The Power of Batteries Learn the Fascinating History and Science Behind This Groundbreaking Electrical Invention

Total Page:16

File Type:pdf, Size:1020Kb

The Power of Batteries Learn the Fascinating History and Science Behind This Groundbreaking Electrical Invention READING PASSAGE The Power of Batteries Learn the fascinating history and science behind this groundbreaking electrical invention. Batteries power so many things the copper in a process called The Dreaded in your everyday life that you reduction (you can remember this Dead Battery probably don’t think twice about as: Because electrons are negative, How annoying is them. Around 1800, an Italian they reduce positive charge). it when your cell physicist and chemist named phone battery dies? Alessandro Volta created a simple Oxidation reduction is an With any battery, battery called the voltaic pile, but exothermic reaction, meaning that eventually the before then there was no such energy is released as the reaction anode has no more thing as portable electricity. In occurs. Volta’s discovery meant that electrons to supply, his experiments, Volta found that potential chemical energy could and the battery will stacked disks of copper and zinc, be “stored” in a battery and used die or go flat. Some separated by cloth or paper soaked in the form of electrical energy batteries, like the in a salty solution, would produce whenever the time was right. one in your phone, a small amount of electrical energy The more voltaic cells that were are designed to (see diagram on next page). The stacked, the greater the voltage. be rechargeable. energy was the result of a chemical The same reaction known as oxidation MODERN INNOVATORS electrochemical reduction, or redox for short. The invention of the battery made processes that power supply portable, but the allowed the battery practical applications of the voltaic IN THE CHEMISTRY LAB to supply power If you connect the positive and cell were very limited. Enter the are reversed using negative terminals of a voltaic cell innovators who continued to an external power with a wire, the zinc begins to lose improve the battery by engineering supply (such as its electrons in a process called and experimenting with new plugging a cell oxidation. They then move toward materials, creating batteries that phone into its were more reliable, more powerful, charger). The easier to use, and longer-lasting. reverse flow of Notable advances in battery Photo: Solar battery: Andreas Schlegel/fStop/Offset; various batteries: fmajor/iStock various batteries: Photo: Solar battery: Andreas Schlegel/fStop/Offset; electrons restores science include: the battery’s power- The Daniell Cell: the first practical giving abilities. source of portable power that provided a longer and more reliable current than Volta’s. Example application: telegraphy. Lead-Acid Battery: the first battery that could be recharged. Example application: car battery. continued Zinc-Carbon Battery: the first process, though, there will dry-cell battery. Unlike wet be setbacks along the way. cells, the zinc-carbon battery Batteries have their share of would not spill and did not have problems, including both safety to be kept upright. Example and environmental concerns. application: flashlight. A battery that has significant energy density, for instance, will Alkaline Battery: achieved cause a dangerous explosion better energy density (could if its cathode and anode store more energy per unit of accidentally come into contact. What’s a frog got to volume) than its predecessors. Over their history, batteries do with it? Do a quick Example application: television have been manufactured using online search to find out remote. heavy metals such as mercury how the very curious and lead along with other behavior of a dead frog Lithium-Ion Battery: significant components. They must be inspired Volta’s battery advancements in energy density recycled responsibly because experiments. and the ability to recharge more they pose a threat to humans than a thousand times. Example and the natural environment. application: cell phone. Are you the next innovator? Or what about a battery that In the future, you may be using How could you make a battery could recharge an infinite batteries that are paper-thin that is more environmentally number of times? Challenge and have the ability to recharge friendly? A battery that holds yourself to come up with the hundreds of thousands of a charge longer that is lighter, next great idea! times. As with any innovation smaller, safer, or stronger? The Anatomy of a Battery A battery you bought at the store last week and the earliest versions of batteries have the same three components in common. Check out the diagram below: When a wire closes the circuit or connects the cathode and the anode, electrons: a) move into the wire from the anode, b) power a device, and c) continue on their way back to the cathode. Cathode (+) Voltaic Pile — The positive terminal, The voltaic pile is made up of individual cells that where are stacked to increase the amount of voltage. positive ions are housed Positive Terminal The cathode in a Cathode + voltaic cell is made of Electrolyte — copper. A substance Electrolyte that allows A saltwater solution the flow functions as the of ions from — electrolyte. the cathode to the anode Anode — – Anode The anode is made — (-) The of zinc. negative terminal, where electrons This is one — are housed voltaic cell. Negative Terminal.
Recommended publications
  • Alessandro Volta and the Discovery of the Battery
    1 Primary Source 12.2 VOLTA AND THE DISCOVERY OF THE BATTERY1 Alessandro Volta (1745–1827) was born in the Duchy of Milan in a town called Como. He was raised as a Catholic and remained so throughout his life. Volta became a professor of physics in Como, and soon took a significant interest in electricity. First, he began to work with the chemistry of gases, during which he discovered methane gas. He then studied electrical capacitance, as well as derived new ways of studying both electrical potential and charge. Most famously, Volta discovered what he termed a Voltaic pile, which was the first electrical battery that could continuously provide electrical current to a circuit. Needless to say, Volta’s discovery had a major impact in science and technology. In light of his contribution to the study of electrical capacitance and discovery of the battery, the electrical potential difference, voltage, and the unit of electric potential, the volt, were named in honor of him. The following passage is excerpted from an essay, written in French, “On the Electricity Excited by the Mere Contact of Conducting Substances of Different Kinds,” which Volta sent in 1800 to the President of the Royal Society in London, Joseph Banks, in hope of its publication. The essay, described how to construct a battery, a source of steady electrical current, which paved the way toward the “electric age.” At this time, Volta was working as a professor at the University of Pavia. For the excerpt online, click here. The chief of these results, and which comprehends nearly all the others, is the construction of an apparatus which resembles in its effects viz.
    [Show full text]
  • Lithium Batteries
    Batteries General planning of the „Lithium Batteries” lab for the European Master 2007/8 Warsaw University of Technology, Departament of Inorganic Chemistry and Solid State Technology, Dr Marek Marcinek Objectives: Students will: follow the development of primary and secondary lithium batteries become familiar with different types of batteries explore the applications of batteries study the major components of lithium (ion) cells learn which batteries can be recycled realize the economic and environmental advantages of using rechargeable batteries Needs: Room with avialiables 2 desks and 2 computers or Multimedia Projector Potentiostat/galvanostat with galvanic cycle mode. Suplementary materials needed for: Building the simple battery (included Volta cell) Daniell cell Leclanche Cell Commercially available variety of Li-bat (also disassembled in a controlled mode) BDS software Safety issues: Safety rules Read directions carefully before you begin any experiments. Clear an area to work. Wash your hands thoroughly after experimenting Do always wear eye protection Keep all chemicals away from your eyes and mouth Do not eat and drink in your experiment area Put all pieces of equipment away when finished using them General First aid information Indicate the person who should IMMIDIATELLY inform the teacher and ask the other person to help you out if needed. Eyes: rinse immediately with water. Remove contact lenses if wearing any. Flush eyes with water for 15 min Swallowed: Rinse mouth Drink glass full of water or milk. DO NOT INDUCE VOMITING SKIN: Flush skin thoroughly with water. In all cases, get immediate medical attention if an emergency exists. Bring the chemical container with you. 1 Materials given to students/preparation: Exemplary 5 scientific papers (or any material found related to the Battery Performance, Design, Safety, Application) for individual preparation.
    [Show full text]
  • The Metallic World
    UNIT 11 The Metallic World Unit Overview This unit provides an overview of both electrochemistry and basic transition metal chemistry. Oxidation-reduction reactions, also known as redox reactions, drive electrochemistry. In redox reactions, one compound gains electrons (reduction) while another one loses electrons (oxidation). The spontaneous directions of redox reactions can generate electrical current. The relative reactivities of substances toward oxidation or reduction can promote or prevent processes from happening. In addition, redox reactions can be forced to run in their non-spontaneous direction in order to purify a sample, re-set a system, such as in a rechargeable battery, or deposit a coating of another substance on a surface. The unit also explores transition metal chemistry, both in comparison to principles of main-group chemistry (e.g., the octet rule) and through various examples of inorganic and bioinorganic compounds. Learning Objectives and Applicable Standards Participants will be able to: 1. Describe the difference between spontaneous and nonspontaneous redox processes in terms of both cell EMF (electromotive force) and DG. 2. Recognize everyday applications of spontaneous redox processes as well as applications that depend on the forcing of a process to run in the non-spontaneous direction. 3. Understand the basics of physiological redox processes, and recognize some of the en- zymes that facilitate electron transfer. 4. Compare basic transition-metal chemistry to main-group chemistry in terms of how ions are formed and the different types of bonding in metal complexes. Key Concepts and People 1. Redox Reactions: Redox reactions can be analyzed systematically for how many electrons are transferred, whether or not the reaction happens spontaneously, and how much energy can be transferred or is required in the process.
    [Show full text]
  • Battery Technologies for Small Scale Embeded Generation
    Battery Technologies for Small Scale Embedded Generation. by Norman Jackson, South African Energy Storage Association (SAESA) Content Provider – Wikipedia et al Small Scale Embedded Generation - SSEG • SSEG is very much a local South African term for Distributed Generation under 10 Mega Watt. Internationally they refer to: Distributed generation, also distributed energy, on-site generation (OSG) or district/decentralized energy It is electrical generation and storage performed by a variety of small, grid- connected devices referred to as distributed energy resources (DER) Types of Energy storage: • Fossil fuel storage • Thermal • Electrochemical • Mechanical • Brick storage heater • Compressed air energy storage • Cryogenic energy storage (Battery Energy • Fireless locomotive • Liquid nitrogen engine Storage System, • Flywheel energy storage • Eutectic system BESS) • Gravitational potential energy • Ice storage air conditioning • Hydraulic accumulator • Molten salt storage • Flow battery • Pumped-storage • Phase-change material • Rechargeable hydroelectricity • Seasonal thermal energy battery • Electrical, electromagnetic storage • Capacitor • Solar pond • UltraBattery • Supercapacitor • Steam accumulator • Superconducting magnetic • Thermal energy energy storage (SMES, also storage (general) superconducting storage coil) • Chemical • Biological • Biofuels • Glycogen • Hydrated salts • Starch • Hydrogen storage • Hydrogen peroxide • Power to gas • Vanadium pentoxide History of the battery This was a stack of copper and zinc Italian plates,
    [Show full text]
  • Voltaic Battery
    Voltaic Battery ON THE CONNECTION OF THE PHYSICAL SCIENCES Pgs. 290 – 297 BY MARY SOMERVILLE Voltaic electricity is of that peculiar kind which is elicited by the force of chemical action. It is connected with one of the most brilliant periods of British science, from the splendid discoveries to which it led Sir Humphry Davy; and it has acquired additional interest since the discovery of the reciprocal action of Voltaic and magnetic currents, which has proved that magnetism is only an effect of electricity, and that it has no existence as a distinct or separate principle. Consequently Voltaic electricity, as immediately connected with the theory of the earth and planets, forms a part of the physical account of their nature. In 1790, while Galvani, Professor of Anatomy in Bologna, was making experiments on electricity, he was surprised to see convulsive motions in the limbs of a dead frog accidentally lying near the machine during an electrical discharge. Though a similar action had been noticed long before his time, he was so much struck with this singular phenomenon, that he examined all the circumstances carefully, and at length found that convulsions take place when the nerve and muscle of a frog are connected by a metallic conductor. This excited the attention of all Europe; and it was not long before Professor Volta of Pavia showed that the mere contact of different bodies is sufficient to disturb electrical equilibrium, and that a current of electricity flows in one direction through a circuit of three conducting substances. From this he was led, by acute reasoning and experiment, to the construction of the Voltaic pile, which, in its early form, consisted of alternate discs of zinc and copper, separated by pieces of wet cloth, the extremities being connected by wires.
    [Show full text]
  • Background Paper
    Battery Technologies & Silver Batteries are currently one of the hottest topics in technology. This has been driven by the rapid growth in hybrid and electric vehicles, and the associated search for improved battery technologies with better efficiencies and economics. Dozens of Fortune 500 companies have moved into the space, most notably oil & gas giant BP who has predicted that buying, running and powering electric cars in Europe will become competitive with Internal Combustion Engine (ICE)-driven models before 2050. The company is working on developing technologies associated with new battery materials and fast-charging, and silver will continue to play a role in this evolution. Like many technologies, batteries have a fascinating history. Alessandro Volta is generally agreed to have invented the first practical battery in the early 1800s, which came to be known as the Voltaic Pile. This was a simple stack of metal discs separated by a cloth soaked in brine. After experimenting with a variety of different metals, Volta discovered that zinc and silver provided the most effective combination. The next two centuries saw dozens of developments in the field from scientists all over the world, with different combinations of metals leading to a range of new battery functionalities (for example, dry cells and rechargeability). It was reported that Volta ‘amazed’ Napoleon with his silver-zinc battery (Universal Images Group / Getty Images) Batteries are, in reality, very simple pieces of engineering. They all contain three key components – two electrodes and an electrolyte material. In the Voltaic Pile, the electrodes were silver and zinc, with the brine acting as the electrolyte.
    [Show full text]
  • A Virtual Experiment for Learning the Principle of Daniell Cell Based on Augmented Reality
    applied sciences Article A Virtual Experiment for Learning the Principle of Daniell Cell Based on Augmented Reality Wernhuar Tarng , Yu-Jun Lin and Kuo-Liang Ou * Institute of Learning Sciences and Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan; [email protected] (W.T.); [email protected] (Y.-J.L.) * Correspondence: [email protected]; Tel.: +88-(63)-571-5131 Abstract: Chemistry is a science emphasizing both theory and experimentation. After learning the theoretical knowledge, experimental operation can help students understand chemical concepts and transform them into practical knowledge. Considering the safety issue and the lack of teaching time and experimental equipment, some teachers often choose to demonstrate an experiment instead of letting students conduct it by themselves. This may affect their learning motivation as well as the construction of chemical concepts and hands-on skills. This study combined the augmented reality (AR) technology with the operating principle of the Daniell cell to develop a virtual experiment for the application in high school chemistry courses. Students can conduct the virtual experiment using mobile devices by selecting the required equipment and materials from a deck of cards to set up the experimental environment. In the virtual experiment, students can use the galvanometer to measure the current after mounting the salt bridge on the beakers containing zinc sulfate and copper sulfate solutions. They can also see the change of molecular structures and movement of electrons and ions during the redox reactions to understand the important concepts and knowledge. An empirical research has been performed, and the analytical results show that both the virtual experiment and the real experiment could improve students’ learning achievement, but the former was more effective for the low-achievement students because they could explore autonomously to enhance cognition by observing the submicroscopic view of the redox reactions.
    [Show full text]
  • 1990-10: Ancestors of Batteries
    The ancestors of today's batteries Radio technology has always been very dependent on batteries . The history of batteries goes back 200 years, twice that of radio itself. During this long period, some very interesting ways of producing an electric current have evolved. There is a common belief that the Operation could be restored by either ing the positive electrode were em- first practical battery was invented by removing the bubbles physically or rest- ployed, as in the Leclanche and Edison Georges Leclanche in 1868, but in fact ing the battery, but these remedies were cells. Leclanche's battery was a relative late- both inconvenient. comer in a long line of developments — The 19th century was the age of indi- Grove's cell some successful, some bizarre, others vidual rather than corporate research, In 1839, Sir William Grove intro- dangerous, but most now forgotten. and experimenters were soon at work duced a cell that performed excellently, The history of the battery actually improving on Volta's pile. Various elec- but was expensive and produced a poi- starts in 1790, when Luigi Galvani of trolytes and electrode materials were sonous gas. Grove's cell consisted of a Bologna was experimenting with mus- tried. Zinc was found to be the most glass jar containing dilute sulphuric acid cles from frog's legs. The story goes satisfactory negative electrode and its and a semicircular amalgamated zinc that he hung them on copper hooks, use was universal. As acids will attack electrode, surrounding a porous earth- suspended from an iron railing. When commercial grade zinc, in some in- enware pot.
    [Show full text]
  • Re-Building Daniell Cell with a Li-Ion Exchange Film
    OPEN Re-building Daniell Cell with a Li-ion SUBJECT AREAS: exchange Film ELECTROCHEMISTRY Xiaoli Dong, Yonggang Wang & Yongyao Xia BATTERIES Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Received Fudan University, Shanghai 200433, China. 6 September 2014 Accepted Daniell cell (i.e. Zn-Cu battery) is widely used in chemistry curricula to illustrate how batteries work, 15 October 2014 although it has been supplanted in the late 19th century by more modern battery designs because of Cu21-crossover-induced self-discharge and un-rechargeable characteristic. Herein, it is re-built by using a Published ceramic Li-ion exchange film to separate Cu and Zn electrodes for preventing Cu21-crossover between two 5 November 2014 electrodes. The re-built Zn-Cu battery can be cycled for 150 times without capacity attenuation and self-discharge, and displays a theoretical energy density of 68.3 Wh kg21. It is more important that both electrodes of the battery are renewable, reusable, low toxicity and environmentally friendly. Owing to these advantages mentioned above, the re-built Daniell cell can be considered as a promising and green stationary Correspondence and power source for large-scale energy storage. requests for materials should be addressed to Y.W. (ygwang@ aniell cell, invented by the British chemist John Frederic Daniell in 1836, is popularly known as a kind of zinc-copper battery which takes advantage of a porous barrier between the two metals1,2. Once used widely fudan.edu.cn) in the European telegraph industry, it was supplanted in the late 19th century by more modern battery D 1,2 designs.
    [Show full text]
  • Battery Power
    Understanding Solar Energy Teacher Page Battery Power Student Objective The student: Key Words: • can explain current battery anode technology capacity • can explain the different types of cathode batteries dry cell • can explain how Volta invented the efficiency first battery electrolyte • will build a simple battery and fuel cell describe how it works. galvanic cell lead acid battery lithium-ion battery Materials: oxidation • copper pennies (before 1982) – if reduction unavailable, see substitution volt suggestions below voltaic pile • 3/4" outside diameter zinc discs or zinc washers • mat board (or thick construction Time: paper) 1 class period • wires, 4 - 6" long with 1/2" stripped on each end • white vinegar • salt • scissors • LED bulbs (red and blue) • multimeter • paper cup • paper towels • electrical tape Note: If pre-1982 pennies are not available in enough quantity for your lab, you can use post 1983 pennies (that are 95% zinc) for the zinc discs, and nickels (that are 75% copper) for the copper discs. However, this may be confusing to the students who relate pennies with copper, and it will change the anode and cathode in your stack. Alternatively, you can sand the copper off one side of the post 1982 pennies so that they have a zinc side and a copper side, however, this doesn’t “pile” as nicely for students to see the individual “cells” in their battery, and it defaces coins. Florida Solar Energy Center Battery Power / Page 1 Background Information A battery is one kind of galvanic cell, a device that can change chemical energy into electrical energy through oxidation-reduction reactions.
    [Show full text]
  • Power It Up! (Make a Coin Battery)
    Aeronautics Research Mission Directorate Power It Up! Suggested Grades: 4-8 Activity Overview Time: 45 minutes In this activity, you will build a basic battery from Materials pennies and a salt-vinegar solution, and test battery • Five-10 pennies made after 1982 voltage using LED lights and a voltmeter. • Sandpaper (medium grit) • Mat board or cardboard Steps • Vinegar • Salt 1. Fill a plastic mixing bowl with a cup of water. • LED Light (red) • Electrical tape • Voltmeter • Scissors • Paper towels • Mixing cup 2. Add 4 tablespoons of salt and stir until dissolved. 3. Add 2 tablespoons of vinegar, and then stir the solution until well mixed. 4. Cut the cardboard or mat board into four squares measuring approximately ½ inch on each side. 5. Soak them thoroughly in the saltwater solution. Once they are fully soaked, take them out and set them on the paper towel. They will need to be damp but not dripping with liquid. 6. Sand off the copper from one side of four of the pennies until all that is seen is the silver- colored zinc. An easy way to do this is to lay the sandpaper flat on the table, gritty side up, and energetically rub the tails-side of the pennies on the sandpaper. Do this carefully so you don’t hurt your fingers. The goal is to have four pennies that are copper on one side and zinc on the other, and a fifth penny that is copper on both sides. 7. Start assembling the battery. Place a sanded penny, copper side down, and then place a piece of damp cardboard on top of it.
    [Show full text]
  • I a Thesis Entitled Novel Conductive Glass-Perovskites As Solid Electrolytes in Lithium – Ion Batteries by Taiye J. Salami
    A Thesis Entitled Novel Conductive Glass-Perovskites as Solid Electrolytes in Lithium – ion Batteries By Taiye J. Salami Submitted to the graduate faculty as partial fulfillment of the requirements for a Master of Science Degree in Chemical Engineering Joseph Lawrence, Ph.D., Committee Chair Sam Imanieh, Ph.D., Committee Member Kim, Dong Shik, Ph.D., Committee Member Amanda C. Bryant-Friedrich, Ph.D., Dean, College of Graduate Studies The University of Toledo August 2018 i Copyright © 2018, Taiye Salami This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. ii An Abstract of Novel Conductive Glass-Perovskites as Solid Electrolytes in Lithium – ion Batteries By Taiye J. Salami Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Masters of Arts Degree in Economics The University of Toledo August 2018 Despite commanding a huge market share of rechargeable batteries, current lithium ion batteries have safety concerns due to their use of flammable organic solvents as electrolytes. Successfully replacing the liquid electrolyte in a lithium ion battery with a solid electrolyte with comparable capability to the organic liquids would result in batteries that are safer to use, have a longer cycle life, and possess minimal self-discharge, wider operating potential and temperature window. Solid electrolytes currently have a limitation in that they do not match the ability of the organic liquids in conducting lithium ions because they almost always have ionic resistive components called grain boundaries in their microstructure. Appropriate combination of a glass with a perovskite-type ceramic that contains a lithium-ion conductive phase is shown to result in an amorphous composite having denser microstructure, better stability and no grain boundary effects.
    [Show full text]