ANSI/ASHRAE Addendum a to ANSI/ASHRAE Standard 169-2006 ASHRAEASHRAE STANDARDSTANDARD Weather Data for Building Design Standards

Total Page:16

File Type:pdf, Size:1020Kb

ANSI/ASHRAE Addendum a to ANSI/ASHRAE Standard 169-2006 ASHRAEASHRAE STANDARDSTANDARD Weather Data for Building Design Standards ANSI/ASHRAE Addendum a to ANSI/ASHRAE Standard 169-2006 ASHRAEASHRAE STANDARDSTANDARD Weather Data for Building Design Standards Approved by the ASHRAE Standards Committee on June 24, 2006; by the ASHRAE Board of Directors on June 29, 2006; and by the American National Standards Institute on June 30, 2006. This standard is under continuous maintenance by a Standing Standard Project Committee (SSPC) for which the Standards Committee has established a documented program for regular publication of addenda or revisions, including procedures for timely, documented, consensus action on requests for change to any part of the stan- dard. The change submittal form, instructions, and deadlines may be obtained in electronic form from the ASHRAE Web site, http://www.ashrae.org, or in paper form from the Manager of Standards. The latest edition of an ASHRAE Standard may be purchased from ASHRAE Customer Service, 1791 Tullie Circle, NE, Atlanta, GA 30329-2305. E-mail: [email protected]. Fax: 404-321-5478. Telephone: 404-636-8400 (worldwide), or toll free 1-800-527- 4723 (for orders in US and Canada). © Copyright 2006 ASHRAE, Inc. ISSN 1041-2336 www.ansi.org American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. 1791 Tullie Circle NE, Atlanta, GA 30329 www.ashrae.org ASHRAE Standing Standard Project Committee 169 Cognizant TC: TC 4.2, Climatic Information SPLS Liaison: Stephen V. Santoro Drury B. Crawley, Chair* Steve Cornick* Don B. Shirey, III, Vice-Chair* Thomas L. Stoffel* Robert J. Morris* Iain S. Walker* *Denotes members of voting status when the document was approved for publication ASHRAE STANDARDS COMMITTEE 2005–2006 Richard D. Hermans, Chair Jay A. Kohler David E. Knebel, Vice-Chair James D. Lutz Donald L. Brandt Merle F. McBride Steven T. Bushby Mark P. Modera Paul W. Cabot Cyrus H. Nasseri Hugh F. Crowther Stephen V. Santoro Samuel D. Cummings, Jr. Stephen V. Skalko Robert G. Doerr David R. Tree Hakim Elmahdy Jerry W. White, Jr. Roger L. Hedrick James E. Woods John F. Hogan William E. Murphy, BOD ExO Frank E. Jakob Ronald E. Jarnagin, CO Stephen D. Kennedy Claire B. Ramspeck, Assistant Director of Technology for Standards and Special Projects SPECIAL NOTE This American National Standard (ANS) is a national voluntary consensus standard developed under the auspices of the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). Consensus is defined by the American National Standards Institute (ANSI), of which ASHRAE is a member and which has approved this standard as an ANS, as “substantial agreement reached by directly and materially affected interest categories. This signifies the concurrence of more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that an effort be made toward their resolution.” Compliance with this standard is voluntary until and unless a legal jurisdiction makes compliance mandatory through legislation. ASHRAE obtains consensus through participation of its national and international members, associated societies, and public review. ASHRAE Standards are prepared by a Project Committee appointed specifically for the purpose of writing the Standard. The Project Committee Chair and Vice-Chair must be members of ASHRAE; while other committee members may or may not be ASHRAE members, all must be technically qualified in the subject area of the Standard. Every effort is made to balance the concerned interests on all Project Committees. The Manager of Standards of ASHRAE should be contacted for: a. interpretation of the contents of this Standard, b. participation in the next review of the Standard, c. offering constructive criticism for improving the Standard, d. permission to reprint portions of the Standard. DISCLAIMER ASHRAE uses its best efforts to promulgate Standards and Guidelines for the benefit of the public in light of available information and accepted industry practices. However, ASHRAE does not guarantee, certify, or assure the safety or performance of any products, components, or systems tested, installed, or operated in accordance with ASHRAE’s Standards or Guidelines or that any tests conducted under its Standards or Guidelines will be nonhazardous or free from risk. ASHRAE INDUSTRIAL ADVERTISING POLICY ON STANDARDS ASHRAE Standards and Guidelines are established to assist industry and the public by offering a uniform method of testing for rating purposes, by suggesting safe practices in designing and installing equipment, by providing proper definitions of this equipment, and by providing other information that may serve to guide the industry. The creation of ASHRAE Standards and Guidelines is determined by the need for them, and conformance to them is completely voluntary. In referring to this Standard or Guideline and in marking of equipment and in advertising, no claim shall be made, either stated or implied, that the product has been approved by ASHRAE. (This foreword is not part of this standard. It is merely TABLE B3 International Climate Zones informative and does not contain requirements necessary Country for conformance to the standard. It has not been Zone processed according to the ANSI requirements for a City (Province or Region) standard and may contain material that has not been China subject to public review or a consensus process. Anhui Unresolved objectors on informative material are not Anqing 3 A, B offered the right to appeal at ASHRAE or ANSI.) Bengbu 3 A, B Fuyang 3 A, B FOREWORD Hefei/Luogang 3 A, B Addendum ah to ANSI/ASHRAE/IESNA Standard 90.1- Huang Shan (Mtns) 5 2001, Energy Standard for Buildings Except Low-Rise Resi- Huoshan 3 A, B dential Buildings, added climatic data for seven new loca- Beijing tions: Washington DC Reagan Washington National Airport, Beijing/Peking 4 Virginia, and six island locations in the Pacific Ocean. These Fujian data are included in Tables C1 and C3 of this addendum to Changting 3 A, B ANSI/ASHRAE Standard 169-2006. Fuding 3 A, B Since ANSI/ASHRAE Standard 169-2006 was based on Fuzhou 2 ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Stan- Jiuxian Shan 4 dard for Buildings Except Low-Rise Residential Buildings, it Longyan 2 contained only a single location for China in Tables B3 and Nanping 2 C3. (Standard 169-2006 Table A3 contains climatic conditions Pingtan 2 for 385 locations in China and 30 locations in Taiwan.) This Pucheng 3 A, B addendum adds climatic data for China (368 locations) and Shaowu 3 A, B Taiwan (38 locations) in Tables B3 and C3. These changes Xiamen 2 were originally proposed in 2005 as Addendum o to Standard Yong'An 2 90.1-2004 and Addendum h to ANSI/ASHRAE Standard Gansu 90.2-2004, Energy-Efficient Design of Low-Rise Residential Dunhuang 5 Buildings. Errors in the data for locations in Mexico were also Hezuo 7 identified in proposed Addendum o to Standard 90.1-2004 and Huajialing 7 proposed Addendum h to Standard 90.2-2004. This addendum Jiuquan/Suzhou 6 provides corrected values for those locations in Table C3. Lanzhou 5 This addendum also has minor typographical changes Mazong Shan (Mount) 7 from the above addenda to make the locations and countries Minqin 5 more consistent with the data in Standard 169-2006 and the Pingliang 5 2005 ASHRAE Handbook—Fundamentals. All other climatic Ruo'ergai 7 data in Tables B1, B3, C1, and C3 remain unchanged. Tianshui 4 Note: In this addendum, changes to the current standard Wudu 3 C are indicated in the text by underlining (for additions) and Wushaoling (Pass) 7 strikethrough (for deletions). Xifengzhen 5 Yumenzhen 6 Addendum a to 169-2006 Zhangye 6 Guangdong [Change Table B1 as shown below.] Fogang 2 Gaoyao 2 TABLE B1 US Climate Zones Guangzhou/Baiyun 2 Heyuan 2 State Lian Xian 2 County Zone Lianping 2 Pacific Islands (PI) US Minor Outlying Islands Meixian 2 Shangchuan Island 2 Zone 1A Except Shantou 2 Midway Sand Island 2B Shanwei 2 Shaoguan 2 [Change Table B3 as follows: add the climate zones for the Shenzhen 2 new locations in China and revise the zone designation of Xinyi 2 Shanghai/Hongqiao as shown, revise the climate zones for Yangjiang 2 Mexico as shown, and add the climate zones for the new loca- Zhangjiang 1 tions in Taiwan as shown. Note that the climate zones for Tainan and Taipei do not change.] ANSI/ASHRAE Addendum a to ANSI/ASHRAE Standard 169-2006 1 TABLE B3 International Climate Zones (Continued) TABLE B3 International Climate Zones (Continued) Country Country Zone Zone City (Province or Region) City (Province or Region) Guangxi Huma 8 Beihai 2 Jixi 7 Bose 2 Keshan 7 Guilin 2 Mudanjiang 7 Guiping 2 Qiqihar 7 Hechi/Jnchengjiang 2 Shangzhi 7 Lingling 3 A, B Suifenhe 7 Liuzhou 2 Sunwu 7 Longzhou 2 Tailai 7 Mengshan 2 Tonghe 7 Nanning/Wuxu 2 Yichun 7 Napo 2 Henan Qinzhou 2 Anyang/Zhangde 3 A, B Wuzhou 2 Boxian 3 A, B Guizhou Gushi 3 A, B Bijie 4 Lushi 4 Dushan 3 A, B Nanyang 3 A, B Guiyang 3 A, B Xihua 3 A, B Luodian 2 Xinyang 3 A, B Rongjiang/Guzhou 2 Zhengzhou 3 A, B Sansui 3 A, B Zhumadian 3 A, B Sinan 3 A, B Hong Kong Special Admin. Region Weining 4 Hong Kong Intl Arpt 2 Xingren 3 A, B Hubei Zunyi 3 A, B Fangxian 4 Hainan Guanghua 3 A, B Danxian/Nada 1 Jiangling/Jingzhou 3 A, B Dongfang/Basuo 1 Macheng 3 A, B Haikou 1 Wuhan/Nanhu 3 A, B Qionghai/Jiaji 1 Yichang 3 A, B Sanhu Island 1 Zaoyang 3 A, B Xisha Island 1 Zhongxiang 3 A, B Yaxian/Sanya 1 Hunan Hebei Changde 3 A, B Baoding 4 Chenzhou 3 A, B Cangzhou 3 A, B Nanyue 4 Chengde 5 Sangzhi 3 A, B Fengning/Dagezhen 6 Shaoyang 3 A, B Huailai/Shacheng 5 Tongdao/Shuangjiang 3 A, B Leting 5 Wugang
Recommended publications
  • Educated Youth Should Go to the Rural Areas: a Tale of Education, Employment and Social Values*
    Educated Youth Should Go to the Rural Areas: A Tale of Education, Employment and Social Values* Yang You† Harvard University This draft: July 2018 Abstract I use a quasi-random urban-dweller allocation in rural areas during Mao’s Mass Rustication Movement to identify human capital externalities in education, employment, and social values. First, rural residents acquired an additional 0.1-0.2 years of education from a 1% increase in the density of sent-down youth measured by the number of sent-down youth in 1969 over the population size in 1982. Second, as economic outcomes, people educated during the rustication period suffered from less non-agricultural employment in 1990. Conversely, in 2000, they enjoyed increased hiring in all non-agricultural occupations and lower unemployment. Third, sent-down youth changed the social values of rural residents who reported higher levels of trust, enhanced subjective well-being, altered trust from traditional Chinese medicine to Western medicine, and shifted job attitudes from objective cognitive assessments to affective job satisfaction. To explore the mechanism, I document that sent-down youth served as rural teachers with two new county-level datasets. Keywords: Human Capital Externality, Sent-down Youth, Rural Educational Development, Employment Dynamics, Social Values, Culture JEL: A13, N95, O15, I31, I25, I26 * This paper was previously titled and circulated, “Does living near urban dwellers make you smarter” in 2017 and “The golden era of Chinese rural education: evidence from Mao’s Mass Rustication Movement 1968-1980” in 2015. I am grateful to Richard Freeman, Edward Glaeser, Claudia Goldin, Wei Huang, Lawrence Katz, Lingsheng Meng, Nathan Nunn, Min Ouyang, Andrei Shleifer, and participants at the Harvard Economic History Lunch Seminar, Harvard Development Economics Lunch Seminar, and Harvard China Economy Seminar, for their helpful comments.
    [Show full text]
  • Research on Employment Difficulties and the Reasons of Typical
    2017 3rd International Conference on Education and Social Development (ICESD 2017) ISBN: 978-1-60595-444-8 Research on Employment Difficulties and the Reasons of Typical Resource-Exhausted Cities in Heilongjiang Province during the Economic Transition Wei-Wei KONG1,a,* 1School of Public Finance and Administration, Harbin University of Commerce, Harbin, China [email protected] *Corresponding author Keywords: Typical Resource-Exhausted Cities, Economic Transition, Employment. Abstract. The highly correlation between the development and resources incurs the serious problems of employment during the economic transition, such as greater re-employment population, lower elasticity of employment, greater unemployed workers in coal industry. These problems not only hinder the social stability, but also slow the economic transition and industries updating process. We hope to push forward the economic transition of resource-based cities and therefore solve the employment problems through the following measures: developing specific modern agriculture and modern service industry, encouraging and supporting entrepreneurships, implementing re-employment trainings, strengthening the public services systems for SMEs etc. Background According to the latest statistics from the State Council for 2013, there exists 239 resource-based cities in China, including 31 growing resource-based cities, 141 mature, and 67 exhausted. In the process of economic reform, resource-based cities face a series of development challenges. In December 2007, the State Council issued the Opinions on Promoting the Sustainable Development of Resource-Based Cities. The National Development and Reform Commission identified 44 resource-exhausted cities from March 2008 to March 2009, supporting them with capital, financial policy and financial transfer payment funds. In the year of 2011, the National Twelfth Five-Year Plan proposed to promote the transformation and development of resource-exhausted area.
    [Show full text]
  • Changchun–Harbin Expressway Project
    Performance Evaluation Report Project Number: PPE : PRC 30389 Loan Numbers: 1641/1642 December 2006 People’s Republic of China: Changchun–Harbin Expressway Project Operations Evaluation Department CURRENCY EQUIVALENTS Currency Unit – yuan (CNY) At Appraisal At Project Completion At Operations Evaluation (July 1998) (August 2004) (December 2006) CNY1.00 = $0.1208 $0.1232 $0.1277 $1.00 = CNY8.28 CNY8.12 CNY7.83 ABBREVIATIONS AADT – annual average daily traffic ADB – Asian Development Bank CDB – China Development Bank DMF – design and monitoring framework EIA – environmental impact assessment EIRR – economic internal rate of return FIRR – financial internal rate of return GDP – gross domestic product ha – hectare HHEC – Heilongjiang Hashuang Expressway Corporation HPCD – Heilongjiang Provincial Communications Department ICB – international competitive bidding JPCD – Jilin Provincial Communications Department JPEC – Jilin Provincial Expressway Corporation MOC – Ministry of Communications NTHS – national trunk highway system O&M – operations and maintenance OEM – Operations Evaluation Mission PCD – provincial communication department PCR – project completion report PPTA – project preparatory technical assistance PRC – People’s Republic of China RRP – report and recommendation of the President TA – technical assistance VOC – vehicle operating cost NOTE In this report, “$” refers to US dollars. Keywords asian development bank, development effectiveness, expressways, people’s republic of china, performance evaluation, heilongjiang province, jilin province, transport Director Ramesh Adhikari, Operations Evaluation Division 2, OED Team leader Marco Gatti, Senior Evaluation Specialist, OED Team members Vivien Buhat-Ramos, Evaluation Officer, OED Anna Silverio, Operations Evaluation Assistant, OED Irene Garganta, Operations Evaluation Assistant, OED Operations Evaluation Department, PE-696 CONTENTS Page BASIC DATA v EXECUTIVE SUMMARY vii MAPS xi I. INTRODUCTION 1 A.
    [Show full text]
  • Appendix 1: Rank of China's 338 Prefecture-Level Cities
    Appendix 1: Rank of China’s 338 Prefecture-Level Cities © The Author(s) 2018 149 Y. Zheng, K. Deng, State Failure and Distorted Urbanisation in Post-Mao’s China, 1993–2012, Palgrave Studies in Economic History, https://doi.org/10.1007/978-3-319-92168-6 150 First-tier cities (4) Beijing Shanghai Guangzhou Shenzhen First-tier cities-to-be (15) Chengdu Hangzhou Wuhan Nanjing Chongqing Tianjin Suzhou苏州 Appendix Rank 1: of China’s 338 Prefecture-Level Cities Xi’an Changsha Shenyang Qingdao Zhengzhou Dalian Dongguan Ningbo Second-tier cities (30) Xiamen Fuzhou福州 Wuxi Hefei Kunming Harbin Jinan Foshan Changchun Wenzhou Shijiazhuang Nanning Changzhou Quanzhou Nanchang Guiyang Taiyuan Jinhua Zhuhai Huizhou Xuzhou Yantai Jiaxing Nantong Urumqi Shaoxing Zhongshan Taizhou Lanzhou Haikou Third-tier cities (70) Weifang Baoding Zhenjiang Yangzhou Guilin Tangshan Sanya Huhehot Langfang Luoyang Weihai Yangcheng Linyi Jiangmen Taizhou Zhangzhou Handan Jining Wuhu Zibo Yinchuan Liuzhou Mianyang Zhanjiang Anshan Huzhou Shantou Nanping Ganzhou Daqing Yichang Baotou Xianyang Qinhuangdao Lianyungang Zhuzhou Putian Jilin Huai’an Zhaoqing Ningde Hengyang Dandong Lijiang Jieyang Sanming Zhoushan Xiaogan Qiqihar Jiujiang Longyan Cangzhou Fushun Xiangyang Shangrao Yingkou Bengbu Lishui Yueyang Qingyuan Jingzhou Taian Quzhou Panjin Dongying Nanyang Ma’anshan Nanchong Xining Yanbian prefecture Fourth-tier cities (90) Leshan Xiangtan Zunyi Suqian Xinxiang Xinyang Chuzhou Jinzhou Chaozhou Huanggang Kaifeng Deyang Dezhou Meizhou Ordos Xingtai Maoming Jingdezhen Shaoguan
    [Show full text]
  • The First International U3as Online Art Awards 2020 ---Drawing/Painting
    The First International U3As Online Art Awards 2020 ---Drawing/Painting Winners list Premier Concours International d'art des U3As 2020 --- Liste des gagnants de dessin / peinture Nationality/N Awards/ Prix Participants U3A ationalité Top Award/ Meilleur prix Tan Hongbin Yantai Tianma U3A Chinese Golden Awards/ Prix or Yang Xuzhou Qingdao Shinan District U3A Chinese Liu Lijie Yantai Tianma U3A Chinese Silver Awards/ Prix argent Theresa U3A AUT Lebanon Lebanese BEST Expression of Abstract Awards/ Prix Abstrait Ninón Daphne Ichazo UCB universidad adulto mayor UPTE Bolivian Munter Excellence Awards/ Prix Yasumasa Arai U3J Tokyo(Heart No Kai) Japanese excellence Universidad Mexiquense del Bicentenario, Librado Ojeda Unidad de Estudios Superiores para Adultos y Mexican Adultos Mayores Ecatepec Golden Awards/ Prix or Yang Na Weihai Rushan Municipal U3A Chinese Tang Huaren Weihai Municipal U3A Chinese Silver Awards/ Prix argent Sumiko Tachibana U3J Tokyo( NPO HEART NO KAI) Japanese Liu Wentao Zaozhuang Shizhong District U3A Chinese BEST Color Awards/ Prix Zhao Zhongkun Qingdao Municipal U3A Chinese couleur Marinella Caprotti UTE Bresso Italian Excellence Awards/ Prix excellence Sarah Sergienki U3A AUT Lebanon Lebanese Josephine Swift EU Bratislava,Slovakia Slovakian MÁRIA ŠIMNOVÁ Economic University Bratislava Slovakian Golden Awards/ Prix or Eleonor Youssef Aiuta paint and creativity Lebanese Marinella Caprotti UTE Bresso Italian Silver Awards/ Prix argent Lin Zhihong Yantai Tianma U3A Chinese BEST Composition Awards/ Prix composition Eva Novotná
    [Show full text]
  • A Study of Thermal History Since the Paleozoic in the Eastern Qaidam Basin, Northwest China
    A Study of Thermal History Since the Paleozoic in the Eastern Qaidam Basin, Northwest China WANG Li 1,2 , LI Zongxing 1,2*, LIU Chenglin3, PENG Bo1,2, FANG Xinxin 1,2, YUAN Guide4 1 The Key Laboratory of Shale Oil and Gas Geological Survey, Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing, China; 2 Institute of Geomechanics,Chinese academy of geological sciences,Beijing 100081, China 3 State Key Laboratory of Petroleum Resource and Prospecting, China University of Petroleum, Beijing 102249, China; 4 PetroChina Qinghai Oilfield Company, Branch of Petroleum Exploration, Dunhuang, Gansu 736202 Abstract: Qaidam Basin is the one of three major petroliferous basin in Northeastern Tibetan Plateau, which experienced multiphase superimposition and transformation. A study on thermal history not only plays an important role on analysis the tectonic origin of the Qaidam basin, revealing the forming mechanism and uplift history of Tibetan plateau, but also is available to provide scientific evidence on oil & gas resources appraising. Using balanced cross-sections technique, and combination of analysis of apatite fission track ages with modeling of fission track length distribution, it was infered that eastern Qaidam basin experienced significant tectonic movement in the early Jurassic movement (~200 Ma), which caused the carboniferous uplift and denudation, the geological movement in late Cretaceous, characterized by stretch in the early and the northeast-southwest extrusion in late; Himalayan movement in multi-stage development in the eastern Qaidam basin, Mainly divided into the early Himalayan movement (41.1~33.6 Ma) and the late Himalayan movement (9.6~7.1 Ma, 2.9~1.8 Ma), which large-scale orogeny caused pre-existing faults reactivated in late Himalayan movement.
    [Show full text]
  • Xining to Lhasa (Vice Versa)
    TRAIN : Qinghai Tibet Railways JOURNEY : Xining to Lhasa (vice versa) Journey Duration : Upto 2 Days Day to Day Itinerary Unlike trains to Tibet from other gateway cities, the trains from Xining depart several times a day, since all other Tibet trains will stop in Xining before reaching Lhasa. The departure time of Xining Lhasa trains ranges from 12:27 at noon to 21:27 in the evening, offering flexible choices for tourists. Among all the trains to Tibet, there are two trains directly originated from Xining , one numbered as No.Z6801 departing every other day, and the other as No.Z6811 scheduled to run within a seasonal period. Timetable of Direct Xining to Lhasa Train Train No. Z6801 is the only train that starts directly from Xining and ends in Lhasa. It departs every other day at 14:01 from Xining Railway Station and arrives in Lhasa at 11:20 on the next day. Besides, Train No. Z6811 which bounds for Shigatse can also take tourists to Lhasa from Xining. The train from Xining to Shigatse is a seasonal train departing every day. Timetable of Xining to Lhasa Train - No.Z6801 Station Arrival Departure Stop Time Days Distance Xining -- 14:01 -- Day 1 -- Delingha 18:03 18:09 6 min Day 1 521 km Golmud 20:53 21:18 25 min Day 1 830 km Amdo 05:54 05:58 4 min Day 2 1,524 km Nagchu 07:24 07:30 6 min Day 2 1,650 km Damxung 09:06 09:10 4 min Day 2 1,800 km Lhasa 11:20 -- -- Day 2 1,972 km Timetable of Xining to Lhasa Train - No.Z6811 Station Arrival Departure Stop Time Days Distance Xining -- 20:30 -- Day 1 -- Delingha 00:32 00:38 6 min Day 2 521 km Golmud 03:28 03:53 25 min Day 2 830 km Amdo 12:01 12:05 4 min Day 2 1,524 km Nagchu 13:39 13:45 6 min Day 2 1,650 km Damxung 15:39 15:47 8 min Day 2 1,800 km Lhasa 17:45 18:10 25 min Day 2 1,972 km Timetable of Direct Lhasa to Xining Train As the return trip back to mainland China, the train from Lhasa to Xining (No.
    [Show full text]
  • Estimations of Undisturbed Ground Temperatures Using Numerical and Analytical Modeling
    ESTIMATIONS OF UNDISTURBED GROUND TEMPERATURES USING NUMERICAL AND ANALYTICAL MODELING By LU XING Bachelor of Arts/Science in Mechanical Engineering Huazhong University of Science & Technology Wuhan, China 2008 Master of Arts/Science in Mechanical Engineering Oklahoma State University Stillwater, OK, US 2010 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY December, 2014 ESTIMATIONS OF UNDISTURBED GROUND TEMPERATURES USING NUMERICAL AND ANALYTICAL MODELING Dissertation Approved: Dr. Jeffrey D. Spitler Dissertation Adviser Dr. Daniel E. Fisher Dr. Afshin J. Ghajar Dr. Richard A. Beier ii ACKNOWLEDGEMENTS I would like to thank my advisor, Dr. Jeffrey D. Spitler, who patiently guided me through the hard times and encouraged me to continue in every stage of this study until it was completed. I greatly appreciate all his efforts in making me a more qualified PhD, an independent researcher, a stronger and better person. Also, I would like to devote my sincere thanks to my parents, Hongda Xing and Chune Mei, who have been with me all the time. Their endless support, unconditional love and patience are the biggest reason for all the successes in my life. To all my good friends, colleagues in the US and in China, who talked to me and were with me during the difficult times. I would like to give many thanks to my committee members, Dr. Daniel E. Fisher, Dr. Afshin J. Ghajar and Dr. Richard A. Beier for their suggestions which helped me to improve my research and dissertation.
    [Show full text]
  • Hosted Au Deposits of the Dian-Qian-Gui Area, Guizhou, and Yunnan Provinces, and Guangxi District, P.R
    CHAPTER 3 Geology and Geochemistry of Sedimentary Rock- Hosted Au Deposits of the Dian-Qian-Gui Area, Guizhou, and Yunnan Provinces, and Guangxi District, P.R. China 1 2 2 By Stephen G. Peters , Huang Jiazhan , Li Zhiping , 2 3 Jing Chenggui , and Cai Qiming Open-File Report: 02–131 2002 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY 1 U.S. Geological Survey, Reno Field Office, Mackay School of Mines, MS-176, University of Nevada, Reno, Nevada 89557 2Tianjin Geological Academy, Ministry of Metallurgical Industry, 42 Youyi Road, Tianjin City, P.R. China, 300061). 2Kunming Geologic Survey of Ministry of Metallurgical Industry, Kunming, Yunnan. CONTENTS Abstract INTRODUCTION REGIONAL GEOLOGIC SETTING DESCRIPTIONS of Au DEPOSITS Zimudang Au deposit Lannigou Au deposit Banqi Au deposit Yata Au deposit Getang Au deposit Sixianchang Au–Hg deposit Jinya Au deposit Gaolong Au deposit Gedang Au deposit Jinba Au deposit Hengxian Au deposit DISUCSSION and CONCLUSIONS ACKNOWLEDGMENTS REFERENCES 3 96 List of Figures Figure 3-1. Geologic map and distribution of sedimentary rock-hosted Au deposits in the Dian- Qian-Gui area. Figure 3-2. Geologic parameters of the Dian-Qian-Gui area. Figure 3-3. Sedimentary facies in the Dian-Qian-Gui area. Figure 3-4. Geophysical interpretation of shallow crust in the Dian-Qian-Gui area.
    [Show full text]
  • A Brief Introduction to the Dairy Industry in Heilongjiang NBSO Dalian
    A brief introduction to the Dairy Industry in Heilongjiang NBSO Dalian RVO.nl | Brief Introduction Dairy industry Heilongjiang, NBSO Dalian Colofon This is a publication of: Netherlands Enterprise Agency Prinses Beatrixlaan 2 PO Box 93144, 2509 AC, The Hague Phone: 088 042 42 42 Email: via contact form on the website Website: www.rvo.nl This survey has been conducted by the Netherlands Business Support Office in Dalian If you have any questions regarding this business sector in Heilongjiang Province or need any form of business support, please contact NBSO Dalian: Chief Representative: Renée Derks Deputy Representative: Yin Hang Phone: +86 (0)411 3986 9998 Email: [email protected] For further information on the Netherlands Business Support Offices, see www.nbso.nl © Netherlands Enterprise Agency, August 2015 NL Enterprise Agency is a department of the Dutch ministry of Economic Affairs that implements government policy for agricultural, sustainability, innovation, and international business and cooperation. NL Enterprise Agency is the contact point for businesses, educational institutions and government bodies for information and advice, financing, networking and regulatory matters. Although a great degree of care has been taken in the preparation of this document, no rights may be derived from this brochure, or from any of the examples contained herein, nor may NL Enterprise Agency be held liable for the consequences arising from the use thereof. This publication may not be reproduced, in whole, or in part, in any form, without the prior written consent of the publisher. Page 2 of 10 RVO.nl | Brief Introduction Dairy industry Heilongjiang, NBSO Dalian Contents Colofon .....................................................................................................
    [Show full text]
  • Report on Domestic Animal Genetic Resources in China
    Country Report for the Preparation of the First Report on the State of the World’s Animal Genetic Resources Report on Domestic Animal Genetic Resources in China June 2003 Beijing CONTENTS Executive Summary Biological diversity is the basis for the existence and development of human society and has aroused the increasing great attention of international society. In June 1992, more than 150 countries including China had jointly signed the "Pact of Biological Diversity". Domestic animal genetic resources are an important component of biological diversity, precious resources formed through long-term evolution, and also the closest and most direct part of relation with human beings. Therefore, in order to realize a sustainable, stable and high-efficient animal production, it is of great significance to meet even higher demand for animal and poultry product varieties and quality by human society, strengthen conservation, and effective, rational and sustainable utilization of animal and poultry genetic resources. The "Report on Domestic Animal Genetic Resources in China" (hereinafter referred to as the "Report") was compiled in accordance with the requirements of the "World Status of Animal Genetic Resource " compiled by the FAO. The Ministry of Agriculture" (MOA) has attached great importance to the compilation of the Report, organized nearly 20 experts from administrative, technical extension, research institutes and universities to participate in the compilation team. In 1999, the first meeting of the compilation staff members had been held in the National Animal Husbandry and Veterinary Service, discussed on the compilation outline and division of labor in the Report compilation, and smoothly fulfilled the tasks to each of the compilers.
    [Show full text]
  • DEPARTMENT of the INTERIOR U.S. GEOLOGICAL SURVEY Notes
    DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Notes on Sedimentary Basins in China Report of the American Sedimentary Basins Delegation to the People's Republic of China A. W. Bally 1 , I-Ming Chou2, R. Clayton3, H. P. Eugster4, S. Kidwell5, L. D. Meckel6, R. T. Ryder7, A. B. Watts8, A. A. Wilson9 1. Rice University, Houston 2. U. S. Geological Survey, Reston 3. California Institute of Technology, Pasadena 4. Johns Hopkins University, Baltimore 5. University of Chicago 6. L. D. Meckel Company, Houston 7. U. S. Geological Survey, Reston 8. Lament Doherty Geological Observatory, Columbia University, New York 9. National Academy of Sciences, Washington Open-File Report 86-327 This report is preliminary and has not been reviewed for conformity with U. S. Geological Survey editiorial standards. 1986 NOTICE The views expressed in this report are those of the members of the Sedimentary Basins Delegation and are in no way the official views of the Committee on Scholarly Communication with the People's Republic of China or its sponsoring organizations the American Council of Learned Societies, the National Academy of Sciences, and the Social Science Research Council. The visit consisting of a bilateral workshop and field trip was part of the exchange program between the two countries and was supported by the National Academy of Sciences in the United States and the China Association for Science and Technology in China, with the Chinese Petroleum Society bearing special responsibilities as host. U.S. funding was provided by the National Science Foundation. The Committee on Scholarly Communication with the People's Republic of China was founded in 1966 by the American Council of Learned Societies, the National Academy of Sciences, and the Social Science Research Council.
    [Show full text]