U-Th-Pb Geo/Thermochronology

Total Page:16

File Type:pdf, Size:1020Kb

U-Th-Pb Geo/Thermochronology U-Th-Pb Geo/Thermochronology Blair Schoene, John Cottle, Michael Eddy [email protected], [email protected], [email protected] U Method Overview 238 The U-Th-Pb radioisotope sytem is the basis for one of Pb/ the most important geochronometers in use today. It 206 exploits three independent radiogenic isotopes 238U (t1/2=), 235U (t1/2=), and 232Th (t1/2=) that together can be used to date events from the beginning of the solar system to the Pleistocene. This versatility, along with the ubiquity of minerals containing high U and Th concentrations (i.e., zircon, titanite, monazite, baddeleyite, apatite, rutile, etc.), has led to the use of U-Th-Pb geo/ thermochronology in the study of igneous, metamorphic, and sedimentary systems. 207Pb/235U U-Th-Pb geochronology is also used as the standard by Weatherill concordia plot showing U-Pb zircon geochronologic analysis by ID-TIMS. which all other geochronologic methods are compared The dual 238U -> 206Pb and 235U -> 207Pb decay systems permit a check for closed system and in some cases has been used to calibrate decay behavior. The curve (blue line) where both systems agree is called concordia. constants for other radioisotope systems. Recent advances in analytical techniques have improved Sampling and Mineral Separation precision of U-Th-Pb age determinations, reduced the The closure temperatures (temperature below which sample volume needed for analysis, and reduced diffusion of Pb is negligible) of high-U minerals span a analysis time such that U-Th-Pb geochronology has large range from >900˚C for zircon to 400˚C for apatite. become the most widely used chronometer in the study Therefore, the sampling strategy and mineral separation of deep time. techniques used will depend on the individual project’s goals. Nevertheless, most projects will require sampling 600 a rock in the field, crushing or disaggregating the rock to U–Pb liberate individual minerals, and density and magnetic 500 40Ar/39Ar + K–Ar separation techniques to isolate the mineral of interest. A Sm–Nd key component of all these steps is carefully avoiding 400 Rb–Sr sample contamination through careful treatment of the U/Th–He sample in the field to keeping a clean laboratory for 300 crushing and mineral separation. Helpful information Number of papers 200 for how zircon (the most commonly used U-Pb chro- nometer) is separated can be found at 100 earth.boisestate.edu/isotope/labshare. Closure Temperatures of Common U-Pb Chronometers 1970 1975 1980 1985 1990 1995 2000 2005 2010 Publication year Zircon >900˚C Number of publications with U-Pb geochronology in the title by year, showing the recent Baddeleyite >900˚C growth of this technique. The data was extracted from the Web of Knowledge and the Monazite >800˚C figure is from Chapter Four of the Treatise on Geochemistry (Schoene, 2014). Rutile 400-600˚C One advantage of U-Th-Pb geo-/ thermochronology is Titanite 600-800˚C that the three radioisotope systems 238U -> 206Pb, 235U -> Apatite 400-500˚C 207Pb, and 232Th -> 208Pb can be used as a check that the system has remained closed since the crystallization of 207Pb/206Pb date (Ma) the mineral of interest. This can be done on several concordia diagrams by ensuring that both dates provide the same age, or are ‘concordant’. A fourth isotopic system can be used by combining the 206Pb/238U and 207 235 2800 Pb/ U age equations and assuming a constant 2700 terrestrial 235U/238U. This system utilizes only the 2600 207 206 2500 Pb/ Pb ratio and is useful when the target mineral 2400 has experienced recent “Pb-loss” (preferential loss of Pb 2300 100 µm 2200 from the target mineral through zones of high radiation 2100 damage) as this process does not affect Pb isotope Cathodoluminescence (CL) image (L) and isotopic age map (R) of a complexly zoned systematics. zircon. Zircon is a powerful U-Th-Pb chronometer often recording multiple geologic events, the timing of which can be extracted to high precision and accuracy using modern mass spectrometry techniques. Analytical Techniques Petrochronology The most commonly used methods are isotope An exciting aspect of modern U-Pb geo-/ dilution-thermal ionization mass spectrometry thermochronology is the possibility of combinining (ID-TIMS), secondary ion mass spectrometry (SIMS), U-Pb dates with the trace element composition of the and laser ablation-inductively coupled plasma-mass analyzed mineral. This can be done simultaneously spectrometry (LA-ICP-MS). Each technique has during LA-ICP-MS analyses by splitting the volume of advantages and disadvantages in analysis duration, ablated material and feeding it into two mass cost, precision, and volume of sample material needed. spectrometers using the laser ablation split stream ID-TIMS is the most expensive and time (LASS) method or by analyzing aliquots of the dissolved consuming method (3-4 hours + lengthy sample prepa material produced during ID-TIMS analyses using the ration), and involves dissolution of part, or all, of the TIMS-TEA method. These analyses can measure REE or target mineral. However, the technique provides the trace element patterns that can be linked to phase most accurate and precise (typically <0.1% for zircon) assemblages that were present during the mineral’s dates possible and data produced by this technique are crystallization or can measure isotopic data that can used to calibrate standard reference materials and the shed light on the mineral’s origin (i.e., Hf isotopes in geologic timescale. When the highest precision analyses zircon). Ultimately, the goal is to provide the most are needed, this is the go-to method. petrologic context possible for each U-Pb age. SIMS and LA-ICP-MS analyses are much less destructive and are typically done by ablating the target mineral’s surface with either a focused ion beam (SIMS) ellipses are 2 or a high energy laser (LA-ICP-MS) either on separated Pb crystals or directly in polished petrographic thin 0.058 206 sections. Both techniques routinely produce dates with moderate precision (~2-4% for zircon) and are relatively Pb/ fast (30 minutes: SIMS; 1-2 minutes: LA-ICP-MS). These 207 techniques are also relatively inexpensive. They are best suited to analysis of complex minerals with many 0.056 small-scale growth domains or projects where age 430 precision of 1-2% will not limit geologic interpretations. 420 In any case, the best results will be obtained 2.8 410 400 through collaboration with U-Th-Pb geochronologists 390 who can help figure out which method is most 0.054 appropriate and assess the limitations of a given dataset and ensure analysis quality. Dy (a) Isotope dilution – thermal ionization mass spectrometry 0.2 Gd 238U/206Pb 88.35 ±0.06 14.6 15.0 15.4 15.8 16.2 U+Pb Tracer HF Tera-Wasserburg concordia plot from Kylander-Clark et al. (Chemical Geology, 2013) Zircon ACID showing LASS data from zircon extracted from the Midsund Bruk eclogite. Older dates Dissolution have low Dy/Gd, while younger dates have high Dy/Gd.. These distinct populations Ion exchange separation likely reflect zircon growth during breakdown and/or growth of different minerals. z29 Onto filament U+Pb Distinct CL zones in one of the analyzed zircons further supports the interpretation that μ 100 m 65.04 ±0.07 in TIMS these two different geochemical signatures represent distinct growth events. Analysis time: ~3–4 h (b) Secondary ion mass spectrometry Into mass spectrometer Useful Websites Analysis time: ~30 min UO+ U+ + −8000 V www.earth-time.org Ion beam Pb + + Organization focused on calibrating Earth history by Zr2O HfSi increasing inter-laboratory reproducibility. This website is a great resource for learnng about high- 50 μm +8000 V precision ID-TIMS geochronology. (c) Laser ablation inductively coupled plasma mass spectrometry www.plasmage.org Organization focused on increasing precision and 50 μm Laser beam accuracy in LA-ICP-MS analyses. This website is a U+Pb + great resource for information regarding best He carrier gas Ablated particles everything else practices for LA-ICP-MS analyses. Zircon Into ICP-MS Analysis time: £2 min Sample chamber www.earthscope.org/research/geochronology Program for graduate students interested in being A comparison of different U-Pb geochronologic techniques showing the general analytical connected with a geochronology laboratory and setup, analysis time, and the sample volume used. (A) Typical workflow for ID-TIMS analyses of zircon. (B) Typical geometry for production of secondary ions during SIMS applying for funding to visit that lab and get data. analyses with an SEM image showing pit size. (C) Typical geometry for LA-ICP-MS analyses and SEM image of ablation pits. This figure is from Chapter Four of the Treatise on Geochemistry (Schoene, 2014)..
Recommended publications
  • Mesozoic and Cenozoic Thermal History of the Western Reguibat Shield West African Craton)
    This is a repository copy of Mesozoic and Cenozoic thermal history of the Western Reguibat Shield West African Craton). White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/124296/ Version: Accepted Version Article: Gouiza, M orcid.org/0000-0001-5438-2698, Bertotti, G and Andriessen, PAM (2018) Mesozoic and Cenozoic thermal history of the Western Reguibat Shield West African Craton). Terra Nova, 30 (2). pp. 135-145. ISSN 0954-4879 https://doi.org/10.1111/ter.12318 © 2017 John Wiley & Sons Ltd. This is the peer reviewed version of the following article: Gouiza M, Bertotti G, Andriessen PAM. Mesozoic and Cenozoic thermal history of the Western Reguibat Shield (West African Craton). Terra Nova. 2018;30:135–145. https://doi.org/10.1111/ter.12318, which has been published in final form at https://doi.org/10.1111/ter.12318. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. Uploaded in accordance with the publisher's self-archiving policy. Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request.
    [Show full text]
  • Apatite Thermochronology in Modern Geology
    Downloaded from http://sp.lyellcollection.org/ by guest on September 25, 2021 Apatite thermochronology in modern geology F. LISKER1*, B. VENTURA1 & U. A. GLASMACHER2 1Fachbereich Geowissenschaften, Universita¨t Bremen, PF 330440, 28334 Bremen, Germany 2Institut fu¨r Geowissenschaften, Ruprecht-Karls-Universita¨t Heidelberg, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany *Corresponding author (e-mail: fl[email protected]) Abstract: Fission-track and (U–Th–Sm)/He thermochronology on apatites are radiometric dating methods that refer to thermal histories of rocks within the temperature range of 408–125 8C. Their introduction into geological research contributed to the development of new concepts to interpreting time-temperature constraints and substantially improved the understanding of cooling processes within the uppermost crust. Present geological applications of apatite thermochronological methods include absolute dating of rocks and tectonic processes, investigation of denudation histories and long-term landscape evolution of various geological settings, and basin analysis. Thermochronology may be described as the the analysis of radiation damage trails (‘fission quantitative study of the thermal histories of rocks tracks’) in uranium-bearing, non-conductive using temperature-sensitive radiometric dating minerals and glasses. It is routinely applied on the methods such as 40Ar/39Ar and K–Ar, fission minerals apatite, zircon and titanite. Fission tracks track, and (U–Th)/He (Berger & York 1981). are produced continuously through geological time Amongst these different methods, apatite fission as a result of the spontaneous fission of 238U track (AFT) and apatite (U–Th–Sm)/He (AHe) atoms. They are submicroscopic features with an are now, perhaps, the most widely used thermo- initial width of approximately 10 nm and a length chronometers as they are the most sensitive to low of up to 20 mm (Paul & Fitzgerald 1992) that can temperatures (typically between 40 and c.
    [Show full text]
  • Isotopes and Geochronology
    What is an isotope? A Nuclide Z X Z = atomic number = number of protons A = mass number = number of nucleons (protons + neutrons) N = neutron number = number of neutrons, i.e. N = A–Z The same Z – isotopes The same A – isobars Vojtěch Janoušek: Radiogenic isotope geochemistry Relative atomic mass • Dalton (or atomic mass unit - a.m.u.) and geochronology = 1/12 of the mass of 12C Periodic table of elements Radioactive decay D.I. Mendeleev Decay constant λ reflects the stability of atoms = what is the proportion of atoms that decay in given time t NNe 0 t D D0 Ne 1 Half-life t1/2 = how long it takes for half of the atoms to decay ln20693 . t 1 2 1 Types of radioactive decay Types of radioactive decay -β decay 87 Rb 87Sr 176 Lu 176 Hf 187 187 α decay Re Os 147Sm 143Nd +β decay Types of radioactive decay Example of branched decay Spontaneous fission 2 Example of decay chain (238U) Calculating age and initial ratio • Radioactive isotope (87Rb, 147Sm, ...) • Radiogenic isotope (87Sr, 143Nd, ...) • Stable isotope (86Sr, 144Nd, ...) • R (radioactive isotope to stable) e.g., (87Rb/86Sr) , (147Sm/144Nd) I (radiogenic isotope to stable) e.g., (87Sr/86Sr), (143Nd/144Nd) Calculating age and initial ratio Radiogenic/radioactive/stable isotopes t 143 143 I I i Re 1 Nd Nd 144 144 1 Nd Nd i 143 143 147 t ln 1 Nd Nd Sm t 147 144 144 144 e 1 Sm Nd Nd i Nd 144 Nd 87 87 87 Sr Sr Rb t 86 86 86 e 1 Sr Sr i Sr 176 Hf 176 Hf 176 Lu et 1 177 Hf 177 Hf 177 Hf i 1 I Ii 187 187 187 t ln 1 Os Os Re t R 186 186 186 e 1 Os Os i Os Treatise on Geochemistry kap.
    [Show full text]
  • Computational Tools for Low-Temperature Thermochronometer Interpretation Todd A
    Reviews in Mineralogy & Geochemistry Vol. 58, pp. 589-622, 2005 22 Copyright © Mineralogical Society of America Computational Tools for Low-Temperature Thermochronometer Interpretation Todd A. Ehlers, Tehmasp Chaudhri, Santosh Kumar Department of Geological Sciences University of Michigan Ann Arbor, Michigan, 48109-1005, U.S.A. [email protected] Chris W. Fuller, Sean D. Willett Department of Earth and Space Sciences University of Washington Seattle, Washington, 98195, U.S.A. Richard A. Ketcham Jackson School of Geosciences University of Texas at Austin Austin, Texas, 78712-0254, U.S.A. Mark T. Brandon Department of Geology and Geophysics Yale University New Haven, Connecticut, 06520-8109, U.S.A. David X. Belton, Barry P. Kohn, Andrew J.W. Gleadow School of Earth Sciences The University of Melbourne Victoria 3010, Australia Tibor J. Dunai Faculty of Earth and Life Sciences Vrije Universiteit De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands Frank Q. Fu School of Geosciences University of Sydney, NSW 2006, Australia and CSIRO Exploration and Mining, PO Box 1130, Bentley, WA, Australia INTRODUCTION This volume highlights several applications of thermochronology to different geologic settings, as well as modern techniques for modeling thermochronometer data. Geologic interpretations of thermochronometer data are greatly enhanced by quantitative analysis of the data (e.g., track length distributions, noble gas concentrations, etc.), and/or consideration of the thermal fi eld samples cooled through. Unfortunately, the computational tools required for a rigorous analysis and interpretation of the data are often developed and used by individual labs, but rarely distributed to the general public. One reason for this is the lack of a good 1529-6466/05/0058-0022$05.00 DOI: 10.2138/rmg.2005.58.22 590 Ehlers et al.
    [Show full text]
  • 4. Thermochronology – Techniques and Methods
    4. Thermochronology – Techniques and Methods 4.1 Introduction to thermochronology Thermochronology is the study of dating the cooling of rocks through exhumation. In its simplest form, thermochronology can be considered to date the moment when a mineral passes through a specific closure temperature (Tc) (Dodson, 1973). Minerals have different closure temperatures and so by using a suite of thermochronometers on a single sample, its cooling path through the crust can be reconstructed. The minerals and closure temperatures available for use are illustrated in figure 4.1. The highest temperature chronometers have closure temperatures in excess of 750oC (U-Pb in zircon). These higher temperature chronometers such as the U-Pb system in zircon are used to date, for example, Archean gneiss terrains, due to the unlikely nature of them having been reset, with depths required for reset at ~30 km (assuming a 25oCkm-1 geothermal gradient). This study focuses on the low temperature thermochronometers which may allow the geomorphic signature of the landscape to become etched into the thermochronometric record. Two principal low temperature thermochronometers are used in this study, apatite fission track analysis (AFT) and apatite (U-Th)/He analysis (AHe). These are the lowest temperature chronometers that are known about in sufficient detail and calibrated well enough to make them usable. The low temperature thermochronometers may be used in a variety of ways, but one of their principal uses and that used in this study is to determine the temperature-time history of samples. As an extension to this they may also be used to determine exhumation rates by making some assumptions and for the higher temperature chronometers, to date the timing of formation of the rock/mineral in question.
    [Show full text]
  • Thermochronological Insights Into Reactivation of a Continental Shear
    www.nature.com/scientificreports OPEN Thermochronological insights into reactivation of a continental shear zone in response to Equatorial Received: 6 October 2017 Accepted: 24 October 2018 Atlantic rifting (northern Ghana) Published: xx xx xxxx Nicholas Fernie 1, Stijn Glorie1, Mark W. Jessell 2 & Alan S. Collins 1 West Africa was subjected to deformation and exhumation in response to Gondwana break-up. The timing and extent of these events are recorded in the thermal history of the margin. This study reports new apatite fssion track (AFT) data from Palaeoproterozoic basement along the primary NE-SW structural trend of the Bole-Nangodi shear zone in northwestern Ghana. The results display bimodality in AFT age (populations of ~210-180 Ma and ~115-105 Ma) and length distributions (populations of 12.2 ± 1.6 and 13.1 ± 1.4 µm), supported by diferences in apatite chemistry (U concentrations). The bimodal AFT results and associated QTQt thermal history models provide evidence for multiple cooling phases. Late Triassic – Early Jurassic cooling is interpreted to be related with thermal relaxation after the emplacement of the Central Atlantic Magmatic Province (CAMP). Early to middle Cretaceous cooling is thought to be associated with exhumation during the Cretaceous onset of rifting between West Africa and Brazil. Late Cretaceous – Cenozoic cooling can be related with exhumation of the Ivory Coast – Ghana margin and NNW-SSE shortening through western Africa. Furthermore, our data record diferential exhumation of the crust with respect to the Bole-Nangodi shear zone, preserving older (CAMP) cooling ages to the south and younger (rifting) cooling ages to the north of the shear zone, respectively.
    [Show full text]
  • Fission-Track Dating
    1. Introduction and Application 3. Sampling Methods Fission-track (FT) dating is utilized in a number of geologic studies to obtain time-temperature information on bedrock and sediment deposit. Tracks are produced by fission decay events of 238U and thus the mineral lattice damage (track) is equivalent to daughter isotopes measured in other radiometric dating methods. In typical FT dating several hundred of apatite or zircon grains are mounted, and polished to expose internal mineral surfaces. The spontaneous tracks that intersect this internal surface are etched chemically and become visible with an optical microscope (Fig. 1). Track densities are commonly determined by counting the number of tracks in a certain area. Determination of the amount of parent isotope is traditionally accomplished by neutron irradiation that induces Figure 1. Fission tracks in a detrital apatite from the Cretaceous fission of 235U. The inducted tracks are etched and counted Jackass Mountain Group in southern BC. Fission tracks are in an external detector over the same area of the chemically enlarged before counting with high magnification on spontaneous track count. an optical microscope. Grain is about 200 µm across. Fission tracks form continuously at all temperatures and Sampling for fission-track dating involves collection of several depths, but anneal completely at high temperatures of kilograms of candidate rock from lithologies in the field that are >120°C in apatite and >250–300°C in zircon. There is a thought to have the highest potential to yield apatite and/or temperature window where track annealing is slowed down zircon. In typical field sampling, we generally use new large significant enough that it causes track accumulation and canvas sample bags, and we fill these slightly over half way.
    [Show full text]
  • Apatite (U^Th)/He Thermochronometry: Methods and Applications to Problems in Tectonic and Surface Processes
    Earth and Planetary Science Letters 206 (2003) 1^14 www.elsevier.com/locate/epsl Frontiers Apatite (U^Th)/He thermochronometry: methods and applications to problems in tectonic and surface processes Todd A. Ehlers Ã, Kenneth A. Farley California Institute of Technology, Division of Geological and Planetary Sciences, MC 100-23, Pasadena, CA91125, USA Received 11 July 2002; received in revised form 1 October 2002; accepted 5 November 2002 Abstract In the last decade apatite (U^Th)/He thermochronometry has emerged as an important tool for quantifying the cooling history of rocks as they pass through the upper 1^3 km of the crust. The low closure temperature of this technique (V70‡C) has gained the interest of geomorphologists and tectonocists because it is applicable to interdisciplinary studies in landform evolution, structural geology, and geodynamics. We discuss current analytical techniques, the temperature calibration of the method, and sample quality considerations. Results from 1D, 2D and 3D thermo-kinematic numerical models are used to illustrate applications of He thermochronometry to problems in tectonics and landform evolution. ß 2002 Elsevier Science B.V. All rights reserved. Keywords: apatite; (U^Th)/He; thermochronometry; surface processes; tectonics; numerical modeling 1. Introduction chronometry. The focus on apatite arises from its ubiquity and moderately high U and Th content, A recent resurgence of interest in dating miner- but more importantly because He accumulation in als via 4He ingrowth has been driven by an im- apatite occurs only at temperatures below V70^ proved understanding of the behavior of He in 75‡C [9]. At higher temperatures di¡usion re- minerals [1^4], development of robust analytical moves He as fast as it is produced by decay.
    [Show full text]
  • Mesozoic Evolution of NW Africa
    Mesozoic evolution of NW Africa: implications for the Central Atlantic Ocean dynamics Rémi Leprêtre, Jocelyn Barbarand, Yves Missenard, Cécile Gautheron, Rosella Pinna-Jamme, Omar Saddiqi To cite this version: Rémi Leprêtre, Jocelyn Barbarand, Yves Missenard, Cécile Gautheron, Rosella Pinna-Jamme, et al.. Mesozoic evolution of NW Africa: implications for the Central Atlantic Ocean dynamics. Journal of the Geological Society, Geological Society of London, 2017, 174 (5), pp.817 - 835. 10.1144/jgs2016- 100. hal-01676091 HAL Id: hal-01676091 https://hal.sorbonne-universite.fr/hal-01676091 Submitted on 5 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Mesozoic evolution of Northwest Africa: implications for the Central Atlantic 2 Ocean dynamics 3 4 Rémi Leprêtre 1,2,*, Jocelyn Barbarand 1, Yves Missenard 1, Cécile Gautheron 1, Rosella Pinna-Jamme 1, 5 Omar Saddiqi 3 6 7 8 1Université Paris Sud-XI, Paris-Saclay, GEOPS, UMR 8148, Bâtiment 504, rue du Belvédère, F-91405, 9 Orsay, France 10 2Université Pierre et Marie Curie Paris-VI, ISTeP, UMR 7193, EMBS, 4 place Jussieu, 75005, Paris, 11 France 12 3Université Hassan II, Faculté des Sciences, 20000, Casablanca 20000, Morocco 13 *Correspondence ( [email protected] , [email protected] ) 14 15 16 Abbreviated title: Mesozoic Evolution of NW Africa 17 18 Abstract 19 The Central Atlantic Ocean opened during the Early Jurassic and represents the oldest 20 portion of the Atlantic Ocean.
    [Show full text]
  • Fission Track Constraints on Exhumation and Extensional Faulting in Southwest Nevada and Eastern California, U.S.A
    FISSION TRACK CONSTRAINTS ON EXHUMATION AND EXTENSIONAL FAULTING IN SOUTHWEST NEVADA AND EASTERN CALIFORNIA, U.S.A. Prepared for U.S. Nuclear Regulatory Commission Contract NRC–02–07–006 Prepared by David A. Ferrill,1 Alan P. Morris,1 John A. Stamatakos,2 Deborah J. Waiting,2 Raymond A. Donelick,3 Ann E. Blythe4 1Department of Earth, Material, and Planetary Sciences Southwest Research Institute® San Antonio, Texas 2Center for Nuclear Waste Regulatory Analyses San Antonio, Texas 3Apatite to Zircon, Inc. Viola, Idaho 4Department of Geology Occidental College Los Angeles, California September 2011 ABSTRACT Eastern California and southwestern Nevada is an area of Tertiary and Quaternary extensional and dextral transtensional deformation. We use zircon and apatite fission-track thermochronology to study the distribution and timing of tectonic exhumation resulting from extensional and transtensional detachment faulting in this area. Samples were collected from outcrops around Yucca Flat and Frenchman Flat, the Striped Hills, Mount Stirling, Resting Spring Range, Bare Mountain, Bullfrog Hills, and the eastern margin of the Funeral Mountains. To constrain timing of exhumation associated with crustal-scale normal faulting, sampling efforts were focused on Paleozoic and Precambrian clastic sedimentary and metasedimentary rocks of the Stirling Quartzite, Wood Canyon Formation, Zabriskie Quartzite, Eureka Quartzite, and Eleana Formation. Sixty-nine new apatite and zircon fission-track cooling ages from 50 samples, analyzed in conjunction with published fission-track data from the region, indicate a distinct population of young (Miocene) fission-track ages and a population of irregularly distributed older (pre-Miocene) fission-track ages. Miocene (young population) fission track ages young westwards—indicating westward migration of the cooling front, consistent with well-documented Miocene extension of the Basin and Range.
    [Show full text]
  • An Examination of Noble Gas Geochronology and Thermochronology in the Context of Dating Impact Events
    45th Lunar and Planetary Science Conference (2014) 2670.pdf AN EXAMINATION OF NOBLE GAS GEOCHRONOLOGY AND THERMOCHRONOLOGY IN THE CONTEXT OF DATING IMPACT EVENTS. K. E. Young1, C. M. Mercer1, M. C. van Soest1, K. V. Hodges1, J- A Wartho1, and M.B. Biren1, 1School of Earth and Space Exploration, Arizona State University, ISTB4 Bldg 75, 781 E Terrace Rd, Tempe, Arizona, 85287-6004. Contact: [email protected] Introduction: The significance of bolide impact in events related to bolide impact. They found that it is earth system development – especially its apparent very unlikely for most U-Pb chronometers to be sensi- influence on biological evolution – motivates the con- bly reset by an impact event. Many of the commonly tinued development of more accurate and more precise used 40Ar/39Ar chronometers (i.e., muscovite, biotite, methods to determine the ages of terrestrial impact feldspar, etc.) would not be reset in smaller impacts events. Unfortunately, because we live on a tectonical- because the duration and magnitude of the thermal ly active planet with both a hydrosphere and a bio- event is so small. However, it seems likely that chro- sphere, Earth’s surface is continually reworked and nometers based on the production of 4He by U, Th, and only a small number of impact craters are available to (to a lesser extent) Sm decay may be quite readily re- study. Of these 184 structures [1] an even smaller set. This observation has motivated our interest in ex- number have been accurately dated [2]. This is due to ploring the practical value of (U-Th)/He thermo- the fact that many impact sites are not in target areas chronoloy in impact studies.
    [Show full text]
  • Syn-To Post-Rift Topographic Tectonique and Sedimentary Evolution of the West African Transform Margin Jing Ye
    Syn-to post-rift topographic tectonique and sedimentary evolution of the west African transform margin Jing Ye To cite this version: Jing Ye. Syn-to post-rift topographic tectonique and sedimentary evolution of the west African transform margin. Earth Sciences. Université Paul Sabatier - Toulouse III, 2016. English. NNT : 2016TOU30218. tel-01561691 HAL Id: tel-01561691 https://tel.archives-ouvertes.fr/tel-01561691 Submitted on 13 Jul 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 5)µ4& &OWVFEFMPCUFOUJPOEV %0$503"5%&-6/*7&34*5²%&506-064& %ÏMJWSÏQBS Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier) 1SÏTFOUÏFFUTPVUFOVFQBS Jing YE le lundi 7 novembre 2016 5JUSF Évolution Topographique, Tectonique et Sédimentaire Syn- à Post-rift de la Marge Transformante Ouest Africaine ²DPMF EPDUPSBMF et discipline ou spécialité ED SDU2E : Sciences de la Terre et des Planètes Solides 6OJUÏEFSFDIFSDIF UMR 5563 %JSFDUFVSUSJDF T EFʾÒTF Delphine ROUBY Dominique CHARDON Jury: Sébastien CARRETIER (président du jury) Gianreto MANATSCHAL (rapporteur) Dominique FRIZON DE LAMOTTE (rapporteur) Sébastien CASTELLTORT (rapporteur) Mary FORD (examinatrice) Résumé Cette thèse présente la première étude Source-to-Sink de la marge Atlantique Equatoriale africaine au Méso- Cénozoïque.
    [Show full text]