Photo: Dan Kvitka. Collection of Roderick MacKinnon, Rockefeller University, New York City, N.Y.) This sculpture, based on the structure of the potassium channel protein, was commissioned by Roderick MacKinnon, who won the 2003 Nobel Prize in Chemistry for his work on this structure. Ion channels function as our nervous system’s smallest logical units, controlling the nerve cells’ ability to fire. For a color image see the artist’s website [1]. 1 Unraveling Life's Building Blocks: Novel Sculpture Inspired by Proteins December 23, 2010 Julian Voss-Andreae Artist/Scientist 1517 SE Holly Street, Portland, OR 97214, USA Email: [email protected] Website: www.JulianVossAndreae.com Abstract The foundation of life is explored through art. Inspired by life’s molecular building blocks, the presented work recreates the emergence of three-dimensional bodies from one-dimensional DNA. Utilizing an algorithmic approach as his point of departure, the artist follows his vision freely, creating sculptures which bring life’s isolated components emotionally back to life. In this sequel to an earlier Leonardo article, which covers the inception of his protein-inspired sculptures [2], the author presents the unfolding of his vision: Large-scale works of increasing formal and conceptual complexity display the emergence of an organic aesthetics from geometric elements and inspire a more holistic view of life than that provided by reductionist science alone. 2 Introduction There are a number of common themes weaving through the fabric of my sculptural work.
    [Show full text]
  • Peter Agre, 2003 Nobel Prize Winner in Chemistry
    SPECIAL COMMENTARY J Am Soc Nephrol 15: 1093–1095, 2004 Peter Agre, 2003 Nobel Prize Winner in Chemistry MARK A. KNEPPER,* and SOREN NIELSEN† National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland; and †Water and Salt Research Center, University of Aarhus, Aarhus, Denmark. Abstract. Peter C. Agre, an American Society of Nephrology somes after the incorporation of the purified protein. These member, is the recipient of the 2003 Nobel Prize in Chemistry findings sparked a veritable explosion of work that affects for his discovery of the aquaporin water channels. The function several long-standing areas of investigation such as the bio- of many cells requires that water move rapidly into and out of physics of water permeation across cell membranes, the struc- them. There was only indirect evidence that proteinaceous tural biology of integral membrane proteins, the physiology of channels provide this vital activity until Agre and colleagues fluid transport in the kidney and other organs, and the patho- purified aquaporin-1 from human erythrocytes and reported its physiological basis of inherited and acquired disorders of water cDNA sequence. They proved that aquaporin-1 is a specific balance. Agre’s discovery of the first water channel has water channel by cRNA expression studies in Xenopus oocytes spurred a revolution in animal and plant physiology and in and by functional reconstitution of transport activity in lipo- medicine. American Society of Nephrology member, Peter Agre of ing duct, revealed that the increase in water permeability was Johns Hopkins University, received the 2003 Nobel Prize in associated with the appearance of membrane particle aggre- Chemistry for his discovery of the aquaporins, a family of gates in the apical plasma membrane.
    [Show full text]
  • Channel Hoppers Land Chemistry Nobel Jim Giles Two Structural Biologists Credited With
    news Channel hoppers land chemistry Nobel Jim Giles Two structural biologists credited with A. ABBOTT transforming our understanding of how cells work have been awarded the 2003 R. BOREA/AP Nobel Prize in Chemistry. Peter Agre of Johns Hopkins University in Baltimore and Roderick MacKinnon of the Rockefeller University in New York share the prize for experiments that revealed the intri- cate workings of the channels that allow ions and water to enter and leave cells. MacKinnon is perhaps the most widely tipped Nobel winner of recent years.In a land- mark 1998 paper (D. A. Doyle et al. Science 280, 69–77; 1998), he and his colleagues pro- vided the first detailed three-dimensional Roderick MacKinnon (left) and Peter Agre’s work on cell-membrane proteins has won them recognition. picture of a protein that acts as a channel to control the flow of potassium ions across cell deserved a Nobel.“His work is a tour de force,” Kuhajda and P. Agre J. Biol. Chem. 263, membranes. This channel is immensely says John Walker, a structural biologist at the 15634–15642; 1988). “No one had seen it important to neuroscientists, as the flow of University of Cambridge, UK. “The award is before,but we found that it was the fifth most potassium ions helps to generate the voltage absolutely spot on and richly deserved.” abundant protein in the cell,” says Agre. pulses that brain cells use to communicate. MacKinnon was on holiday when the “That’s like coming across a big town that’s Before MacKinnon’s paper, many biolo- prize was announced, and couldn’t be not on the map.It gets your attention.” gists had questioned whether the technique informed directly by the Nobel prize com- The protein, now known as aquaporin 1, he used — X-ray crystallography — could be mittee.
    [Show full text]
  • Dear Colleague, This Invitation Is Being Sent on Behalf of Prof
    Dear colleague, On behalf of Prof. Fernand Marquis (San Diego State U., USA), Prof. Soteris Kalogirou (Cyprus U. of Technology, Cyprus), and Prof. Bernard Raveau (U. of Caen, France), co-chairs of the 2nd International Symposium on Solid State Chemistry for Applications and Sustainable Development in my capacity as President of SIPS 2020/2021, I am personally inviting you to participate as an author/speaker. This major symposium focuses on solid-state chemistry corresponds to the relationships occurring between the synthesis, structure, and physical-chemical properties of solid inorganic compounds (in most cases), leading to a final compound with optimized properties such as advances in the synthesis routes, design of materials for sustainable energy production, advanced characterization techniques and applications, etc. These and many others are among the topics of the symposium. This symposium will be held as part of the combined SIPS 2020/2021, an annual multidisciplinary summit, organized by the not-for-profit corporation FLOGEN Stars Outreach (www.flogen.org), which is dedicated to achieving sustainability through science and technology applied in various fields. It incorporates summit plenary lectures from well-known speakers that address the link between various domains in the pursuit of sustainable development, as well as specific scientific symposia featuring specialized presentations in a specific domain, with the same goals in mind. The symposium and overall summit are planned to be held in Phuket, Thailand from November 28th – December 2nd 2021. We have confirmed until now the participation of the following 9 Nobel Laureates: Prof. Dan Shechtman, Prof. Didier Queloz, Prof. M. Stanley Whittingham, Sir Konstantin Novoselov, Prof.
    [Show full text]
  • Ian Rae: “Two Croatian Chemists Who Were Awarded the Nobel Prize in Chemistry”
    Croatian Studies Review 13 (2017) Ian Rae: “Two Croatian Chemists who were Awarded the Nobel Prize in Chemistry” Ian Rae School of Chemistry University of Melbourne [email protected] Abstract Two organic chemists of Croatian origin, Leopold Ružička and Vladimir Prelog, made significant contributions to natural product chemistry during the twentieth century. They received their university education and research training in Germany and Czechoslovakia, respectively. Both made their careers in Zürich, Switzerland, and both shared the Nobel Prize in Chemistry, in 1939 and 1975, respectively. In this article, I have set the details of their lives and achievements against the education and research climates in Europe and other regions, especially as they apply to the field of chemistry. Key words: Croatia, organic, chemistry, Nobel, Ružička, Prelog 31 Croatian Studies Review 13 (2017) Introduction1 In the twentieth century two organic chemists of Croatian origin were awarded the Nobel Prize in Chemistry. They were Lavoslav (Leopold) Ružička (1887-1976) and Vladimir Prelog (1906-1998), whose awards came in 1939 and 1975, respectively. Both were living and working in Switzerland at the time of the awards and it was in that country – specifically in the city of Zürich – that they performed the research that made them Nobel Laureates. To understand the careers of Ružička and Prelog, and of many other twentieth century organic chemists, we need to look back to the nineteenth century when German chemists were the leaders in this field of science. Two developments characterise this German hegemony: the introduction of the research degree of Doctor of Philosophy (PhD), and the close collaboration between organic chemists in industry and university.
    [Show full text]
  • Chemistry of the D-Block Elements Chemistry of the D-Block Elements
    Chemistry of the d-Block Elements History: Louis Nicolas Vauquelin 16. Mai 1763 – 14. Nov. 1829 Leopold Gmelin 2. Aug. 1788 – 13. Apr. 1853 Chemistry of the d-Block Elements History: H3N NH3 Cl Cl Pd Pd NH H3N 3 Cl Cl Louis Nicolas Vauquelin 1813 CN NC CN CoIII NC CN Gmelin 1822 NC 1 Chemistry of the d-Block Elements History: 1844: Peyrone’s Chloride 1844: Reiset [PtCl2(NH3)2] -- note! same formula! -- [PtCl2(NH3)2] ! (isomers are super-important in chemistry!) Chemistry of the d-Block Elements cis- and trans- Platinum Isomers: Serendipity in Chemistry Cisplatin was approved by the FDA for the treatment of genitourinary tumors in 1978. Since then, Michigan State has collected over $160 million in royalties from cisplatin and a related drug, carboplatin, which Prof. Barnett Rosenberg, MSU was approved by the FDA in 1989 (Prof. S.J. Lippard, MIT) for the treatment of ovarian cancers. "Testicular cancer went from a disease that normally killed about 80% of the patients, to one which is close to 95% curable. This is Newest generation: probably the most exciting development in the treatment of cancers that we have had in the past 20 years. It is now the O treatment of first choice in ovarian, bladder, and osteogenic sarcoma [bone] cancers as well." O NH3 —Barnett Rosenberg, who led the research group that discovered Pt cisplatin, commenting on the impact of cisplatin in cancer chemotherapy O NH3 O carboplatin 2 Chemistry of the d-Block Elements Cisplatin acts by cross-linking DNA in several different ways, making it impossible for rapidly dividing cells to duplicate their DNA for mitosis.
    [Show full text]
  • A Lateral Thinker
    CHEMISTRY MASTERCLASS OUTLOOK In physics, the big question is: how can the two great theories in physics — quantum physics and M GRAYSON the theory of gravitation — be unified? There are other questions: what is the content of our Universe? What are dark matter and dark energy? Only four per cent of the Universe is the matter that we are made of; what is the rest? In biology, there is: what is life? We know which elements are important for life, but will it ever be possible for humans to create artificial life? These are the big questions. Chemistry has nothing compared with this. Erwin Schrodinger posed the question ‘what is life?’ seventy years ago in his book of the same title. How close have we come to answering it? The question that Schrodinger was asking was very specific — in essence, do we expect that new laws will be necessary to describe biology? And he couldn’t give an answer, mainly because he was not able to explain the formation of structure in biology. Not only molecular structure, but larger structures as well – for example, how does a cell divide only in the middle? We can start to answer these questions using non-linear dynamics — and that is the field that interests me the most. What is the importance of structure to life? Self-organization is the basis for all kinds of structure formation. Closed systems that have no external inputs will eventually find a state of equilibrium that can be disordered or ordered. For example, salt ions precip- itating out of a solution can assemble into ordered crystals.
    [Show full text]
  • <I>Vlado</I> As <I>Cheiron</I>
    IN MEMORIAM VLADIMIR PRELOG (1906-1998) 138 CHIMIA 1999,53, NO.4 Chimia 53 (1999)138-139 © Neue Schweizerische Chemische Gesellschaft ISSN 0009-4293 Vlado as Cheiron Kurt Mislow* Over a period of several decades, Vlado ucts. His involvement in stereochemistry bonded interactions. Prelog's pioneering Prelog's laboratory was a mecca for aca- was a direct outgrowth of this passion. It concept, therefore, represented a break- demic guests from abroad, many of them began with his studies of Cinchona alka- through of major proportions. from the United States, and it is my priv- loids during his years in Prague, in the late It seems appropriate here to quote an- ilege to represent them today on the occa- 20s and early 30s, and continued in Zagreb other stanza from Christopher's poem: sion of this commemoration. I intend to with the first of his many scientific tri- share some personal reminiscences of the umphs, the synthesis of adamantane, in Combining his sense of the practic time that I spent with my mentor at the 1941. In 1944, just a few years after his With his vision of scale galactic, ETH, over 40 years ago. In order to place arrival at the ETH, Prelog had already He made Prelog's Rule my remarks in their proper perspective, published papers that specifically ad- An imperative tool however, it will first be necessary to out- dressed questions dealing with stereochem- By concocting a brew atrolactic. line Prelog's vital contributions to the ical aspects of natural products. To give development of modern stereochemistry.
    [Show full text]
  • A Stereochemical Achievement of the First Order: Alfred Werner's Resolution of Cobalt Complexes, 85 Years Later
    50 Bull. Hist. Chem. 20 (1997) A STEREOCHEMICAL ACHIEVEMENT OF THE FIRST ORDER: ALFRED WERNER'S RESOLUTION OF COBALT COMPLEXES, 85 YEARS LATER Gr . Kffn, Clfrn Stt Unvrt, rn Listen, old man; take my advice. Give me the cobalt in a thrice. Though Hell and Devil say me nay, I shall resolve cobalt today (1). With these words the Old One (der Alte, i.e., Werner) challenges the King of the Spirits (Geisterkönig). Spurn- ing the tempting gifts offered him by the King, he ap- proaches the giant blue octahedron with a cry of "I want to resolve cobalt" (Ich will das Kobalt spalten). He tears one side of it away with his axe, removes the d-form, and spins it on his little finger. As everyone joyfully shouts, "It rotates, it rotates!" (Es dreht, es dreht!), der Alte removes the /-form from the other side of the octa- hedron and spins it on his little finger in the direction opposite to the d-form. Now that the momentous task has been accom- plished, all the participants face the audience and tri- umphantly sing the final chorus to the melody of Das Studium der Welber: From early morn still night so late We'll just rotate, rotate, rotate, Until the world and all therein Alfred Werner (1866-1919) from George B. Kauffman, "Alfred Werner-Founder of Coordination Chemistry," Rotating spins to oblivion (2). Berlin-Heidelberg-New York: Springer 1966, Frontispiece So ends the anonymous 1911 Weihnachtskommers (tra- ditional student Christmas party) playlet in verse, Drehen purports to tell in mock-heroic fashion the story of the and Spalten (Rotating and Resolving) (3), whose au- first successful resolution of an optically active coordi- thorship the late Nobel Chemistry laureate Paul Karrer nation compound, a problem that had occupied Alfred (Ph.D., Universität Zürich, 1911) admitted to me.
    [Show full text]