Mass and Age of Red Giant Branch Stars Observed with LAMOST and Kepler

Total Page:16

File Type:pdf, Size:1020Kb

Mass and Age of Red Giant Branch Stars Observed with LAMOST and Kepler MNRAS 475, 3633–3643 (2018) doi:10.1093/mnras/stx3296 Advance Access publication 2017 December 22 Mass and age of red giant branch stars observed with LAMOST and Kepler Yaqian Wu,1‹ Maosheng Xiang,2‹† Shaolan Bi,1‹ Xiaowei Liu,3 Jie Yu,4,5 Marc Hon,6 Sanjib Sharma,4 Tanda Li,4,5,2 Yang Huang,3† Kang Liu,1 Xianfei Zhang,1 Downloaded from https://academic.oup.com/mnras/article-abstract/475/3/3633/4772882 by Sydney College of Arts user on 17 February 2019 Yaguang Li,1 Zhishuai Ge,1 Zhijia Tian,3† Jinghua Zhang1 and Jianwei Zhang1 1Department of Astronomy, Beijing Normal University, Beijing 100875, P. R. China 2National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, P. R. China 3Department of Astronomy, Peking University, Beijing 100871, P. R. China 4School of Physics, University of Sydney, Sydney 2000, NSW, Australia 5Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark 6School of Physics, The University of New South Wales, Sydney 2052, NSW, Australia Accepted 2017 December 19. Received 2017 December 19; in original form 2017 September 25 ABSTRACT Obtaining accurate and precise masses and ages for large numbers of giant stars is of great importance for unraveling the assemblage history of the Galaxy. In this paper, we estimate masses and ages of 6940 red giant branch (RGB) stars with asteroseismic parameters deduced from Kepler photometry and stellar atmospheric parameters derived from LAMOST spectra. The typical uncertainties of mass is a few per cent, and that of age is ∼20 per cent. The sample stars reveal two separate sequences in the age–[α/Fe] relation – a high-α sequence with stars older than ∼8 Gyr and a low-α sequence composed of stars with ages ranging from younger than 1 Gyr to older than 11 Gyr. We further investigate the feasibility of deducing ages and masses directly from LAMOST spectra with a machine learning method based on kernel based principal component analysis, taking a sub-sample of these RGB stars as a training data set. We demonstrate that ages thus derived achieve an accuracy of ∼24 per cent. We also explored the feasibility of estimating ages and masses based on the spectroscopically measured carbon and nitrogen abundances. The results are quite satisfactory and significantly improved compared to the previous studies. Key words: asteroseismology – stars: evolution – stars: fundamental parameters. (HRD) with the theoretical stellar isochrones, utilizing stellar at- 1 INTRODUCTION mospheric parameters yielded by spectroscopy and/or photometry. Accurate age estimates for large numbers of stars are important for a The method has been successfully applied to obtain reasonable age full understanding of the stellar populations and the assemblage his- estimates for a few thousand F/G type stars with high-resolution tory of the Galaxy. Age is one of the key parameters that determine spectroscopy (Edvardsson et al. 1993; Takeda 2007; Haywood et al. the evolutionary state of a star. However, unlike other parameters, 2013; Bergemann et al. 2014)orubvyβ photometry, compled with such as mass and chemical composition, direct age estimate for precise trigonometric parallax data (Nordstrom¨ et al. 2004). Re- a star from observation or fundamental physical law is extremely cently, Wu et al. (2017) used this method to obtain accurate ages for difficult if not impossible (e.g. Soderblom 2010). Often, one has about 200 main-sequence turn-off stars and used the results to check to rely on stellar evolutionary models for stellar age estimation – the accuracy of age estimation for tens of thousand main-sequence usually achieved by comparing the stellar parameters deduced from turn-off and subgiant stars targeted by the LAMOST spectroscopic the observation with the model predictions. surveys (Xiang et al. 2015a, 2017b). However, the method is diffi- A practical way of age estimation for individual field stars is cult to apply to giant stars, as isochrones of giants of different ages to compare their position on the Hertzsprung–Russell diagram are severely crowded together on the HRD, particularly in temper- ature. On the other hand, giant stars are advantaged probes of the Galactic structure as they can be detected to large distances given E-mail: [email protected] (YW); [email protected] (MX); their high luminosities. Modern large-scale surveys, such as the [email protected] (SB) LAMOST Galactic spectroscopic surveys (Deng et al. 2012;Zhao † LAMOST Fellow. et al. 2012) and the Apache Point Observatory Galactic Evolution C 2017 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society 3634 Y. Wu et al. Experiment (APOGEE; Majewski et al. 2010), have collected high- accurate parameters, stellar masses can be inferred to a precision of quality spectra that yield robust stellar atmospheric parameters and ∼7 per cent. About 14 000 stars spectra in the sample of Yu et al. chemical abundances for millions of giant stars. It has become an were targeted by LAMOST by 2016 June. Precise stellar parame- emergent task to develop an effective way that delivers robust age ters and elemental abundances, (e.g. [α/Fe], [C/H], and [N/H]), of estimates for large numbers of giant stars detected by the existing those stars were derived from the LAMOST spectra with the LSP3 and upcoming large spectroscopic surveys. (Xiang et al. 2015b, 2017a). Meanwhile, systematic errors of the Asteroseismologic studies have demonstrated that solar-like os- standard scaling relation were better assessed (White et al. 2011; cillations excited by convective turbulence in the stellar envelope Guggenberger et al. 2016;Sharmaetal.2016; Viani et al. 2017). Downloaded from https://academic.oup.com/mnras/article-abstract/475/3/3633/4772882 by Sydney College of Arts user on 17 February 2019 are always solar-like stars of 0.8–3.0 M (Aerts, Christensen- With these advantages, it seems that the time is ripe for better mass Dalsgaard & Kurtz 2010; Soderblom 2010; Chaplin & Miglio 2013). and age estimates for the large number of giants available from Both the grid modelling that fits the individual observed frequencies LAMOST surveys. (e.g. Chaplin et al. 2014) and a scaling relation based on global as- In this work, we determine masses and ages for the above teroseismic parameters, ν, the frequency separation of two modes LAMOST–Kepler common red giant branch (RGB) stars. The re- of the same spherical degree and consecutive radial order, and νmax, sults are shown to have a median error of 7 per cent in mass and frequency with the maximal oscillation power (Kjeldsen & Bedding 25 per cent in age estimates. With this LAMOST–Kepler sample, we 1995), have been used to infer mass and radius from the oscillation investigated possible correlations between stellar age and chemical data. Once the precise mass of a giant star has been determined, composition. We further selected a sub-sample of stars with smaller robust age, to an accuracy of about 20–30 per cent (e.g. Soderblom uncertainties in mass and age estimates as a training set to estimate 2010; Gai et al. 2011; Chaplin et al. 2014), then can be estimated by masses and ages directly from the LAMOST spectra with a ma- comparing the inferred mass with the theoretical stellar isochrones chine learning method based on kernel-based principal component of given metallicity, since the main-sequence lifetime of a star is analysis (KPCA). Feasibility of the method is discussed, and the tightly correlated with its mass (e.g. Martig et al. 2016; Ness et al. resultant age and mass estimates are compared with those inferred 2016). Precise photometry from the CoRoT (Baglin 2006), Kepler from an empirical relation based on the C and N abundances. We (Borucki et al. 2010), and K2 (Howell et al. 2014) space missions found that with the current approach, one can derive stellar ages has allowed determinations of seismic parameters for thousands of from the LAMOST spectra with a high precision of 23 per cent. red giant stars (e.g. De Ridder et al. 2009; Hekker et al. 2009, 2011; The paper is organized as follows. Section 2 introduces the Bedding et al. 2010;Mosseretal.2010; Stello et al. 2013, 2015, LAMOST–Kepler sample. Section 3 describes the mass and age es- 2017; Mathur et al. 2016;Yuetal.2016). Many of those stars have timation. Correlations between the age and elemental abundances also reliable atmospheric parameters yielded by spectroscopy, ei- are presented in Section 4. Section 5 presents ages and masses esti- ther from the literature (e.g. Huber et al. 2013; Chaplin et al. 2014; mated directly from the LAMOST spectra with the KPCA method. Pinsonneault et al. 2014), or targeted by the APOGEE (Majewski Section 6 discusses age and mass estimation based on the abundance et al. 2010)ortheLAMOST–Kepler surveys (De Cat et al. 2015), ratio [C/N], followed by conclusions is Section 7. so the ages of these stars can, in principle, be well-determined and adopted as benchmarks for age estimation for large numbers of 2 THE LAMOST–KEPLER SAMPLE giant stars detected in large-scale surveys. Martig et al. (2016) estimated mass and age for 1475 red giants 2.1 Atmospheric and asteroseismic parameters in the APOKASC sample that have atmospheric parameters and elemental abundances including [C/Fe] and [N/Fe] deduced from By 2016 June, the LAMOST–Kepler project (De Cat et al. 2015) APOGEE spectra, as well as seismic parameters derived from Ke- collected more than 180 000 low-resolution (R ∼ 1800) optical pler photometry (Pinsonneault et al. 2014). Based on the fact that spectra (λ 3800–9000 Å) in the Kepler field utilizing the LAMOST values of carbon and nitrogen abundance ratio [C/N] of red giant spectroscopic survey telescope (Cui et al.
Recommended publications
  • Young Nearby Stars by Adam Conrad Schneider (Under The
    Young Nearby Stars by Adam Conrad Schneider (Under the Direction of Professor Inseok Song) Abstract Nearby young stars are without equal as stellar and planetary evolution laboratories. The aim of this work is to use age diagnostic considerations to execute a complete survey for new nearby young stars and to efficiently reevaluate and constrain their ages. Because of their proximity and age, young, nearby stars are the most desired targets for any astrophysical study focusing on the early stages of star and planet formation. Identifying nearby, young, low-mass stars is challenging because of their inherent faint- ness and age diagnostic degeneracies. A new method for identifying these objects has been developed, and a pilot study of its effectiveness is demonstrated by the identification of two definite new members of the TW Hydrae Association. Nearby, young, solar-type stars are initially identified in this work by their fractional X-ray luminosity. The results of a large-scale search for nearby, young, solar-type stars is presented. Follow-up spectroscopic observations are taken in order to measure various age diagnostics in order to accurately assess stellar ages. Age, one of the most fundamental properties of a star, is also one of the most difficult to determine. While a variety of proce- dures have been developed and utilized to approximate ages for solar-type stars, with varying degrees of success, a comprehensive age-dating technique has yet to be constructed. Often- times, different methods exhibit contradictory or conflicting findings. Such inconsistencies demonstrate the value of a uniform method of determining stellar ages.
    [Show full text]
  • Age Dating the Galactic Bar with the Nuclear Stellar Disc
    MNRAS 492, 4500–4511 (2020) doi:10.1093/mnras/staa140 Advance Access publication 2020 January 20 Age dating the Galactic bar with the nuclear stellar disc Downloaded from https://academic.oup.com/mnras/article-abstract/492/3/4500/5709929 by Institute of Child Health/University College London user on 14 February 2020 Junichi Baba1‹ and Daisuke Kawata 2 1National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan 2Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey, RH5 6NT, UK Accepted 2020 January 11. Received 2019 December 26; in original form 2019 September 16 ABSTRACT From the decades of the theoretical studies, it is well known that the formation of the bar triggers the gas funnelling into the central sub-kpc region and leads to the formation of a kinematically cold nuclear stellar disc (NSD). We demonstrate that this mechanism can be used to identify the formation epoch of the Galactic bar, using an N-body/hydrodynamics simulation of an isolated Milky Way–like galaxy. As shown in many previous literature, our simulation shows that the bar formation triggers an intense star formation for ∼1 Gyr in the central region and forms an NSD. As a result, the oldest age limit of the NSD is relatively sharp, and the oldest population becomes similar to the age of the bar. Therefore, the age distribution of the NSD tells us the formation epoch of the bar. We discuss that a major challenge in measuring the age distribution of the NSD in the Milky Way is contamination from other non-negligible stellar components in the central region, such as a classical bulge component.
    [Show full text]
  • Ages of Young Stars
    Ages of Young Stars David R. Soderblom Space Telescope Science Institute, Baltimore MD USA Lynne A. Hillenbrand Caltech, Pasadena CA USA Rob. D. Jeffries Astrophysics Group, Keele University, Staffordshire, ST5 5BG, UK Eric E. Mamajek Department of Physics & Astronomy, University of Rochester, Rochester NY, 14627-0171, USA Tim Naylor School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL, UK Determining the sequence of events in the formation of stars and planetary systems and their time-scales is essential for understanding those processes, yet establishing ages is fundamentally difficult because we lack direct indicators. In this review we discuss the age challenge for young stars, specifically those less than ∼100 Myr old. Most age determination methods that we discuss are primarily applicable to groups of stars but can be used to estimate the age of individual objects. A reliable age scale is established above 20 Myr from measurement of the Lithium Depletion Boundary (LDB) in young clusters, and consistency is shown between these ages and those from the upper main sequence and the main sequence turn-off – if modest core convection and rotation is included in the models of higher-mass stars. Other available methods for age estimation include the kinematics of young groups, placing stars in Hertzsprung-Russell diagrams, pulsations and seismology, surface gravity measurement, rotation and activity, and lithium abundance. We review each of these methods and present known strengths and weaknesses. Below ∼ 20 Myr, both model-dependent and observational uncertainties grow, the situation is confused by the possibility of age spreads, and no reliable absolute ages yet exist.
    [Show full text]
  • Characterization of Dusty Debris Disks: the IRAS and Hipparcos Catalogs
    Characterization of Dusty Debris Disks: The IRAS and Hipparcos Catalogs Joseph H. Rhee1, Inseok Song1 B. Zuckerman2, and Michael McElwain2 Received ; accepted To appear in ApJ, 2007 arXiv:astro-ph/0609555v4 6 Feb 2007 1Gemini Observatory, 670 North A’ohoku Place, Hilo, HI 96720; [email protected], [email protected] 2Department of Physics and Astronomy and NASA Astrobiology Institute UCLA, Los Angeles, CA 90095; [email protected], [email protected] –2– ABSTRACT Dusty debris disks around main-sequence stars are signposts for the existence of planetesimals and exoplanets. From cross-correlating Hipparcos stars with the IRAS catalogs, we identify 146 stars within 120 pc of Earth that show excess emission at 60 µm. This search took special precautions to avoid false positives. Our sample is reasonably well distributed from late B to early K-type stars, but it contains very few later type stars. Even though IRAS flew more than 20 years ago and many astronomers have cross-correlated its catalogs with stellar catalogs, we were still able to newly identify debris disks at as many as 33 main-sequence stars; of these, 32 are within 100 pc of Earth. The power of an all-sky survey satellite like IRAS is evident when comparing our 33 new debris disks with the total of only 22 dusty debris disk stars detected first with the more sensitive, but pointed, satellite ISO . Our investigation focuses on the mass, dimensions, and evolution of dusty debris disks. Subject headings: infrared: stars — circumstellar matter — planetary systems: formation — Kuiper Belt –3– 1. Introduction Dusty debris disks that surround nearby main-sequence stars were first detected by the Infrared Astronomical Satellite (IRAS ) in 1983.
    [Show full text]
  • Observed Sizes of Planet-Forming Disks Trace Viscous Spreading
    UvA-DARE (Digital Academic Repository) Observed sizes of planet-forming disks trace viscous spreading Trapman, L.; Rosotti, G.; Bosman, A.D.; Hogerheijde, M.R.; van Dishoeck, E.F. DOI 10.1051/0004-6361/202037673 Publication date 2020 Document Version Final published version Published in Astronomy & Astrophysics Link to publication Citation for published version (APA): Trapman, L., Rosotti, G., Bosman, A. D., Hogerheijde, M. R., & van Dishoeck, E. F. (2020). Observed sizes of planet-forming disks trace viscous spreading. Astronomy & Astrophysics, 640, [A5]. https://doi.org/10.1051/0004-6361/202037673 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:24 Sep 2021 A&A 640, A5 (2020) Astronomy https://doi.org/10.1051/0004-6361/202037673 & © ESO 2020 Astrophysics Observed sizes of planet-forming disks trace viscous spreading L.
    [Show full text]
  • Ages of Young Stars1
    arXiv:1311.7024v1 [astro-ph.SR] 27 Nov 2013 0 Accepted for publication as a chapter in Protostars and Planets VI University of Arizona Press (2014) eds. H. Beuther, R. Klessen, C. Dullemond, Th. Henning. 1 Ages of Young Stars1 David R. Soderblom Space Telescope Science Institute, Baltimore MD USA Lynne A. Hillenbrand Caltech, Pasadena CA USA Rob. D. Jeffries Astrophysics Group, Keele University, Staffordshire, ST5 5BG, UK Eric E. Mamajek Department of Physics & Astronomy, University of Rochester, Rochester NY, 14627-0171, USA Tim Naylor School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL, UK Determining the sequence of events in the formation of stars and planetary systems and their time-scales is essential for understanding those processes, yet establishing ages is fundamentally difficult because we lack direct indicators. In this review we discuss the age challenge for young stars, specifically those less than ∼100 Myr old. Most age determination methods that we discuss are primarily applicable to groups of stars but can be used to estimate the age of individual objects. A reliable age scale is established above 20 Myr from measurement of the Lithium Depletion Boundary (LDB) in young clusters, and consistency is shown between these ages and those from the upper main sequence and the main sequence turn-off – if modest core convection and rotation is included in the models of higher-mass stars. Other available methods for age estimation include the kinematics of young groups, placing stars in Hertzsprung-Russell diagrams, pulsations and seismology, surface gravity measurement, rotation and activity, and lithium abundance. We review each of these methods and present known strengths and weaknesses.
    [Show full text]
  • Age Dating the Galactic Bar with the Nuclear Stellar Disc
    MNRAS 000, 000–000 (0000) Preprint 15 January 2020 Compiled using MNRAS LATEX style file v3.0 Age Dating the Galactic Bar with the Nuclear Stellar Disc Junichi Baba1⋆, and Daisuke Kawata2 1 National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan 2 Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey, RH5 6NT, UK Accepted 2020 January 11. Received 2019 December 26; in original form 2019 September 17 ABSTRACT From the decades of the theoretical studies, it is well known that the formation of the bar triggers the gas funnelling into the central sub-kpc region and leads to the formation of a kinematically cold nuclear stellar disc (NSD). We demonstrate that this mechanism can be used to identify the formation epoch of the Galactic bar, using an N-body/hydrodynamics simulation of an isolated Milky Way-like galaxy. As shown in many previous literature, our simulation shows that the bar formation triggers an intense star formation for ∼ 1 Gyr in the central region, and forms a NSD. As a result, the oldest age limit of the NSD is relatively sharp, and the oldest population becomes similar to the age of the bar. Therefore, the age distribution of the NSD tells us the formation epoch of the bar. We discuss that a major challenge in measuring the age distribution of the NSD in the Milky Way is contamination from other non-negligible stellar components in the central region, such as a classical bulge component. We demonstrate that because the NSD is kinematically colder than the other stellar populations in the Galactic central region, the NSD population can be kinematically distinguished from the other stellar populations, if the 3D velocity of tracer stars are accurately measured.
    [Show full text]
  • AI for Dating Stars: a Benchmarking Study for Gyrochronology
    AI for dating stars: a benchmarking study for gyrochronology Andres´ Moya Jarmi Recio-Mart´ınez Roberto J. Lopez-Sastre´ Universidad Politecnica´ de Madrid University of Alcala´ University of Alcala´ [email protected] [email protected] [email protected] Abstract using diverse methods. Soderblom presented two excellent surveys describing most of these techniques [54, 55]. In astronomy, age is one of the most difficult stellar prop- Within the group of approaches for stellar dating, one of erties to measure, and gyrochronology is one of the most the most promising statistical techniques is gyrochronology promising techniques for the task. It consists in dating or dating stars using their rotational period. Stars are born stars using their rotational period and empirical linear re- with a range of rotational velocities for different physical lations with other observed stellar properties, such as stel- reasons, see [6]. Then, the process called magnetic braking lar effective temperature, parallax, and/or photometric col- reduces the rotational velocity of the star with time [49]. ors in different passbands, for instance. However, these ap- Since late 60’s [10, 26, 37, 38, 59], we know that rotational proaches do not allow to reproduce all the observed data, braking, or braking law, is a function of the rotational pe- resulting in potential significant deviations in age estima- riod. That is, the larger the rotation, the larger the braking. tion. In this context, we propose to explore the stellar dat- Therefore, with time, all the stars tend to converge to a sim- ing problem using gyrochronology from the AI perspective.
    [Show full text]
  • Statistical Analyses of Massive Stars and Stellar Populations
    Statistical Analyses of Massive Stars and Stellar Populations Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn vorgelegt von Fabian Schneider aus Duisburg Bonn, Oktober 2014 Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn 1. Gutachter: Prof. Dr. Norbert Langer 2. Gutachter: Prof. Dr. Robert G. Izzard Tag der Promotion: 11. Februar 2015 Erscheinungsjahr: 2015 I, a universe of atoms, an atom in the universe. (Richard P. Feynman) Abstract Massive stars, i.e. stars more massive than about ten times that of the Sun, are key agents in the Universe. They synthesise many of the chemical elements that are so important for life on Earth, helped reionising the early Universe and end their lives in spectacular supernova explosions that are visible out to large distances. Because of their important role for much of astrophysics, accurate and reliable stellar evolution models are essential. However, recent developments regarding wind mass loss rates, internal mixing processes and duplicity seriously challenge our understanding of massive stars and stellar populations. It is now established that most, if not all, massive stars reside in binaries or higher order multiple systems such that more than two-thirds of all massive stars are expected to interact through mass transfer with a binary companion during their lives. We investigate the con- sequences of this finding for coeval stellar populations and show that the most massive stars in star clusters are likely all rejuvenated binary products that may seriously bias the determination of cluster ages. We further find that wind mass loss from stars and binary mass transfer leave their fingerprints in the high mass end of stellar mass functions.
    [Show full text]
  • The Ages of Stars
    AA48CH15-Soderblom ARI 16 July 2010 22:29 The Ages of Stars David R. Soderblom Space Telescope Science Institute, Baltimore, MD 21218; email: [email protected] Annu. Rev. Astron. Astrophys. 2010. 48:581–629 Key Words First published online as a Review in Advance on galaxy: open clusters and associations; stars: ages, evolution, low-mass, May 25, 2010 pre-main sequence, solar-type The Annual Review of Astronomy and Astrophysics is online at astro.annualreviews.org Abstract This article’s doi: The age of an individual star cannot be measured, only estimated through 10.1146/annurev-astro-081309-130806 mostly model-dependent or empirical methods, and no single method works Copyright c 2010 by Annual Reviews. well for a broad range of stellar types or for a full range in age. This review All rights reserved presents a summary of the available techniques for age-dating stars and en- 0066-4146/10/0922-0581$20.00 sembles of stars, their realms of applicability, and their strengths and weak- Annu. Rev. Astron. Astrophys. 2010.48:581-629. Downloaded from www.annualreviews.org nesses. My emphasis is on low-mass stars because they are present from all Access provided by State University of New York - Stony Brook on 08/28/17. For personal use only. epochs of star formation in the Galaxy and because they present both special opportunities and problems. The ages of open clusters are important for understanding the limitations of stellar models and for calibrating empirical age indicators. For individual stars, a hierarchy of quality for the available age-dating methods is described.
    [Show full text]
  • Constraining Differential Rotation of Sun-Like Stars from Asteroseismic and Starspot Rotation Periods
    A&A 582, A10 (2015) Astronomy DOI: 10.1051/0004-6361/201526615 & c ESO 2015 Astrophysics Constraining differential rotation of Sun-like stars from asteroseismic and starspot rotation periods M. B. Nielsen1;2, H. Schunker2, L. Gizon2;1, and W. H. Ball1 1 Institut für Astrophysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany e-mail: [email protected] 2 Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany Received 27 May 2015 / Accepted 4 August 2015 ABSTRACT In previous work, we identified six Sun-like stars observed by Kepler with exceptionally clear asteroseismic signatures of rotation. Here, we show that five of these stars exhibit surface variability suitable for measuring rotation. We compare the rotation periods obtained from light-curve variability with those from asteroseismology in order to further constrain differential rotation. The two rotation measurement methods are found to agree within uncertainties, suggesting that radial differential rotation is weak, as is the case for the Sun. Furthermore, we find significant discrepancies between ages from asteroseismology and from three different gyrochronology relations, implying that stellar age estimation is problematic even for Sun-like stars. Key words. asteroseismology – methods: data analysis – stars: solar-type – stars: rotation – starspots 1. Introduction features at all, thus giving us an additional means of calibrating gyrochronology relations (e.g., Skumanich 1972; Barnes 2007, Recently, asteroseismology has become a valuable tool to study 2010), which so far have primarily relied on measuring the sur- the internal rotation of stars. This has been done on a variety of face variability of active stars.
    [Show full text]
  • The Evolution of and Starburst-AGN Connection in Luminous and Ultraluminous Infrared Galaxies and Their Link to Globular Cluster Formation
    City University of New York (CUNY) CUNY Academic Works All Dissertations, Theses, and Capstone Projects Dissertations, Theses, and Capstone Projects 6-2014 The Evolution of and Starburst-AGN Connection in Luminous and Ultraluminous Infrared Galaxies and their Link to Globular Cluster Formation Stephanie L. Fiorenza Graduate Center, City University of New York How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/gc_etds/206 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] THE EVOLUTION OF AND STARBURST- AGN CONNECTION IN LUMINOUS AND ULTRALUMINOUS INFRARED GALAXIES AND THEIR LINK TO GLOBULAR CLUSTER FORMATION by Stephanie Lynn Fiorenza A dissertation submitted to the Graduate Faculty in Physics in partial fulfillment of the requirements for the degree of Doctor of Philosophy, The City University of New York 2014 i © 2014 Stephanie Lynn Fiorenza All Rights Reserved ii This manuscript has been read and accepted for the Graduate Faculty in Physics in satisfaction of the dissertation requirement for the degree of Doctor of Philosophy. Dr. Charles T. Liu __________ _____________________ Date Chair of Examining Committee Dr. Steven G. Greenbaum ______________ ____________________________ Date Executive Officer Dr. Alfred Levine Dr. Matthew O’Dowd Dr. Emily Rice Dr. Sivarani Thirupathi ________________________________________________ Supervisory Committee THE CITY UNIVERSITY OF NEW YORK iii Abstract THE EVOLUTION OF AND STARBURST- AGN CONNECTION IN LUMINOUS AND ULTRALUMINOUS INFRARED GALAXIES AND THEIR LINK TO GLOBULAR CLUSTER FORMATION BY STEPHANIE LYNN FIORENZA Advisor: Dr.
    [Show full text]