141. Isoflurane, Sevoflurane and Desflurane

Total Page:16

File Type:pdf, Size:1020Kb

141. Isoflurane, Sevoflurane and Desflurane View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Göteborgs universitets publikationer - e-publicering och e-arkiv nr 2009;43(9) The Nordic Expert Group for Criteria Documentation of Health Risks from Chemicals 141. Isoflurane, sevoflurane and desflurane Anne Thoustrup Saber Karin Sørig Hougaard arbete och hälsa | vetenskaplig skriftserie isbn 978-91-85971-16-9 issn 0346-7821 Arbete och Hälsa Arbete och Hälsa (Work and Health) is a scientific report series published by Occupational and Environmental Medicine at Sahlgrenska Academy, University of Gothenburg. The series publishes scientific original work, review articles, criteria documents and dissertations. All articles are peer-reviewed. Arbete och Hälsa has a broad target group and welcomes articles in different areas. Instructions and templates for manuscript editing are available at http://www.amm.se/aoh Summaries in Swedish and English as well as the complete original texts from 1997 are also available online. Arbete och Hälsa Editorial Board: Editor-in-chief: Kjell Torén Tor Aasen, Bergen Gunnar Ahlborg, Göteborg Co-editors: Maria Albin, Ewa Wigaeus Kristina Alexanderson, Stockholm Tornqvist, Marianne Törner, Wijnand Berit Bakke, Oslo Eduard, Lotta Dellve och Roger Persson Lars Barregård, Göteborg Managing editor: Cina Holmer Jens Peter Bonde, Köpenhamn Jörgen Eklund, Linköping © University of Gothenburg & authors 2009 Mats Eklöf, Göteborg Mats Hagberg, Göteborg Arbete och Hälsa, University of Gothenburg Kari Heldal, Oslo SE 405 30 Gothenburg, Sweden Kristina Jakobsson, Lund Malin Josephson, Uppsala ISBN 978-91-85971-16-9 Bengt Järvholm, Umeå ISSN 0346–7821 Anette Kærgaard, Herning http://www.amm.se/aoh Ann Kryger, Köpenhamn Printed at Reproservice, Chalmers Carola Lidén, Stockholm Svend Erik Mathiassen, Gävle Gunnar D. Nielsen, Köpenhamn Catarina Nordander, Lund Torben Sigsgaard, Århus Staffan Skerfving, Lund Kristin Svendsen, Trondheim Gerd Sällsten, Göteborg Allan Toomingas, Stockholm Ewa Wikström, Göteborg Eva Vingård, Uppsala Preface The main task of the Nordic Expert Group for Criteria Documentation of Health Risks from Chemicals (NEG) is to produce criteria documents to be used by the regulatory authorities as the scientific basis for setting occupational exposure limits for chemical substances. For each document, NEG appoints one or several authors. An evaluation is made of all relevant published, peer-reviewed original literature found. The document aims at establishing dose-response/dose-effect relationships and defining a critical effect. No numerical values for occupational exposure limits are proposed. Whereas NEG adopts the document by consensus procedures, thereby granting the quality and conclusions, the author is responsible for the factual content of the document. The evaluation of the literature and the drafting of this document on Isoflurane, sevoflurane and desflurane were made by Dr Anne Thoustrup Saber and Dr Karin Sørig Hougaard, National Research Centre for the Working Environment, Denmark. The draft document was discussed within the group and the final version was accepted by NEG on January 9, 2009 as its document. The following experts participated in the elaboration of the document: Gunnar Johanson Institute of Environmental Medicine, Karolinska Institutet, Sweden (chairman) Maria Albin Department of Occupational and Environmental Medicine, University Hospital, Lund, Sweden (former NEG expert) Kristina Kjærheim Cancer Registry of Norway (NEG expert) Tiina Santonen Finnish Institute of Occupational Health, Finland (NEG expert) Vidar Skaug National Institute of Occupational Health, Norway (NEG expert) Mattias Öberg Institute of Environmental Medicine, Karolinska Institutet, Sweden (NEG expert) Jill Järnberg and Swedish Work Environment Authority, Sweden (NEG secretariat) Anna-Karin Alexandrie Editorial work and technical editing were performed by the NEG secretariat. This work was financially supported by the Swedish Work Environment Authority and the Norwegian Ministry of Labour and Social Inclusion. All criteria documents produced by the Nordic Expert Group may be down- loaded from www.nordicexpertgroup.org . Gunnar Johanson, Chairman of NEG Contents Preface Abbreviations and acronyms 1. Introduction 1 2. Substance identification 1 3. Physical and chemical properties 3 4. Occurrence, production and use 4 5. Measurements and analysis of workplace exposure 7 5.1 Environmental exposure monitoring 7 5.2 Biological exposure monitoring 7 6. Occupational exposure data 8 7. Toxicokinetics 18 7.1 Uptake 18 7.2 Distribution 18 7.3 Biotransformation 20 7.4 Excretion 21 8. Biological monitoring 21 9. Mechanisms of toxicity 24 10. Effects in animals and in vitro studies 26 10.1 Irritation and sensitisation 26 10.2 Effects of single exposure 27 10.2.1 Lethality 27 10.2.2 Central nervous system effects 28 10.2.3 Nephrotoxicity 31 10.2.4 Cardiovascular effects 31 10.2.5 Hepatotoxicity 32 10.2.6 Lung toxicity 32 10.2.7 Other studies 33 10.3 Effects of short-term exposure (up to 90 days) 35 10.4 Mutagenicity and genotoxicity 37 10.5 Effects of long-term exposure and carcinogenicity 41 10.5.1 Carcinogenicity 41 10.5.2 Other effects of long-term exposure 42 10.6 Reproductive and developmental studies 42 11. Observations in man 53 11.1 Irritation and sensitisation 53 11.1.1 Irritation 53 11.1.2 Sensitisation 55 11.2 Effects of single and short-term exposure 56 11.2.1 Central nervous system 56 11.2.2 Cardiovascular system 60 11.2.3 Liver 61 11.2.4 Kidney 63 11.2.5 Other effects of single and short-term exposure 64 11.3 Effects of long-term exposure 65 11.4 Genotoxic effects 66 11.5 Carcinogenic effects 70 11.6 Reproductive and developmental effects 70 12. Dose-effect and dose-response relationships 73 12.1 Animal and in vitro studies 73 12.2 Human studies 75 13. Previous evaluations by national and international bodies 90 14. Evaluation of human health risks 91 14.1 Assessment of health risks 91 14.2 Groups at extra risk 93 14.3 Scientific basis for an occupational exposure limit 94 15. Research needs 95 16. Summary 96 17. Summary in Danish 97 18. References 98 19. Data bases used in search of literature 111 Appendix 1. Occupational exposure limit values 112 Appendix 2. Side-effects of the fluranes at anaesthetic dose levels 113 Appendix 3. Previous NEG criteria documents 115 Abbreviations and acronyms CI confidence interval EC electron capture detection EEG electroencephalography EPSC excitatory postsynaptic current FA alveolar blood concentration of flurane FDVE fluoromethyl 2,2-difluoro-1-(trifluoromethyl)vinyl ether (also called compound A) fEPSP field excitatory postsynaptic potential FEV 1 forced expiratory volume in one second FI concentration of inspired flurane GC gas chromatography HFIP hexafluoroisopropanol IL interleukin LC 50 lethal concentration for 50% of the exposed animals at single inhalation exposure LOAEL lowest observed adverse effect level MAC minimum alveolar concentration of anaesthetic that produces immobility in 50% of subjects exposed to a supramaximal painful/noxious stimulus MS mass spectrometry NOAEL no observed adverse effect level OR odds ratio PET positron emission tomography PS population spike SCE sister chromatid exchange SD standard deviation TFA trifluoroacetic acid TNF α tumour necrosis factor alpha TWA time-weighted average 1. Introduction Isoflurane, sevoflurane and desflurane are halogenated ethers and are used as inhalation anaesthetic agents. These agents are either used separately or in combination with nitrous oxide, intravenous anaesthetics, and muscle relaxants. Enflurane is also a member of this family but is no longer sold in the Nordic countries. For that reason enflurane is not included in this criteria document. This document was made on initial request from the Danish Working Environment Authority due to a report indicating exposure of personnel at Danish hospitals to these agents and the lack of occupational exposure limits (16). Until the 1990s, halothane and enflurane together with nitrous oxide were the primary anaesthetic gases. During the last decade, halothane and enflurane have been phased out and gradually replaced by isoflurane, desflurane and sevoflurane which, compared to halothane and enflurane, are less prone to metabolism causing immune hepatitis and other side-effects. As an example from the Nordic countries, isoflurane has been used in Denmark since 1984, while desflurane and sevoflurane are relatively new anaesthetics, introduced in 1994 and 1996, respectively (150- 152). In this document, the term fluranes is used as a common term for isoflurane, sevoflurane and desflurane. Some selection of literature has been performed. As opposed to most chemicals that occur in the work environment, the fluranes are meant to exert effects in humans at high dose levels. Thus, a large body of literature exists on pharmacological and toxicological effects in humans, mostly after a single exposure at anaesthetic dose levels, i.e. at exposure levels far ex- ceeding the levels met in the working environment. Where relevant, effects of such high acute exposures in humans are described as summarised in reviews. Animal studies are generally described in detail for effects where human data are lacking or scarce, or if the studies were conducted at subanaesthetic concentrations or included repeated exposures. 2. Substance identification The three fluranes are all ethers. Isoflurane and desflurane are halogenated methylethyl ethers with a difluoromethyl group and a fluorinated
Recommended publications
  • Pharmaceutical Starting Materials/Essential Drugs
    BULLETIN MNS October 2009 PHARMACEUTICAL STARTING MATERIALS MARKET NEWS SERVICE (MNS) BI -MONTHLY EDITION Market News Service Pharmaceutical Starting Materials/Essential Drugs October 2009, Issue 5 The Market News Service (MNS) is made available free of charge to all Trade Support Institutions and enterprises in Sub-Saharan African countries under a joint programme of the International Trade Centre and CBI, the Dutch Centre for the Promotion of Imports from Developing Countries (www.cbi.nl). Should you be interested in becoming an information provider and contributing to MNS' efforts to improve market transparency and facilitate trade, please contact us at [email protected]. This issue continues the series, started at the beginning of the year, focusing on the leading markets in various world regions. This issue covers the trends and recent developments in eastern European pharmaceutical markets. To subscribe to the report or to access MNS reports directly online, please contact [email protected] or visit our website at: http://www.intracen.org/mns. Copyright © MNS/ITC 2007. All rights reserved 1 Market News Service Pharmaceutical Starting Materials Introduction WHAT IS THE MNS FOR PHARMACEUTICAL STARTING MATERIALS/ESSENTIAL DRUGS? In 1986, the World Health Assembly laid before the Organization the responsibility to provide price information on pharmaceutical starting materials. WHA 39.27 endorsed WHO‟s revised drug strategy, which states “... strengthen market intelligence; support drug procurement by developing countries...” The responsibility was reaffirmed at the 49th WHA in 1996. Resolution WHA 49.14 requests the Director General, under paragraph 2(6) “to strengthen market intelligence, review in collaboration with interested parties‟ information on prices and sources of information on prices of essential drugs and starting material of good quality, which meet requirements of internationally recognized pharmacopoeias or equivalent regulatory standards, and provide this information to member states”.
    [Show full text]
  • Veterinary Emergency & Anaesthesia Pfizer
    AVA ECVA & AVEF Thank all their sponsors for this spring edition PARIS 2007 On VETERINARY EMERGENCY & ANAESTHESIA PFIZER MERIAL FORT DODGE BAYER BOEHRINGER MEDISUR COVETO OPTOMED HALLOWELL SCIL JANSSEN SOGEVAL KRUSSE TECHNIBELT MILA TEM The Organisatiors 7th AVEF European Meeting- 10th March 2007-ROISSY 2 AVA – ECVA Spring Meeting 2007 on Veterinary Emergency & Anesthesia 7 – 10 March 2007, Paris, France AVA PARIS 2007 — Wednesday March 7th RESIDENT DAY RUMINANT ANAESTHESIA Hyatt Regency Hotel, Roissy CDG, France K OTTO, D HOLOPHERNE, G TOUZOT 8.30 REGISTRATIONS 9.00-9.45 Specific anatomo-physiology to consider for ruminant peri-anaesthetic period K OTTO 10.00-10.30 COFFEE BREAK 10.30-11.15 Post-anaesthetic and pain management in ruminants K OTTO 11.30-12.15 Physical restraint and sedation of ruminants D HOLOPHERNE 12.30-1.30 LUNCH 1.30-2.15 Anaesthesia of Lamas & Alpagas G TOUZOT 2.30-3.15 Regional & local anaesthesia for ruminants D HOLOPHERNE 3.30-4.00 COFFEE BREAK 4.00-4.45 Pharmacology and protocols for ruminant anaesthesia G TOUZOT AVA-ECVA PARIS 2007, Veterinary Emergency & Anaesthesia, 7-10th March AVA-ECVA PARIS 2007, Veterinary Emergency & Anaesthesia, 7-10th March AVA – ECVA Spring Meeting 2007 on Veterinary Emergency & Anesthesia 7 – 10 March 2007, Paris, France Specific anatomo-physiology to consider for ruminants peri-anaesthetic period Klaus A. Otto Institut für Versuchstierkunde und Zentrales Tierlaboratorium, Medizinische Hochschule Hannover, D-30623 Hannover, Germany The suborder “ruminantia” includes members of the family “bovidae” such as cattle (bos taurus), sheep (ovis spp) and goats (capra spp). Members of the family “camelidae” (camelus spp, llama spp, vicugna spp) belong to the suborder “tylopodia” and therefore are not true ruminants.
    [Show full text]
  • Cyclopropane Anaesthesia by JOHN BOYD, M.D., D.A
    Cyclopropane Anaesthesia By JOHN BOYD, M.D., D.A. TLHIS paper is based on my experience of one thousand cases of cyclopropane anaesthesia personally conducted by me since October, 1938, both in hospital and in private. But before discussing these it might be convenient for me to mention here something about the drug itself. HISTORY. Cyclopropane was first isolated in Germany in 1882 by Freund, who also demonstrated its chemical structure, C3H6. He did not, however, describe its anaesthetic properties. Following its discovery it seems to have been forgotten until 1928, when Henderson and Lucas of Toronto, in investigating contaminants of propylene, another anesthetic with undesirable side-effects, and itself'an isomer of cyclopropane, found that the supposed cause of the cardiac disturbances was in reality a better and less toxic anaesthetic. They demonstrated its anaesthetic properties first on animals, and then, before releasing it to the medical profession for clinical trial, they anaesthetised each other, and determined the quantities necessary for administration to man. In 1933 the first clinical trials of cyclopropane were made by Waters and his associates of the University of Wisconsin. In October of that year Waters presented a preliminary report on its anaesthetic properties in man,1 confirming the findings of Henderson and Lucas. Rowbotham introduced it to England first in 1935, and since then its use has spread rapidly throughout the country. PREPARATION. Cyclopropane is prepared commercially by the reduction of trimethylene bromide in the presence of metallic zinc in ethyl alcohol. It is also made commercially from propane in natural gas by progressive thermal chlorination.
    [Show full text]
  • Unnamed Document
    Mutations M287L and Q266I in the Glycine Receptor ␣1 Subunit Change Sensitivity to Volatile Anesthetics in Oocytes and Neurons, but Not the Minimal Alveolar Concentration in Knockin Mice Cecilia M. Borghese, Ph.D.,* Wei Xiong, Ph.D.,† S. Irene Oh, B.S.,‡ Angel Ho, B.S.,§ S. John Mihic, Ph.D.,ʈ Li Zhang, M.D.,# David M. Lovinger, Ph.D.,** Gregg E. Homanics, Ph.D.,†† Edmond I. Eger 2nd, M.D.,‡‡ R. Adron Harris, Ph.D.§§ ABSTRACT What We Already Know about This Topic • Inhibitory spinal glycine receptor function is enhanced by vol- Background: Volatile anesthetics (VAs) alter the function of atile anesthetics, making this a leading candidate for their key central nervous system proteins but it is not clear which, immobilizing effect if any, of these targets mediates the immobility produced by • Point mutations in the ␣1 subunit of glycine receptors have been identified that increase or decrease receptor potentiation VAs in the face of noxious stimulation. A leading candidate is by volatile anesthetics the glycine receptor, a ligand-gated ion channel important for spinal physiology. VAs variously enhance such function, and blockade of spinal glycine receptors with strychnine af- fects the minimal alveolar concentration (an anesthetic What This Article Tells Us That Is New EC50) in proportion to the degree of enhancement. • Mice harboring specific mutations in their glycine receptors Methods: We produced single amino acid mutations into that increased or decreased potentiation by volatile anesthetic in vitro did not have significantly altered changes in anesthetic the glycine receptor ␣1 subunit that increased (M287L, third potency in vivo transmembrane region) or decreased (Q266I, second trans- • These findings indicate that this glycine receptor does not me- membrane region) sensitivity to isoflurane in recombinant diate anesthetic immobility, and that other targets must be receptors, and introduced such receptors into mice.
    [Show full text]
  • Drug and Alcohol Abuse Prevention Handbook FOREWARD
    Drug and Alcohol Abuse Prevention Handbook FOREWARD Grayson College recognizes that the illicit use of drugs and/or the abuse of alcohol are a persistent health problem of major proportion affecting our society physically, mentally, and socially. Illicit drug use and /or alcohol abuse can adversely affect an individual’s personal life, safety, health, and mental and physical performance. It is the intent of GC to provide employees and students pertinent information related to illicit drug use and/or alcohol abuse in an effort to prevent such harm. GC is committed to promoting and maintaining a work and academic environment that is free from illegal alcohol and drug use and abuse, in accordance with all federal, state, and local laws. Students, employees, and visitors are prohibited from possessing, consuming, manufacturing, dispensing, or being under the influence of alcohol/illegal drugs or engaging in improper self- medication while on college property or college business. Any member of the college community who violates this policy is subject to both prosecution and punishment under federal, state, and local laws to disciplinary proceedings by the college. This alcohol/drug policy is not designed to punish people for seeking rehabilitation. All information about those individuals who voluntarily avail themselves of drug or alcohol counseling or rehabilitation will not be used as a basis for disciplinary action or be used against an individual in any way. College employees and students who violate the alcohol/drug policy shall be informed about and referred to services to assist them in determining whether they are abusing drugs and alcohol or are chemically dependent.
    [Show full text]
  • Cyclobutane Derivatives in Drug Discovery
    Cyclobutane Derivatives in Drug Discovery Overview Key Points Unlike larger and conformationally flexible cycloalkanes, Cyclobutane adopts a rigid cyclobutane and cyclopropane have rigid conformations. Due to the ring strain, cyclobutane adopts a rigid puckered puckered conformation Offer ing advantages on (~30°) conformation. This unique architecture bestowed potency, selectivity and certain cyclobutane-containing drugs with unique pharmacokinetic (PK) properties. When applied appropriately, cyclobutyl profile. scaffolds may offer advantages on potency, selectivity and pharmacokinetic (PK) profile. Bridging Molecules for Innovative Medicines 1 PharmaBlock designs and Cyclobutane-containing Drugs synthesizes over 1846 At least four cyclobutane-containing drugs are currently on the market. cyclobutanes, and 497 Chemotherapy carboplatin (Paraplatin, 1) for treating ovarian cancer was cyclobutane products are prepared to lower the strong nephrotoxicity associated with cisplatin. By in stock. CLICK HERE to replacing cisplatin’s two chlorine atoms with cyclobutane-1,1-dicarboxylic find detailed product acid, carboplatin (1) has a much lower nephrotoxicity than cisplatin. On information on webpage. the other hand, Schering-Plough/Merck’s hepatitis C virus (HCV) NS3/4A protease inhibitor boceprevir (Victrelis, 2) also contains a cyclobutane group in its P1 region. It is 3- and 19-fold more potent than the 1 corresponding cyclopropyl and cyclopentyl analogues, respectively. Androgen receptor (AR) antagonist apalutamide (Erleada, 4) for treating castration-resistant prostate cancer (CRPC) has a spirocyclic cyclobutane scaffold. It is in the same series as enzalutamide (Xtandi, 3) discovered by Jung’s group at UCLA in the 2000s. The cyclobutyl- (4) and cyclopentyl- derivative have activities comparable to the dimethyl analogue although the corresponding six-, seven-, and eight-membered rings are slightly less 2 active.
    [Show full text]
  • Evaluating the Translational Potential of Progesterone Treatment Following
    Wong et al. BMC Neuroscience 2014, 15:131 http://www.biomedcentral.com/1471-2202/15/131 RESEARCH ARTICLE Open Access Evaluating the translational potential of progesterone treatment following transient cerebral ischaemia in male mice Raymond Wong1, Claire L Gibson2*, David A Kendall3 and Philip MW Bath1 Abstract Background: Progesterone is neuroprotective in numerous preclinical CNS injury models including cerebral ischaemia. The aim of this study was two-fold; firstly, we aimed to determine whether progesterone delivery via osmotic mini-pump would confer neuroprotective effects and whether such neuroprotection could be produced in co-morbid animals. Results: Animals underwent transient middle cerebral artery occlusion. At the onset of reperfusion, mice were injected intraperitoneally with progesterone (8 mg/kg in dimethylsulfoxide). Adult and aged C57 Bl/6 mice were dosed additionally with subcutaneous infusion (1.0 μl/h of a 50 mg/ml progesterone solution) via implanted osmotic minipumps. Mice were allowed to survive for up to 7 days post-ischaemia and assessed for general well-being (mass loss and survival), neurological score, foot fault and t-maze performance. Progesterone reduced neurological deficit [F(1,2) = 5.38, P = 0.027] and number of contralateral foot-faults [F(1,2) = 7.36, P = 0.0108] in adult, but not aged animals, following ischaemia. In hypertensive animals, progesterone treatment lowered neurological deficit [F(1,6) = 18.31, P = 0.0001], reduced contralateral/ipsilateral alternation ratio % [F(1,2) = 17.05, P = 0.0006] and time taken to complete trials [F(1,2) = 15.92, P = 0.0009] for t-maze. Conclusion: Post-ischemic progesterone administration via mini-pump delivery is effective in conferring functional improvement in a transient MCAO model in adult mice.
    [Show full text]
  • Callistephin Enhances the Protective Effects of Isoflurane on Microglial Injury Through Downregulation of Inflammation and Apoptosis
    802 MOLECULAR MEDICINE REPORTS 20: 802-812, 2019 Callistephin enhances the protective effects of isoflurane on microglial injury through downregulation of inflammation and apoptosis LILI ZHAO, SHIBIAO CHEN, TIANYIN LIU, XIUHONG WANG, HAIJIN HUANG and WEICHENG LIU Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China Received June 18, 2018; Accepted March 15, 2019 DOI: 10.3892/mmr.2019.10282 Abstract. Microglia are the major immune cells in the central enhanced the effects of isoflurane. Callistephin may therefore nervous system. Microglial activation can be beneficial or constitute a candidate drug agent that may target inflammatory detrimental depending on the stimuli and the physiopathological and growth regulatory signaling pathways, thus ameliorating environment. Microglial activation is involved in a variety certain aspects of neurodegenerative diseases. of neurodegenerative disorders. Different anesthetic agents have exhibited diverse effects on microglial activation and Introduction the engulfment process. The anthocyanin callistephin has been demonstrated to have antioxidant and anti‑inflammatory Microglial cells are the major immune cell in the central properties, and these were assessed in the present study, with a nervous system (CNS), responding against types of endog- focus on its effect on microglial activation. Mouse microglial enous and exogenous stimuli, including infection by bacteria, cells C8-4B were treated with 100 ng/µl lipopolysaccharide viruses, prions and β-amyloid plaques (1). Microglia are (LPS) and 1 ng/µl interferon-γ. Cells were subsequently treated activated upon exposure to different stimuli and, depending with 2% isoflurane, 100 µM callistephin or both. LPS promoted on the environmental context, this may be beneficial or detri- apoptosis in C8-B4 cells, and this was reduced following mental to the functionality and physiology of the CNS (2).
    [Show full text]
  • Kiwiherb Valerian Oral Liquid Valerian Root Extract
    PATIENT INFORMATION LEAFLET: stress and to aid sleep, exclusively based on long standing use. 2. Before you take this product DO NOT TAKE this product if you are: • Allergic to Valerian or any other ingredients in this product (see section 6) • Under 18 years of age • Pregnant or breast feeding • Taking medicines known to interact with alcohol (e.g. metronidazole) • Already taking a medicine for sleep or Kiwiherb Valerian Oral Liquid anxiety Valerian Root Extract Taking other medicines Tell your healthcare professional, e.g. a doctor or pharmacist, if you are taking any other medicines Read all of this leaflet carefully because it contains including herbal medicines or medicines that did important information for you. not require a prescription. This medicine is available without prescription. Driving and using machines However you still need to use Kiwiherb Valerian carefully to get the best results from it. This product may cause drowsiness. If affected, do not drive or operate machinery Keep this leaflet. You may want to read it again. Take Special Care with this product Ask your healthcare professional, e.g. a doctor or pharmacist, if you need more information or This product contains alcohol (45% ethanol), i.e. advice. up to 2.25 ml per 5 ml dose, (equivalent to 45 ml beer or 18.8 ml wine), and may be harmful to If the condition worsens or symptoms do not those suffering from alcoholism. improve after 2 weeks, a qualified healthcare professional, e.g. a doctor or pharmacist, should be To be taken into account in pregnant or consulted.
    [Show full text]
  • Neurological Complications of Nitrous Oxide Abuse
    Katherine Shoults, MD Case report: Neurological complications of nitrous oxide abuse A patient who presented with limb paresthesia and B12 deficiency was eventually diagnosed with subacute combined degeneration neuropathy secondary to nitrous oxide abuse. Case data ABSTRACT: A 34-year-old female ary to nitrous oxide (“laughing gas”) A 34-year-old female presented with with a history of alcohol and crystal abuse that had affected B12 activa- a 2-week history of progressive bilat- methamphetamine abuse presented tion. The patient was continued on eral limb paresthesia and tenderness, to the emergency department with B12 therapy, neurology follow-up as well as an inability to balance. She limb paresthesia and difficulty walk- was arranged, and addiction coun- had been well previously, although ing. At a primary care visit a week seling services were recommended. she did have a history of alcohol and earlier her progressive neurological Unfortunately, the patient was lost crystal methamphetamine abuse. She compromise had been viewed in the to follow-up after discharge from the had abstained from crystal metham- context of anemia and she was start- hospital. Physicians should be aware phetamine for 5 years and from alco- ed on daily B12 injections. Further that nitrous oxide is easy to acquire hol for 2 months. She was working as a investigations in hospital revealed in the form of commercially available care aid and denied using illegal drugs diminished proprioception, hyperal- cartridges or whipped cream canis- currently, but reported she had been gesia with pinprick and temperature ters called “whippits” and abuse of inhaling nitrous oxide (“laughing tests, a wide-based high-steppage nitrous oxide is increasingly com- gas”) for 6 months, with an escalation gait, elevated levels of B12 and ho- mon.
    [Show full text]
  • Euthanasia of Experimental Animals
    EUTHANASIA OF EXPERIMENTAL ANIMALS • *• • • • • • • *•* EUROPEAN 1COMMISSIO N This document has been prepared for use within the Commission. It does not necessarily represent the Commission's official position. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server (http://europa.eu.int) Cataloguing data can be found at the end of this publication Luxembourg: Office for Official Publications of the European Communities, 1997 ISBN 92-827-9694-9 © European Communities, 1997 Reproduction is authorized, except for commercial purposes, provided the source is acknowledged Printed in Belgium European Commission EUTHANASIA OF EXPERIMENTAL ANIMALS Document EUTHANASIA OF EXPERIMENTAL ANIMALS Report prepared for the European Commission by Mrs Bryony Close Dr Keith Banister Dr Vera Baumans Dr Eva-Maria Bernoth Dr Niall Bromage Dr John Bunyan Professor Dr Wolff Erhardt Professor Paul Flecknell Dr Neville Gregory Professor Dr Hansjoachim Hackbarth Professor David Morton Mr Clifford Warwick EUTHANASIA OF EXPERIMENTAL ANIMALS CONTENTS Page Preface 1 Acknowledgements 2 1. Introduction 3 1.1 Objectives of euthanasia 3 1.2 Definition of terms 3 1.3 Signs of pain and distress 4 1.4 Recognition and confirmation of death 5 1.5 Personnel and training 5 1.6 Handling and restraint 6 1.7 Equipment 6 1.8 Carcass and waste disposal 6 2. General comments on methods of euthanasia 7 2.1 Acceptable methods of euthanasia 7 2.2 Methods acceptable for unconscious animals 15 2.3 Methods that are not acceptable for euthanasia 16 3. Methods of euthanasia for each species group 21 3.1 Fish 21 3.2 Amphibians 27 3.3 Reptiles 31 3.4 Birds 35 3.5 Rodents 41 3.6 Rabbits 47 3.7 Carnivores - dogs, cats, ferrets 53 3.8 Large mammals - pigs, sheep, goats, cattle, horses 57 3.9 Non-human primates 61 3.10 Other animals not commonly used for experiments 62 4.
    [Show full text]
  • SAD.002 Alcohol and Drugs
    ALCOHOL AND DRUG POLICY Southern Oregon University is committed to promoting an environment that supports the health and well-being of every member of the campus community. Since drug and alcohol abuse can seriously impair an individual’s personal and academic functioning, the University helps campus members make responsible decisions about drugs and alcohol. It is Southern’s obligation, therefore, to provide pertinent drug and alcohol information, educational opportunities, prevention-related activities, individual support and referral services, and enforcement of University rules regarding the use of alcohol and illegal drugs. In keeping with this policy and the intent of Public Law 101-226, Section 22: Drug-Free Schools and Campuses, it is our obligation and responsibility to inform you of the health risks associated with the use of various illicit drugs, nicotine, and the abuse of alcohol. Please note that any substance used through needle-sharing increases the risk of contracting AIDS and hepatitis B. Controlled Substances: Type of Drug and Possible Health Risks 1. Stimulants – speed up action of central nervous system • Amphetamines (speed). Hallucinations; heart problems; malnutrition; dependency; paranoid psychosis; death. Affects fetal development. • Cocaine (coke, crack) — Classified as a narcotic. Confusion; depression; convulsions; damaged nasal membranes; lung lesions; dependency; coma; paranoid psychosis; death. Affects fetal development. • MDMA (ecstasy). Short-term: euphoria; dehydration; loss of inhibition. Long-term: danger to cognitive learning and memory impairment. 2. Depressants – relax central nervous system • Barbiturates (downers). Tranquilizers and methaqualone (ludes). Confusion; loss of coordination; tolerance; dependency; seizures; coma; death. • Especially dangerous in combination with alcohol. 3. Cannabis – alters perception and mood • Marijuana and hashish.
    [Show full text]