Front Matter

Total Page:16

File Type:pdf, Size:1020Kb

Front Matter SHORT NOTES ON ALASKA GEOLOGY 1997 Edited by James G. Clough and Frank Larson Cover design by Ann-Lillian C. Schell Professional Report 118 Recent research on Alaska geology Front cover: View of central Kigluaik Mountains on the Seward Peninsula. Peaks are composed of Thomp- son Creek Orthogneiss of Late Proterozoic to Early Precambrian age and metamorphosed at upper am- phibolite facies conditions about 91 million years Fairbanks, Alaska ago. Photograph by J.M. Amato. 1998 i Foreword This volume of Short Notes on Alaska Geology 1997 is the tenth volume in the series begun by the Alaska Division of Geological & Geophysical Surveys (DGGS) in 1976. The Short Notes series was started as a vehicle in which to sum- marize significant observations on Alaska geology that oth- erwise might not find their way into accessible literature. From the outset an effort has been made to attract the contri- butions of geologists from the public, private, and academic sectors of Alaska’s geologic community. DGGS has a mandate to advance the knowledge of the ge- STATE OF ALASKA ology of Alaska. Clearly, that task is too large to undertake Tony Knowles, Governor alone. By working together, much more can be accom- plished. I would like to reemphasize the inclusive nature of DEPARTMENT OF this publication. I strongly encourage readers of this issue NATURAL RESOURCES to become participants in our next volume. In a very real John T. Shively, Commissioner sense, the Short Notes series is a publication of Alaska’s DIVISION OF GEOLOGICAL & entire geologic community. GEOPHYSICAL SURVEYS Milton A. Wiltse Authors, as well as readers, benefit from contributions. The State Geologist and Director publication process is an effective mechanism for clarify- ing thoughts and eliciting focused comments and pertinent insight from professional peers. Many of you have interest- ing geologic stories to tell, and all of us would learn from Division of Geological & Geophysical Surveys reading about your observations and insights. I know that publications may be inspected at the following our colleagues in the private sector are working in areas locations. Address mail orders to the Fairbanks that are not on the near-term agendas of any government office. agencies. Our colleagues in academia are pursuing specific Alaska Division of Geological & problems that are outside the charter of either the private Geophysical Surveys sector or government geologists. Attn: Geologic Communications Section 794 University Avenue, Suite 200 I believe that all those who have contributed to the present Fairbanks, Alaska 99709-3645 http://wwwdggs.dnr.state.ak.us issue as authors, reviewers, editors, and publication staff [email protected] can take a great deal of pride in the fact that they have in- deed advanced the state of knowledge of the geology of Department of Natural Resources Alaska. Those of us who are recipients of their work are in Public Information Center 3601 C Street, Suite 200 their debt. Anchorage, Alaska 99510 Sincerely, This publication, released by the Division of Geological & Geophysical Surveys, was produced and printed in Fairbanks, Alaska by the University of Alaska Printing Services, at a cost of $9.00 per copy. Publication is Milton A. Wiltse required by Alaska Statute 41, “to determine the poten- State Geologist and Director tial of Alaskan land for production of metals, minerals, fuels, and geothermal resources; the location and sup- plies of groundwater and construction materials; the potential geologic hazards to buildings, roads, bridges, and other installations and structures; and shall conduct such other surveys and investigations as will advance knowledge of the geology of Alaska.” ii Contents Geochronologic investigations of magmatism and metamorphism within the Kigluaik Mountains gneiss dome, Seward Peninsula, Alaska Jeffrey M. Amato and James E. Wright ......................................................................................................................... 1 Composite standard correlation of the Mississippian-Pennsylvanian (Carboniferous) Lisburne Group from Prudhoe Bay to the eastern Arctic National Wildlife Refuge, North Slope, Alaska John F. Baesemann, Paul L. Brenckle, and Paul D. Gruzlovic ................................................................................. 23 Enigmatic source of oil from Chukchi Sea, northwestern Alaska Arthur C. Banet and Thomas C. Mowatt .................................................................................................................... 37 Emsian (late Early Devonian) fossils indicate a Siberian origin for the Farewell Terrane Robert B. Blodgett........................................................................................................................................................ 53 Growth-position petrified trees overlying thick Nanushuk Group coal, Lili Creek, Lookout Ridge Quadrangle, North Slope, Alaska Paul L. Decker, Gregory C. Wilson, Arthur B. Watts, and David Work..................................................................... 63 Paleotopographic control on deposition of the lower Kayak Shale, northern Franklin Mountains, Brooks Range, Alaska David L. LePain ........................................................................................................................................................... 71 Cooling history of the Okpilak batholith, northeastern Brooks Range, as determined from potassium-feldspar thermochronometry Julie S. Paegle, Paul W. Layer, and Andrew W. West ................................................................................................. 87 First occurrence of a hadrosaur (Dinosauria) from the Matanuska Formation (Turonian) in the Talkeetna Mountains of south-central Alaska Anne D. Pasch and Kevin C. May ............................................................................................................................... 99 Petrography of the Tingmerkpuk Sandstone (Neocomian), northwestern Brooks Range, Alaska: A preliminary study Rocky R. Reifenstuhl, Michael D. Wilson, and Charles G. Mull ............................................................................... 111 Lower to Middle Devonian (latest Emsian to earliest Eifelian) conodonts from the Alexander Terrane, southeastern Alaska Norman M. Savage and Constance M. Soja ............................................................................................................. 125 Preliminary petrography and provenance of six Lower Cretaceous sandstones, northwestern Brooks Range, Alaska Marwan A. Wartes and Rocky R. Reifenstuhl ........................................................................................................... 131 Previous Editions of Short Notes on Alaska Geology ............................................................................................. 141 iii GEOCHRONOLOGIC INVESTIGATIONS OF MAGMATISM AND METAMORPHISM WITHIN THE KIGLUAIK MOUNTAINS GNEISS DOME, SEWARD PENINSULA, ALASKA by Jeffrey M. Amato1 and James E. Wright2 ABSTRACT Geologic mapping and detailed U-Pb geochronologic investigations with monazite and zircon have shown that metamorphism and magmatism are spatially and temporally related in the Kigluaik gneiss dome, exposed in the Kigluaik Mountains, Seward Peninsula, Alaska. Protolith ages from this high-grade metamorphic culmination range from Late Proterozoic through Devonian based on existing fossil data and new U-Pb zircon dates of 678 ± 4 Ma and 555 ± 15 Ma from orthogneiss within the metasedimentary section. A pre-120 Ma blueschist-facies metamorphism that likely affected the entire crustal section was followed by a thermal overprint that increased in metamorphic grade with structural depth from subgreenschist facies to granulite facies. Limited magmatism occurred at ~110-105 Ma based on U-Pb zircon dates from minor orthogneiss bodies, and these highly strained rocks indicate that significant deformation was associated with the thermal overprint. The high-temperature overprint has a minimum age of 91 Ma, based on U-Pb analyses of monazite from orthogneiss and metapelite and from pegmatite derived from partial melting of metasedimentary rocks. Monazite dates of 94-98 Ma may reflect incomplete resetting at 91 Ma. Extensive detailed U-Pb dating of zircon from the mafic root of the Kigluaik pluton using conventional and step-wise HF dissolution techniques yielded a 90 ± 1 Ma intrusive age, suggesting that mantle-derived magmatism was the heat source for high-temperature metamorphism. Diabase dikes cut the pluton, and similar dikes in the country rock intruded at 83 ± 1 Ma, based on 40Ar/39Ar dating of biotite and hornblende. INTRODUCTION An integral part of the analysis of deformed high- determine the spatial relationships between the pluton grade gneiss terranes is understanding the temporal and metamorphic rocks, and on U-Pb dating of zircon relationships between magmatism and metamorphism. to determine the pluton emplacement ages. Because of In the upper and upper middle crust, peak metamorphic the high grade of metamorphism, we used U-Pb temperatures are often low enough that 40Ar/39Ar techniques on monazite, an igneous and metamorphic geochronologic techniques can accurately constrain the mineral with a high closure temperature, to attempt to timing of metamorphism and associated deformation constrain the peak metamorphic age. Tectonic models (Foster and others, 1992). However, in the middle and and a petrogenetic investigation of the Kigluaik pluton lower crust, metamorphic
Recommended publications
  • 03-Alekseev and Goreva (Neognathodus).P65
    Lucas, S.G., et al. eds., 2013, The Carboniferous-Permian Transition. New Mexico Museum of Natural History and Science, Bulletin 60. 1 THE CONODONT NEOGNATHODUS BOTHROPS MERRILL, 1972 AS THE MARKER FOR THE LOWER BOUNDARY OF THE MOSCOVIAN STAGE (MIDDLE PENNSYLVANIAN) ALEXANDER S. ALEKSEEV1 AND NATALIA V. GOREVA 2 1 Department of Paleontology, Geological Faculty, Moscow State University, Russia, email: aaleks@geol. msu.ru; 2 Geological institute of Russian Academy of Science, Moscow, Russia, email: [email protected] Abstract—The Moscovian Stage constitutes the Middle Pennsylvanian Series of the Carboniferous System, but a biostratigraphic marker and GSSP for it have not yet been designated. The exact position of the Moscovian boundary cannot be defined properly because in the type area the basal Vereian unconformably overlies the Mississippian limestone or the alluvial and lagoonal Aza Formation of the uppermost Bashkirian. The Task Group to establish a GSSP close to the existing Bashkirian-Moscovian boundary suggested several potential markers among foraminifers and conodonts, but the search for a marker near traditional base of the global Moscovian Stage has stalled. It may be more productive to search for FADs in the lower Moscovian, above the traditional base, to designate the lower boundary of the stage. Relatively rich Vereian and Kashirian conodont assemblages have been recovered from the southwest Moscow Basin, as well as from the Oka-Tsna Swell. The most complete information on the distribution of conodonts in the Vereian- Kashirian boundary interval was obtained from the Yambirno section (Oka-Tsna Swell). The greatest change in conodont assemblages does not occur near the level of the traditional base of the Moscovian, but stratigraphically higher.
    [Show full text]
  • APPLICATIONS of QUANTITATIVE METHODS and CHAOS THEORY in ICHNOLOGY for ANALYSIS of INVERTEBRATE BEHAVIOR and EVOLUTION by James
    APPLICATIONS OF QUANTITATIVE METHODS AND CHAOS THEORY IN ICHNOLOGY FOR ANALYSIS OF INVERTEBRATE BEHAVIOR AND EVOLUTION by James Richard Woodson Lehane A dissertation submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Geology Department of Geology and Geophysics The University of Utah August 2014 Copyright © James Richard Woodson Lehane 2014 All Rights Reserved The University of Utah Graduate School STATEMENT OF DISSERTATION APPROVAL The dissertation of James Richard Woodson Lehane has been approved by the following supervisory committee members: Allan A. Ekdale , Chair May 5th, 2014 Date Approved Randall B. Irmis , Member June 6th, 2014 Date Approved Marjorie A. Chan , Member May 5th, 2014 Date Approved Elena A. Cherkaev , Member June 12th, 2014 Date Approved Leif Tapanila , Member June 6th, 2014 Date Approved and by John M. Bartley , Chair/Dean of the Department/College/School of Geology and Geophysics and by David B. Kieda, Dean of The Graduate School. ABSTRACT Trace fossils are the result of animal behaviors, such as burrowing and feeding, recorded in the rock record. Previous research has been mainly on the systematic description of trace fossils and their paleoenvironmental implications, not how animal behaviors have evolved. This study analyzes behavioral evolution using the quantification of a group of trace fossils, termed graphoglyptids. Graphoglyptids are deep marine trace fossils, typically found preserved as casts on the bottom of turbidite beds. The analytical techniques performed on the graphoglyptids include calculating fractal dimension, branching angles, and tortuosity, among other analyses, for each individual trace fossil and were performed on over 400 trace fossils, ranging from the Cambrian to the modem.
    [Show full text]
  • Conodont Faunas Across the Mid-Carboniferous Boundary From
    Conodont faunas across the mid-Carboniferous boundary from the Barcaliente Formation at La Lastra (Palentian Zone, Cantabrian Mountains, northwest Spain); geological setting, sedimentological characters and faunal descriptions T.I. Nemyrovska, R.H. Wagner, C.F. Winkler Prins & I. Montañez Nemyrovska, T.I., Wagner, R.H., Winkler Prins, C.F. & Montañez, I. Conodont faunas across the mid- Carboniferous boundary from the Barcaliente Formation at La Lastra (Palentian Zone, Cantabrian Mountains, northwest Spain); geological setting, sedimentological characters and faunal descriptions. Scripta Geologica, 143: 127-183, 8 figs., 4 pls, 1 table, Leiden, December 2011. Tamara I. Nemyrovska, Institute of Geological Sciences, National Academy of Sciences of Ukraine, Gonchar Str., 55-b, 01054 Kiev, Ukraine ([email protected]); Robert H. Wagner, Centro Paleobotánico, IMGEMA Jardín Botánico de Córdoba, Avenida de Linneo s/n, E 14004 Córdoba, Spain (cr1wagro@uco. es); Cor F. Winkler Prins, NCB Naturalis, Postbus 9517, 2300 RA Leiden, The Netherlands (Cor.Winkler@ ncbnaturalis.nl); Isabel Montañez, Department of Geology, University of California, Davis, CA 95616, U.S.A. (ipmontañ[email protected]). Keywords — Serpukhovian, Bashkirian, biostratigraphy, palaeoecology. Two different tectono-stratigraphic domains are recognised in the Cantabrian Mountains, Asturian-Leo- nese (Cantabrian Zone) and Palentian (Palentian Zone). The area under investigation belongs to the south- ern part of the Palentian Domain and attention is focused on the Upper Viséan to lowermost Bashkirian limestones at the village of La Lastra in northern Palencia. A new geological map of the Palentian Zone is accompanied by a more detailed map centred on La Lastra. The Barcaliente Limestone Formation (Ser- pukhovian to lowermost Bashkirian) occurs in the overturned limb of a recumbent anticline which consti- tutes the head of a south-verging major thrust unit, the Carrionas Thrust Sheet (Palentian Zone).
    [Show full text]
  • Vol. 3 No.3 September 1999
    ISSN 1342-8144 Formerly Transactions and Proceedings of the Palaeontological Society of Japan Vol. 3 No.3 September 1999 The Palaeontological Society of Japan Co-Editors Kazushige Tanabe and Tomoki Kase Language Editor Martin Janal (New York, USA) Associate Editors Jan Bergstrom (Swedish Museum of Natural History, Stockholm, Sweden), Alan G. Beu (Institute of Geological and Nuclear Sciences, Lower Hutt, New Zealand), Satoru Chiba (Tohoku University, Sendai, Japan), Yoichi Ezaki (Osaka City University, Osaka, Japan), James C. Ingle, Jr. (Stanford University, Stanford, USA), Kunio Kaiho (Tohoku University, Sendai, Japan), Susan M. Kidwell (University of Chicago, Chicago, USA), Hiroshi Kitazato (Shizuoka University, Shizuoka, Japan), Naoki Kohno (National Science Museum, Tokyo, Japan), Neil H. Landman (Amemican Museum of Natural History, New York, USA), Haruyoshi Maeda (Kyoto University, Kyoto, Japan), Atsushi Matsuoka (Niigata University, Niigata, Japan), Rihito Morita (Natural History Museum and Institute, Chiba, Japan), Harufumi Nishida (Chuo University, Tokyo, Japan), Kenshiro Ogasawara (University of Tsukuba, Tsukuba, Japan), Tatsuo Oji (University of Tokyo, Tokyo, Japan), Andrew B. Smith (Natural History Museum, London, Great Britain), Roger D.K. Thomas (Franklin and Marshall College, Lancaster, USA), Katsumi Ueno (Fukuoka University, Fukuoka, Japan), Wang Hongzhen (China University of Geosciences, Beijing, China), Yang Seong Young (Kyungpook National University, Taegu, Korea) Officers for 1999-2000 President: Kei Mori Councillors:
    [Show full text]
  • Pennsylvanian Boundary Unconformity in Marine Carbonate Successions
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations & Theses in Earth and Atmospheric Earth and Atmospheric Sciences, Department of Sciences Summer 6-2014 ORIGIN AND DISTRIBUTION OF THE MISSISSIPPIAN – PENNSYLVANIAN BOUNDARY UNCONFORMITY IN MARINE CARBONATE SUCCESSIONS WITH A CASE STUDY OF THE KARST DEVELOPMENT ATOP THE MADISON FORMATION IN THE BIGHORN BASIN, WYOMING. Lucien Nana Yobo University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/geoscidiss Part of the Geochemistry Commons, Geology Commons, Sedimentology Commons, and the Stratigraphy Commons Nana Yobo, Lucien, "ORIGIN AND DISTRIBUTION OF THE MISSISSIPPIAN – PENNSYLVANIAN BOUNDARY UNCONFORMITY IN MARINE CARBONATE SUCCESSIONS WITH A CASE STUDY OF THE KARST DEVELOPMENT ATOP THE MADISON FORMATION IN THE BIGHORN BASIN, WYOMING." (2014). Dissertations & Theses in Earth and Atmospheric Sciences. 59. http://digitalcommons.unl.edu/geoscidiss/59 This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations & Theses in Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. ORIGIN AND DISTRIBUTION OF THE MISSISSIPPIAN – PENNSYLVANIAN BOUNDARY UNCONFORMITY IN MARINE CARBONATE SUCCESSIONS WITH A CASE STUDY OF THE KARST DEVELOPMENT ATOP THE MADISON FORMATION IN THE BIGHORN BASIN, WYOMING. By Luscalors Lucien Nana Yobo A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Earth and Atmospheric Sciences Under the Supervision of Professor Tracy D.
    [Show full text]
  • A Combined Petrographical-Geochemical Provenance Study of the Newland Formation, Mid-Proterozoic of Montana
    223 A combined petrographical-geochemical provenance study of the Newland Formation, Mid-Proterozoic of Montana JüRGEN SCHIEBER Department of Geology, The University of Texas at Arlington (UTA), Arlington, Texas 76019, U.S.A. Abstract - A provenance study was conducted on the Mid-Proterozoic Newland Formation, in which petrographical features of sandstones and geochemical characteristics of shales were integrated to arrive at an internally consistent interpretation. Sandstones of the Newland Formation are typically arkosic sands and arkoses with very well rounded quartz and feldspar grains and only minor amounts of extrabasinal rock fragments. The predominant feldspar types are K-spar and microcline, feldspar grains are smaller than quartz grains, and feldspars show little alteration due to weathering. Detrital modes of Newland sandstones (QFL diagrams) indicate that they were derived from a stable cratonic source. These petrographical features imply a source area dominated by granites and granitoid gneisses, semi-arid to arid climate, tectonic quiescence and overall peneplain conditions. Shales of the Newland Formation are dominated by illite, quartz silt, and fine crystalline dolomite. They have small La/Th rations, relatively large Hf contents, and small contents of Cr, Co, and Ni, all indicative of derivation from crust of granitic composition. Small TiO2/AI2O3 ratios also suggest source rocks of granitic composition. The average chemical index of alteration (CIA) for Newland shales is 71.8, which in light of the probable granitoid source indicates modest amounts of chemical weathering. Relatively large Si02 contents and large K20/Na20 ratios reflect derivation from stable cratonic areas and tectonic quiescence. Thus, in general, the petrography of sandstones and geochemistry of shales provides the same provenance clues for the Newland Formation.
    [Show full text]
  • 71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
    ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas.
    [Show full text]
  • Registration Document
    Registration Document AKER ASA Senior Unsecured Bond Issue 2015/2020 ISIN: NO 0010737158 Date: 30 June 2015 Joint Lead Managers: DNB Markets Nordea Markets Pareto Securities Registration Document IMPORTANT INFORMATION The Registration Document has been prepared in connection with listing of the bonds at Oslo Børs. This Registration Document is subject to the general business terms of the Lead Managers. Confidentiality rules and internal rules restricting the exchange of information between different parts of the Lead Managers may prevent employees of the Lead Managers who are preparing this document from utilizing or being aware of information available to the Lead Managers and/or affiliated companies and which may be relevant to the recipient's decisions. The Lead Managers and/or affiliated companies and/or officers, directors and employees may be a market maker or hold a position in any instrument or related instrument discussed in this Registration Document, and may perform or seek to perform financial advisory or banking services related to such instruments. The Lead Managers’ corporate finance department may act as manager or co-manager for the Company in private and/or public placement and/or resale not publicly available or commonly known. Copies of this Registration Document are not being mailed or otherwise distributed or sent in or into or made available in the United States. Persons receiving this document (including custodians, nominees and trustees) must not distribute or send such documents or any related documents in or into the United States. Other than in compliance with applicable United States securities laws, no solicitations are being made or will be made, directly or indirectly, in the United States.
    [Show full text]
  • British Columbia Historical Quarterly
    E S. BRITISH COLUMBIA HISTORICAL QUARTERLY 4.) I. • •SS_ S • 5’: .SSS OCTOBER, 1939 5. .5 S • BRITISH COLUMBIA HISTORICAL QUARTERLY Published by the Archives of British Columbia in co-operation with the British Columbia Historical Association. EDITOR. W. KAYE LAMB. ADVISORY BOARD. J. C. GOODFELLOW, Princeton. F. W. Howay, New Westminster. R0BIE L. REID, Vancouver. T. A. RICKARD, Victoria. W. N. SAGE, Vancouver. Editorial communications should be addressed to the Editor, Provincial Archives, Parliament Buildings, Victoria, B.C. Subscriptions should be sent to the Provincial Archives, Parliament Buildings, Victoria, B.C. Price, 50c. the copy, or $2 the year. Members of the British Columbia Historical Association in good standing receive the Quarterly without further charge. Neither the Provincial Archives nor the British Columbia Historical Association assumes any responsibility for statements made by contributors to the magazine. BRITISH COLUMBIA HISTORICAL QUARTERLY “Any country worthy of a future should be interested in its past.” VOL. III. VICTORIA, B.C., OCTOBER, 1939. No. 4 CONTENTS. ARTICLES: PAGE. Pioneer Flying in British Columbia, 1910—1914. ByFrankH.EIlis — 227 The Evolution of the Boundaries of British Columbia. By Willard E. Ireland 263 Sir James Goes Abroad. By W. Kaye Lamb 283 NOTES AND COMMENTS: Contributors to this Issue__ 293 Historic Sites and Monuments — 293 British Columbia Historical Association _-__ 296 Okanagan Historical Society 298 Similkameen Historical Association — 299 Thompson Valley Museum and Historical Association _ 299 ThE NORTHWEST BOOKSHELF: Morton: A History of the Canadian West to 1870—71. By W. N. Sage _301 Index — 305 The McMullen-Templeton machine, which waa completed in April, 1911.
    [Show full text]
  • Pdf Ichnospecies Funalichnus Strangulatus (Fritsch 1883), Upper Schlirf, M.; Uchman, A
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Geologica Saxonica - Journal of Central European Geology Jahr/Year: 2016 Band/Volume: 62 Autor(en)/Author(s): Niebuhr Birgit, Wilmsen Markus Artikel/Article: Ichnofossilien 181-238 62: 181 – 238 29 Dec 2016 © Senckenberg Gesellschaft für Naturforschung, 2016. 16. Ichnofossilien 16. Ichnofossils Birgit Niebuhr und Markus Wilmsen Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Sektion Paläozoologie, Königsbrücker Land- straße 159, 01109 Dresden, Deutschland; [email protected], [email protected] Revision accepted 18 July 2016. Published online at www.senckenberg.de/geologica-saxonica on 29 December 2016. Kurzfassung Die taxonomische Revision der Spurenfossilien der Elbtal-Gruppe ergab 28 Ichnotaxa, die sich verteilen auf 1. einfache Spuren: Lockeia amygdaloides (Seilacher), Bergaueria klieni (Geinitz), Fluchtspuren; 2. unverzweigte Spuren: Skolithos linearis (Haldeman), Taenidium cameronensis (Brady), Funalichnus strangulatus (Frič), Planolites isp.; 3. verzweigte Spuren: Chondrites targionii (Brongniart), Ophio­ morpha saxonica (Geinitz), O. ramea (Geinitz), Thalassinoides suevicus (Rieth), Keckia annulata Glocker, K. cylindrica von Otto, K. no­ du losa von Otto, Asterosoma? wohlfarthi (von Otto); 4. horizontal-konzentrische Spuren: A. radiciforme von Otto, A. coxii (Lesquereux), Dactyloidites ottoi (Geinitz); 5. dreidimensional-gewundene
    [Show full text]
  • Palaeontology and Stratigraphy of the Inoceramid Species from the Mid-Turonian Through Upper Middle Coniacian in Japan
    Acta Geologica Polonica, Vol. 48 (1998), No.4, pp. 435-482 Palaeontology and stratigraphy of the inoceramid species from the mid-Turonian through upper Middle Coniacian in Japan MASAYUKI NODAl & TATSURO MATSUMOT02 IFukagochi 5kumi, Oita 870-0881, Japan 2c/O Department of Earth & Planetary Science, Kyushu University 33, Fukuoka 812, Japan ABSTRACT: NODA, M. & MATSUMOTO, T. 1998. Palaeontology and stratigraphy of the inoceramid species from the mid-Turonian through upper Middle Coniacian in Japan. Acta Geologica Polonica, 48 (4),435-482. Warszawa. Upper Cretaceous strata are weIl exposed in many areas of Japan, although good exposures through the Turonian/Coniacian boundary are not common. This paper focuses on six areas in Hokkaido, Shikoku and Kyushu and documents the stratigraphical distributions of inoceramid species. These data are used to summarise the stratigraphical ranges of Turonian/Coniacian taxa in Japan. In part 1 of the paper, 17 species are described, with some biometric data and phylogenetic interpretation. These species are: Inoceramus (1noceramus) hobetsensis NAGAO & MATSUMOTO, I. (1.) teshioensis NAGAO & MATSUMOTO, 1. (1.) iburiensis NAGAO & MATSUMOTO, I. (1.) tenuistriatus NAGAO & MATSUMOTO, I. (1.) pedalionoides NAGAO & MATSUMOTO, I. (1.) lusatiae ANDERT, I. (1.) uwajimensis YEHARA, I. (Cremnoceramus) rotun­ datus FIEGE, I. (Cr.) ernsti HEINZ, I. (Cr.) deformis MEEK, I. (Cr.) lueckendorfensis TRaGER, I. (Platyceramus) tappuensis nom. nov., I. (Pl.) szaszi NODA & UCHIDA, I. (Volviceramus) koeneni MULLER, Mytiloides incertus (JI!VlBO), M. mytiloidiformis (TRaGER), and M. sublabiatus (MULLER). In part 2, the stratigraphical distribution and correlation of these species are discussed. INTRODUCTION boundary problem (MATSUMOTO & NODA 1985; NOD A 1992, 1996; NOD A & UCHIDA 1995).
    [Show full text]
  • MANAGEMENT PLAN November 2003
    MANAGEMENT PLAN November 2003 for Stikine Country Protected Areas Mount Edziza Provincial Park Mount Edziza Protected Area (Proposed) Stikine River Provincial Park Spatsizi Plateau Wilderness Provincial Park Gladys Lake Ecological Reserve Ministry of Water, Land Pitman River Protected Area and Air Protection Environmental Stewardship Chukachida Protected Area Division Skeena Region Tatlatui Provincial Park Stikine Country Protected Areas M ANAGEMENT LAN P November 2003 Prepared by Skeena Region Environmental Stewardship Division Smithers BC Stikine Country Protected Areas Management Plan National Library of Canada Cataloguing in Publication Data British Columbia. Environmental Stewardship Division. Skeena Region. Stikine Country Protected Areas management plan Cover title: Management plan for Stikine Country Protected Areas. Issued by: Ministry of Water, Land and Air Protection, Environmental Stewardship Division, Skeena Region. “November 2003” “Mount Edziza Provincial Park, Mount Edziza Protected Area (Proposed), Stikine River Provincial Park, Spatsizi Plateau Wilderness Provincial Park, Gladys Lake Ecological Reserve, Pitman River Protected Area, Chukachida Protected Area, Tatlatui Provincial Park”—Cover. Also available on the Internet. Includes bibliographical references: p. ISBN 0-7726-5124-8 1. Protected areas - British Columbia – Stikine Region. 2. Provincial parks and reserves - British Columbia – Stikine Region. 3. Ecosystem management - British Columbia – Stikine Region. I. British Columbia. Ministry of Water, Land and Air Protection.
    [Show full text]