Kinetic and High-Throughput Profiling of Epigenetic Interactions by 3D

Total Page:16

File Type:pdf, Size:1020Kb

Kinetic and High-Throughput Profiling of Epigenetic Interactions by 3D Kinetic and high-throughput profiling of epigenetic PNAS PLUS interactions by 3D-carbene chip-based surface plasmon resonance imaging technology Shuai Zhaoa,b,1, Mo Yangc,d,1, Wenfei Zhouc,d, Baichao Zhanga,b, Zhiqiang Chengc,d, Jiaxin Huanga,b, Min Zhanga,b, Zhiyou Wangc,d, Rui Wangc,d, Zhonglei Chena,b, Jinsong Zhuc,d,2, and Haitao Lia,b,2 aMinistry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; bTsinghua–Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China; cChinese Academy of Sciences Center for Excellence in Nanoscience, Chinese Academy of Sciences Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China; and dUniversity of Chinese Academy of Sciences, Beijing 100049, China Edited by Shawn Li, Western University, London, ON, Canada, and accepted by Editorial Board Member Douglas Koshland July 17, 2017 (received for review March 14, 2017) Chemical modifications on histones and DNA/RNA constitute a tion of Ser-10 on H3 (H3S10ph) completely abrogates the binding of fundamental mechanism for epigenetic regulation. These modifi- H3 Lys-9 trimethylation (H3K9me3) by HP1 protein (9, 10). BRDT cations often function as docking marks to recruit or stabilize protein binds neither histone H4 Lys-5 acetylation (H4K5ac) nor cognate “reader” proteins. So far, a platform for quantitative and Lys-8 acetylation (H4K8ac) but engages H4 peptide bearing both high-throughput profiling of the epigenetic interactome is ur- marks with decent affinity (KD = 22 μM)(11).Insum,amorere- gently needed but still lacking. Here, we report a 3D-carbene chip- alistic and holistic understanding of how reader proteins engage based surface plasmon resonance imaging (SPRi) technology for this chromatin necessitates screening known and potential readers against purpose. The 3D-carbene chip is suitable for immobilizing versatile an exhaustive collection of histone PTMs and relevant combinations biomolecules (e.g., peptides, antibody, DNA/RNA) and features low thereof, ideally in a high-throughput and quantitative manner. nonspecific binding, random yet function-retaining immobilization, However, to the best of our knowledge, such a demand has not been and robustness for reuses. We systematically profiled binding kinetics addressed by the epigenetic field. of 1,000 histone “reader–mark” pairs on a single 3D-carbene chip and As an advanced optical-based quantitative detection method, validated two recognition events by calorimetric and structural stud- surface plasmon resonance (SPR) sensing has been extended to the ies. Notably, a discovery on H3K4me3 recognition by the DNA mis- SPR microscopy or imaging (SPRi) technology for high-throughput Capsella rubella match repair protein MSH6 in suggests a mechanism probing of biomolecular interactions (12, 13). Despite some in- of H3K4me3-mediated DNA damage repair in plant. trinsic disadvantages of SPR, such as influence of immobilization and surface fouling, SPRi stands out as a powerful detection tool as SPR imaging | epigenetic interactions | histone modifications | it probes analyte label-freely and measures binding kinetics in real BIOCHEMISTRY nucleic acid modifications | 3D-carbene chip Significance espite having identical genetic information, human cells differentiate into different identities during development. D In the era of functional proteomics, a myriad of new interactions, The mechanisms leading to differential transcriptional and de- notably those modification-dependent ones, are widely suggested velopmental outcomes under the same genetic background are by advanced proteomic approaches and bioinformatic analysis. known as epigenetics. Posttranslational modification (PTM) on Therefore, there exists an urgent need to develop a technology histones is a major epigenetic regulatory mechanism such that for high-throughput mapping and quantitative characterization of more than 30 types of PTMs occur on histones, with new ones biomolecular binding events. This study achieved the immobili- still being discovered (1). The well-studied histone PTMs include zation and kinetic detection of various biomacromolecules (in- methylation, acetylation, phosphorylation, and most recently cluding modified peptides and modified nucleic acids) in high discovered nonacetyl acylations (2). Histone PTMs regulate throughput through the 3D-carbene chip-based surface plasmon transcription either by directly affecting the structure/stability of resonance imaging (SPRi) technology. Modified histone peptides single nucleosome and the high-order folding of chromatin, or by and nucleic acids, which are key epigenetic marks, could be effi- recruiting specific effector proteins (also called histone readers) ciently probed by this platform. We envision that the 3D-carbene recognizing them (3, 4). SPRi technology described here will have wide appeal in profiling The ever-expanding repertoire of histone readers are diverse and discovering biological recognitions in and beyond epigenetics. in sequence and structure, and how they engage diversely mod- ified chromatin is complicated, hard to predict, yet important for Author contributions: H.L. and J.Z. conceived research; H.L. and J.Z. designed research; S.Z. their functions. Often one type of reader domains can recognize and M.Y. designed and performed experiments with help from W.Z., B.Z., Z. Cheng., J.H., different types of PTMs. For example, PHD finger proteins can M.Z., Z.W., R.W., and Z. Chen; H.L., J.Z., S.Z., and M.Y. analyzed data; and H.L., J.Z., S.Z., recognize unmodified, methylated, or acylated lysine residue on and M.Y. wrote the paper. histones (5, 6). Several YEATS domain proteins, originally The authors declare no conflict of interest. identified as readers of lysine acetylation (Kac), in fact accom- This article is a PNAS Direct Submission. S.L. is a guest editor invited by the Editorial Board. modate a wide range of lysine acylations with lysine crotonyla- Freely available online through the PNAS open access option. tion (Kcr) most preferred (7). These “mark–reader” interactions Data deposition: The atomic coordinates and structure factors have been deposited in the – vary greatly in binding affinity, ranging from submicromolar to mil- Protein Data Bank, www.wwpdb.org (PDB ID codes 5WXG [TAF3PHD H3(1–15)K4ac com- plex] and 5WXH [TAF3PHD–H3(1–15)K4me3 complex]). limolar levels. To complicate the matter further, the recognition of 1S.Z. and M.Y. contributed equally to this work. marksbyreaderproteinsisofteneithersynergizedorantagonizedby 2To whom correspondence may be addressed. Email: [email protected] or jizhu@ other marks in close proximity (8). For instance, Spindlin1 recognizes nanoctr.cn. histone H3 trimethylation of Lys-4 (H3K4me3) and asymmetrically This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. dimethylation of Arg-8 (H3R8me2a) in concert, while phosphoryla- 1073/pnas.1704155114/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1704155114 PNAS | Published online August 14, 2017 | E7245–E7254 Downloaded by guest on September 26, 2021 time and in microarray format. The immobilization strategy and the subjected the chip to interaction profiling of eight histone reader spacing of ligands on the chip surface can influence the detecting proteins. The positive and negative controls set in the experi- efficiency of SPRi. Carbene-based cross-linking strategy, which ments matched well with known results. We demonstrated that rapidly immobilizes molecules in random orientation due to its high 3D-carbene–based SPRi technology was suitable to kinetically and diverse chemical reactivity (e.g., carbon insertion, Michael ad- analyze epigenetic interactions in high throughput. We confirmed a dition, nucleophilic reaction, etc.), is becoming an optimized strong interaction between TAF3–H3K4me3 and validated a immobilization method for microarray fabrications (14–16). unique weak interaction between TAF3–H3K4ac by isothermal ti- Meanwhile, due to its high loading capacity for biomolecules and tration calorimetry (ITC) and crystallography. Importantly, an epi- antifouling properties, 3D polymer surface with a designed structure genetic interaction between H3K4me3 and the tudor domain of often shows high signal-to-noise ratio in SPRi (17–19). Theoreti- mutS homolog 6 (MSH6) in Capsella rubella was discovered, sug- cally, a carbene-based 3D surface could immobilize biomolecules gesting a role of H3K4me3 in DNA mismatch repair in plant. randomly in position and orientation to best retain the functionality Collectively, these results demonstrate that the 3D-carbene SPRi and, in the meantime, has the advantage of high sensitivity and low technology is suitable for kinetic and high-throughput analysis of the nonspecific adsorption. However, binding detection of randomly epigenetic “readership” and for interaction discovery. immobilized biomolecules by the 3D-carbene SPRi technology has yet to be explored systematically. Results Here, we report the quantitative and high-throughput profiling Design and Fabrication of the 3D-Carbene Chip. The 3D-carbene of epigenetic interactions by the 3D-carbene chip-based SPRi SPRi technology was designed as in Fig. 1A. As the core element technology. We demonstrated that the 3D-carbene chip could of the chip, a 3D-carbene surface was constructed
Recommended publications
  • Modes of Interaction of KMT2 Histone H3 Lysine 4 Methyltransferase/COMPASS Complexes with Chromatin
    cells Review Modes of Interaction of KMT2 Histone H3 Lysine 4 Methyltransferase/COMPASS Complexes with Chromatin Agnieszka Bochy ´nska,Juliane Lüscher-Firzlaff and Bernhard Lüscher * ID Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstrasse 30, 52057 Aachen, Germany; [email protected] (A.B.); jluescher-fi[email protected] (J.L.-F.) * Correspondence: [email protected]; Tel.: +49-241-8088850; Fax: +49-241-8082427 Received: 18 January 2018; Accepted: 27 February 2018; Published: 2 March 2018 Abstract: Regulation of gene expression is achieved by sequence-specific transcriptional regulators, which convey the information that is contained in the sequence of DNA into RNA polymerase activity. This is achieved by the recruitment of transcriptional co-factors. One of the consequences of co-factor recruitment is the control of specific properties of nucleosomes, the basic units of chromatin, and their protein components, the core histones. The main principles are to regulate the position and the characteristics of nucleosomes. The latter includes modulating the composition of core histones and their variants that are integrated into nucleosomes, and the post-translational modification of these histones referred to as histone marks. One of these marks is the methylation of lysine 4 of the core histone H3 (H3K4). While mono-methylation of H3K4 (H3K4me1) is located preferentially at active enhancers, tri-methylation (H3K4me3) is a mark found at open and potentially active promoters. Thus, H3K4 methylation is typically associated with gene transcription. The class 2 lysine methyltransferases (KMTs) are the main enzymes that methylate H3K4. KMT2 enzymes function in complexes that contain a necessary core complex composed of WDR5, RBBP5, ASH2L, and DPY30, the so-called WRAD complex.
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • Supplemental Materials ZNF281 Enhances Cardiac Reprogramming
    Supplemental Materials ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression Huanyu Zhou, Maria Gabriela Morales, Hisayuki Hashimoto, Matthew E. Dickson, Kunhua Song, Wenduo Ye, Min S. Kim, Hanspeter Niederstrasser, Zhaoning Wang, Beibei Chen, Bruce A. Posner, Rhonda Bassel-Duby and Eric N. Olson Supplemental Table 1; related to Figure 1. Supplemental Table 2; related to Figure 1. Supplemental Table 3; related to the “quantitative mRNA measurement” in Materials and Methods section. Supplemental Table 4; related to the “ChIP-seq, gene ontology and pathway analysis” and “RNA-seq” and gene ontology analysis” in Materials and Methods section. Supplemental Figure S1; related to Figure 1. Supplemental Figure S2; related to Figure 2. Supplemental Figure S3; related to Figure 3. Supplemental Figure S4; related to Figure 4. Supplemental Figure S5; related to Figure 6. Supplemental Table S1. Genes included in human retroviral ORF cDNA library. Gene Gene Gene Gene Gene Gene Gene Gene Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol AATF BMP8A CEBPE CTNNB1 ESR2 GDF3 HOXA5 IL17D ADIPOQ BRPF1 CEBPG CUX1 ESRRA GDF6 HOXA6 IL17F ADNP BRPF3 CERS1 CX3CL1 ETS1 GIN1 HOXA7 IL18 AEBP1 BUD31 CERS2 CXCL10 ETS2 GLIS3 HOXB1 IL19 AFF4 C17ORF77 CERS4 CXCL11 ETV3 GMEB1 HOXB13 IL1A AHR C1QTNF4 CFL2 CXCL12 ETV7 GPBP1 HOXB5 IL1B AIMP1 C21ORF66 CHIA CXCL13 FAM3B GPER HOXB6 IL1F3 ALS2CR8 CBFA2T2 CIR1 CXCL14 FAM3D GPI HOXB7 IL1F5 ALX1 CBFA2T3 CITED1 CXCL16 FASLG GREM1 HOXB9 IL1F6 ARGFX CBFB CITED2 CXCL3 FBLN1 GREM2 HOXC4 IL1F7
    [Show full text]
  • Download Download
    Supplementary Figure S1. Results of flow cytometry analysis, performed to estimate CD34 positivity, after immunomagnetic separation in two different experiments. As monoclonal antibody for labeling the sample, the fluorescein isothiocyanate (FITC)- conjugated mouse anti-human CD34 MoAb (Mylteni) was used. Briefly, cell samples were incubated in the presence of the indicated MoAbs, at the proper dilution, in PBS containing 5% FCS and 1% Fc receptor (FcR) blocking reagent (Miltenyi) for 30 min at 4 C. Cells were then washed twice, resuspended with PBS and analyzed by a Coulter Epics XL (Coulter Electronics Inc., Hialeah, FL, USA) flow cytometer. only use Non-commercial 1 Supplementary Table S1. Complete list of the datasets used in this study and their sources. GEO Total samples Geo selected GEO accession of used Platform Reference series in series samples samples GSM142565 GSM142566 GSM142567 GSM142568 GSE6146 HG-U133A 14 8 - GSM142569 GSM142571 GSM142572 GSM142574 GSM51391 GSM51392 GSE2666 HG-U133A 36 4 1 GSM51393 GSM51394 only GSM321583 GSE12803 HG-U133A 20 3 GSM321584 2 GSM321585 use Promyelocytes_1 Promyelocytes_2 Promyelocytes_3 Promyelocytes_4 HG-U133A 8 8 3 GSE64282 Promyelocytes_5 Promyelocytes_6 Promyelocytes_7 Promyelocytes_8 Non-commercial 2 Supplementary Table S2. Chromosomal regions up-regulated in CD34+ samples as identified by the LAP procedure with the two-class statistics coded in the PREDA R package and an FDR threshold of 0.5. Functional enrichment analysis has been performed using DAVID (http://david.abcc.ncifcrf.gov/)
    [Show full text]
  • WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12Q 1/68 (2018.01) A61P 31/18 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12Q 1/70 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2018/056167 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 16 October 2018 (16. 10.2018) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/573,025 16 October 2017 (16. 10.2017) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, ΓΕ , IS, IT, LT, LU, LV, (71) Applicant: MASSACHUSETTS INSTITUTE OF MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Cambridge, Massachusetts 02139 (US).
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • 4 Transcription Part
    Transcripon factors Once associated with the promoter, what do transcripon factors do? u Interact with/recruit the core transcriponal machinery u Recruit chroma)n-modifying ac)vi)es Transcripon factors Once associated with the promoter, what do transcripon factors do? u Interact with/recruit the core transcriponal machinery v Co-acvators Ac)vate transcrip)on but do not bind DNA v Mediator Mul)subunit complex that “mediates” between transcripon factors/coacvators and the core transcrip)on machinery (TFII family factors, RNA polymerase II) Transcripon factors Once associated with the promoter, what do transcripon factors do? u Interact with/recruit the core transcriponal machinery u Recruit chroma)n-modifying ac)vi)es v Nucleosome remodeling v Acetylases/deacetylases v Methylases/demethylases Black – DNA Blue – H3 Green – H4 Space-filling model of a core nucleosome Blue – protein Orange - DNA Nucleosome posioning around transcripon start sites is not random DNA accessibility is important for promoter func)on, this requires that nucleosomes be re-posioned (“remodeled”) during transcripon iniaon Types of Histone Modifica)ons Taken from h,ps://www.plant-epigenome.org/category/lecture-topic/histone-modificaons h,ps://www.plant-epigenome.org/teaching-tools Types of Histone Modifica)ons phosphorylaon acetylaon ubiquinaon methylaon Bhaumik, Smith, and Shilafard, 2007. Features of Histone Modifica)ons • Covalently aached groups (usually to histone tails) Methyl Acetyl Phospho Ubiqui=n SUMO • Reversible and Dynamic – Enzymes that add/remove modificaon – Signals • Have diverse biological func=ons Cell, 111:285-91, Nov. 1, 2002 " Features of Histone Modifica)ons •! Small vs. Large groups Ub = ~8.5 kDa •! One or up to three groups per residue H4 = 14 kDa Jason L J M et al.
    [Show full text]
  • The Vitamin D Receptor in Cancer
    Proceedings of the Nutrition Society (2008), 67, 115–127 doi:10.1017/S0029665108006964 g The Authors 2008 The Summer Meeting of the Nutrition Society, hosted by the Irish Section, was held at the University of Ulster, Coleraine on 16–19 July 2007 Symposium on ‘Diet and cancer’ The vitamin D receptor in cancer James Thorne1* and Moray J. Campbell1,2 1Institute of Biomedical Research, Wolfson Drive, University of Birmingham Medical School, Edgbaston B15 2TT, UK 2Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA Over the last 25 years roles have been established for vitamin D receptor (VDR) in influencing cell proliferation and differentiation. For example, murine knock-out approaches have revealed a role for the VDR in controlling mammary gland growth and function. These actions appear widespread, as the enzymes responsible for 1a,25-dihydroxycholecalciferol generation and degradation, and the VDR itself, are all functionally present in a wide range of epithelial and haematopoietic cell types. These findings, combined with epidemiological and functional data, support the concept that local, autocrine and paracrine VDR signalling exerts control over cell-fate decisions in multiple cell types. Furthermore, the recent identification of bile acid lithocholic acid as a VDR ligand underscores the environmental sensing role for the VDR. In vitro and in vivo dissection of VDR signalling in cancers (e.g. breast, prostate and colon) supports a role for targeting the VDR in either chemoprevention or chemotherapy settings. As with other potential therapeutics, it has become clear that cancer cells display de novo and acquired genetic and epigenetic mechanisms of resistance to these actions.
    [Show full text]
  • Lysine Methylation Regulators Moonlighting Outside the Epigenome Evan Cornett, Laure Ferry, Pierre-Antoine Defossez, Scott Rothbart
    Lysine Methylation Regulators Moonlighting outside the Epigenome Evan Cornett, Laure Ferry, Pierre-Antoine Defossez, Scott Rothbart To cite this version: Evan Cornett, Laure Ferry, Pierre-Antoine Defossez, Scott Rothbart. Lysine Methylation Regulators Moonlighting outside the Epigenome. Molecular Cell, Elsevier, 2019, 10.1016/j.molcel.2019.08.026. hal-02359890 HAL Id: hal-02359890 https://hal.archives-ouvertes.fr/hal-02359890 Submitted on 14 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Lysine methylation regulators moonlighting outside the epigenome Evan M. Cornett1, Laure Ferry2, Pierre-Antoine Defossez2, and Scott B. RothBart1* 1Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA. 2Université de Paris, Epigenetics and Cell Fate, CNRS, F-75013 Paris, France. *Correspondence: [email protected], 616-234-5367 ABSTRACT Landmark discoveries made nearly two decades ago identified known transcriptional regulators as histone lysine methyltransferases; since then the field of lysine methylation signaling has Been dominated By studies of how this small chemical posttranslational modification regulates gene expression and other chromatin-Based processes. However, recent advances in mass spectrometry-Based proteomics have revealed that histones are just a suBset of the thousands of eukaryotic proteins marked By lysine methylation.
    [Show full text]
  • Epigenetic Regulation of Development by Histone Lysine Methylation
    Heredity (2010) 105, 24–37 & 2010 Macmillan Publishers Limited All rights reserved 0018-067X/10 $32.00 www.nature.com/hdy REVIEW Epigenetic regulation of development by histone lysine methylation S Dambacher1, M Hahn1 and G Schotta Munich Center for Integrated Protein Science (CiPSM) and Adolf-Butenandt-Institute, Ludwig-Maximilians-University, Munich, Germany Epigenetic mechanisms contribute to the establishment and (HMTases) and specific binding factors for most methylated maintenance of cell-type-specific gene expression patterns. lysine positions has provided a novel insight into the mechanisms In this review, we focus on the functions of histone lysine of epigenetic gene regulation. In addition, analyses of HMTase methylation in the context of epigenetic gene regulation during knockout mice show that histone lysine methylation has developmental transitions. Over the past few years, analysis of important functions for normal development. In this study, we histone lysine methylation in active and repressive nuclear review mechanisms of gene activation and repression by histone compartments and, more recently, genome-wide profiling of lysine methylation and discuss them in the context of the histone lysine methylation in different cell types have revealed developmental roles of HMTases. correlations between particular modifications and the transcrip- Heredity (2010) 105, 24–37; doi:10.1038/hdy.2010.49; tional status of genes. Identification of histone methyltransferases published online 5 May 2010 Keywords: epigenetics; histone lysine methylation; heterochromatin; mouse development Introduction Activation and repression are facilitated by Development is accomplished by spatial and temporal histone lysine methylation regulation of gene expression patterns. The identity of Major methylation sites on histones H3 and H4 are each cell type is maintained and passed on to daughter located in the tail (H3K4, H3K9, H3K27, H3K36 and cells by mechanisms that do not alter the DNA sequence H4K20) and the nucleosome core region (H3K79).
    [Show full text]
  • Integrated Transcriptomic, Phenotypic, and Functional Study Reveals Tissue-Specific Immune Properties of Mesenchymal Stromal
    Integrated Transcriptomic, Phenotypic, and Functional Study Reveals Tissue-Specific Immune Properties of Mesenchymal Stromal Cells Cédric Ménard, Joelle Dulong, David Roulois, Benjamin Hebraud, Léa Verdière, Céline Pangault, Vonick Sibut, Isabelle Bezier, Nadège Bescher, Céline Monvoisin, et al. To cite this version: Cédric Ménard, Joelle Dulong, David Roulois, Benjamin Hebraud, Léa Verdière, et al.. Inte- grated Transcriptomic, Phenotypic, and Functional Study Reveals Tissue-Specific Immune Prop- erties of Mesenchymal Stromal Cells. STEM CELLS, AlphaMed Press, 2020, 38 (1), pp.146-159. 10.1002/stem.3077. hal-02282131 HAL Id: hal-02282131 https://hal-univ-rennes1.archives-ouvertes.fr/hal-02282131 Submitted on 10 Sep 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Stem Cells Integrated transcriptomic, phenotypic, and functional study reveals tissue-specific immune properties of mesenchymal stromal cells Journal: Stem Cells Manuscript ID Draft Wiley - Manuscript Type: Original Research Date Submitted by Forthe Peer Review n/a Author: Complete
    [Show full text]
  • Islet-1 Is Essential for Pancreatic Β-Cell Function Benjamin N. Ediger
    Page 1 of 68 Diabetes June 20, 2014 Diabetes Islet-1 is essential for pancreatic β-cell function Benjamin N. Ediger1,5, Aiping Du1, Jingxuan Liu1, Chad S. Hunter3, Erik R. Walp1, Jonathan Schug4, Klaus H. Kaestner4, Roland Stein3, Doris A. Stoffers5* and Catherine Lee May*,1,2 1Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, 2Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA 3Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA 4Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA 5Department of Medicine and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA * These authors contributed equally. Running Title: Isl-1 regulates β-cell function Address correspondence to: Catherine Lee May, Ph.D. 3615 Civic Center Blvd, Room 516E Philadelphia, PA 19104 Phone: 267-426-0116 E-mail: [email protected] And Doris A. Stoffers, M.D., Ph.D. 3400 Civic Center Boulevard, 12-124 SCTR Philadelphia, PA 19104 Phone: (215) 573-5413 E-mail: [email protected] Fax: 215-590-3709 Word Count: 4065 Number of Tables: 6 (all are supplemental) Number of Figures: 9 (3 are supplemental) Diabetes Publish Ahead of Print, published online July 15, 2014 Diabetes Page 2 of 68 Abstract Isl-1 is essential for the survival and ensuing differentiation of pancreatic endocrine progenitors. Isl-1 remains expressed in all adult pancreatic endocrine lineages; however, its specific function in the postnatal pancreas is unclear.
    [Show full text]