IMPOSSIBILITY RESULTS: from GEOMETRY to ANALYSIS Davide Crippa

Total Page:16

File Type:pdf, Size:1020Kb

IMPOSSIBILITY RESULTS: from GEOMETRY to ANALYSIS Davide Crippa IMPOSSIBILITY RESULTS: FROM GEOMETRY TO ANALYSIS Davide Crippa To cite this version: Davide Crippa. IMPOSSIBILITY RESULTS: FROM GEOMETRY TO ANALYSIS : A study in early modern conceptions of impossibility. History, Philosophy and Sociology of Sciences. Univerist´eParis Diderot Paris 7, 2014. English. <tel-01098493> HAL Id: tel-01098493 https://hal.archives-ouvertes.fr/tel-01098493 Submitted on 25 Dec 2014 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. UNIVERSITE PARIS DIDEROT (PARIS 7) SORBONNE PARIS CITE ECOLE DOCTORALE: Savoirs Scientifiques, Epistémologie, Histoire des Sciences et Didactique des disciplines DOCTORAT: Epistémologie et Histoire des Sciences DAVIDE CRIPPA IMPOSSIBILITY RESULTS: FROM GEOMETRY TO ANALYSIS A study in early modern conceptions of impossibility RESULTATS D’IMPOSSIBILITE: DE LA GEOMETRIE A L’ANALYSE Une étude de résultats classiques d’impossibilité Thèse dirigée par: Marco PANZA Soutenue le: 14 Octobre 2014 Jury: Andrew Arana Abel Lassalle Casanave Jesper Lützen (rapporteur) David Rabouin Vincenzo de Risi (rapporteur) Jean-Jacques Szczeciniarz Alla memoria di mio padre. A mia madre. Contents Preface 9 1 General introduction 14 1.1 The theme of my study . 14 1.2 A difficult context . 16 1.3 Types of impossibility arguments . 20 1.3.1 An ancient example . 20 1.3.2 Impossibility in the theory versus impossibility in the meta-theory 21 1.4 Impossibility statements as meta-statements . 26 1.4.1 The unsettled nature of the circle-squaring problem . 30 1.5 Impossibility results in early modern geometry . 39 2 Problem solving techniques in Ancient geometry 44 2.1 Introduction . 44 2.2 Pappus’ division of problems into three kinds . 52 2.2.1 A conjecture about the origin of Pappus’ classification of problems 57 2.2.2 Normative aspects in Pappus’ classification . 60 2.3 Curves and problems of the third kind . 66 2.3.1 The conchoid . 66 2.3.2 The Quadratrix . 68 2.3.3 The Archimedean spiral . 73 2.3.4 The Apollonian helix . 75 2.4 Problems from the third kind of geometry . 78 2.4.1 General Angle Division (Collection, IV, proposition 35) . 78 2.4.2 Problems related to the general angle division . 82 2.5 The rectification problem . 82 5 CONTENTS 6 2.5.1 The rectification of the circumference via quadratrix (Pappus, Col- lection, IV, proposition 27) . 83 2.5.2 The converse problem: to construct a circumference equal to a given segment . 88 2.5.3 Rectification through the spiral (Archimedes, On Spiral lines, prop. XVIII) . 89 2.6 On the quadrature of the circle . 95 3 The geometry of René Descartes 100 3.0.1 Descartes’ geometry and its methodological presuppositions . 100 3.0.2 Descartes’ early methodology of problem solving . 103 3.1 Analysis and Synthesis in Descartes’ geometry . 113 3.1.1 Cartesian analysis as transconfigurational analysis . 113 3.1.2 The constitution of the algebra of segments . 126 3.1.3 The construction of the ‘four figures’ . 131 3.2 Descartes’ construal of geometricity in 1637 . 133 3.2.1 Euclidean restrictions reconsidered . 133 3.2.2 Early instances of geometrical linkages . 146 3.2.3 The determinative character of cartesian algebra . 148 4 Simplicity in Descartes’ geometry 155 4.1 Introduction . 155 4.2 Simplicity in early modern geometry . 157 4.3 Classifications of curves and problems . 160 4.3.1 Ancient and modern classifications . 160 4.3.2 A classification of curves . 161 4.3.3 A Classification of problems . 167 4.4 Construction of third and fourth degree equations . 173 4.4.1 Construction of a cubic equation . 175 4.4.2 The insertion of two mean proportionals . 179 4.5 Easiness versus simplicity . 183 4.5.1 Two solutions compared . 183 4.5.2 Easiness, simplicity and the algebraic ordering of curves . 186 4.6 Impossibility and the interpretation of Pappus’ norm . 203 4.6.1 Impossibility arguments in La Géométrie . 203 4.6.2 A case for unrigorous reasoning . 209 CONTENTS 7 4.6.3 Impossibility results as metastatements . 214 4.6.4 The legacy of the cartesian programme: simplicity at stake . 215 5 Mechanical curves in Descartes’ geometry 221 5.1 Mechanical curves in Descartes’ geometry . 221 5.2 On Geometrical and Mechanical constructions . 227 5.2.1 Constructions by means of twisted lines or strings . 229 5.2.2 Construction of the spiral (Schwenter, Huygens) . 231 5.2.3 Pointwise construction of mechanical curves . 234 5.3 Descartes’ appraisal of string-based mechanisms and pointwise constructions247 5.4 Specification by genesis and specification by property: the case of mechan- ical curves . 255 6 Impossible problems in cartesian geometry 266 6.1 On the cartesian distinction between possible and impossible problems . 266 6.2 Impossibility claims as a meta-statements . 272 6.3 On the significance of early rectifications for Descartes’ meta-statement . 276 6.4 Problems of quadratures and the problem of area . 288 7 James Gregory’s Vera Circuli Quadratura 296 7.1 Introduction: the quadrature of the circle . 296 7.2 The controversy between James Gregory and Christiaan Huygens . 303 7.3 Analyzing the quadrature of the circle . 307 7.3.1 The aims of analysis . 307 7.3.2 Introducing convergent sequences . 314 7.3.3 The convergence of the double sequence . 321 7.3.4 Computing the terminatio . 329 7.4 An argument of impossibility . 334 7.5 Reception and criticism of Gregory’s impossibility argument . 342 7.6 Conclusions . 354 7.6.1 Bibliographical note . 365 8 The arithmetical quadrature of the circle 367 8.1 Introduction . 367 8.1.1 The manuscript of the De quadratura arithmetica . 368 8.1.2 Leibniz’s acquaintance and study of Gregory’s works . 370 8.2 The arithmetical quadrature of the circle, its main results . 373 CONTENTS 8 8.2.1 Looking backward onto Leibniz’s quadrature of the central conic sections . 373 8.2.2 Towards the arithmetical quadrature of the circle: the transmuta- tion theorem . 376 8.2.3 Towards the arithmetical quadrature of the circle: the generation of the ‘anonymous’ curve . 381 8.3 A digression: Mercator-Wallis technique for the quadrature of the hyperbola385 8.4 Leibniz’s arithmetical quadrature of 1674-’75 . 396 8.4.1 Extending Wallis-Mercator technique . 396 8.4.2 The rectification of a circular arc . 401 8.4.3 Leibniz’s fictionalist stance . 403 8.5 The quadrature of the circle in numbers . 406 π 8.5.1 Leibniz’s alternate series for 4 . 406 8.5.2 Oldenburg’s objections and the classification of quadratures . 414 8.6 The impossibility of giving a universal quadrature of the circle . 422 8.6.1 Leibniz’s criticism of Gregory’s arguments . 422 8.7 An impossibility argument . 428 8.7.1 Universal and particular quadratures . 428 8.7.2 The impossibility of the universal quadrature . 430 8.7.3 The impossibility of finding a general quadrature of the hyperbola 438 8.8 Underdeveloped parts in Leibniz’s impossibility argument . 440 8.9 The transcendental nature of curves . 445 8.10 Conclusions . 450 8.10.1 On the limits of cartesian geometry . 450 8.10.2 The constitution of transcendental mathematics and Leibniz’s new calculus . 459 8.10.3 Appendix: primary sources . 464 9 Epilogue 466 9.1 A survey of early-modern impossibility results . 466 9.2 The structure of early modern impossibility results . 470 9.2.1 The role of algebra in XVIIth century . 470 9.2.2 Algebraic proofs of impossibility theorems . 474 9.2.3 Early modern constructions and constructibility . 476 9.2.4 From the constructive paradigm to the conceptual paradigm . 479 9.3 Impossibility arguments as answers to metatheoretical questions . 483 Preface: capturing the unicorn . the fence inside which we hope to have enclosed what may appear as a possible, living creature. O. Neugebauer, The Exact Sciences in Antiquity, p. 177. Otto Neugebauer once recalled, in his masterpiece The exact Sciences in Antiquity, that his endeavour in restoring the mathematics of the past had a simile in the tale of the unicorn, which ended with the miraculous animal captured in a fence and gracefully resigned to his fate. In this dissertation, I have also erected, out of pieces of evidence, conjectures and indirect testimonies, an enclosure in order to capture an elusive but (I think) living subject of research. This subject is provided by the theme of impossibility results in classical and early modern mathematics. I started the inquiry which led to this dissertation out of the following, perhaps naive observation: all the famous impossibility results in geometry (namely, the impossibility of duplicating the cube, trisecting an angle or squaring the circle by ruler and compass) are proved by appealing to a rather sophisticated algebraic machinery. Why mathematicians had turned to algebra in order to prove geometric impossibility results, and what makes algebra such a powerful resource that it could prove the impossibility of solving certain problems in geometry, apparently unprovable by geometric means only? 9 CONTENTS 10 My original questioning was as much interesting to me as it was broad, and perhaps unfit for a discussion within a single dissertation. I then decided to develop my inquiry mainly from a historical viewpoint, and turned to what I considered one of the first examples of algebraic thinking in geometry, namely, Descartes’ epoch-making La Géométrie.
Recommended publications
  • Apollonian Circle Packings: Dynamics and Number Theory
    APOLLONIAN CIRCLE PACKINGS: DYNAMICS AND NUMBER THEORY HEE OH Abstract. We give an overview of various counting problems for Apol- lonian circle packings, which turn out to be related to problems in dy- namics and number theory for thin groups. This survey article is an expanded version of my lecture notes prepared for the 13th Takagi lec- tures given at RIMS, Kyoto in the fall of 2013. Contents 1. Counting problems for Apollonian circle packings 1 2. Hidden symmetries and Orbital counting problem 7 3. Counting, Mixing, and the Bowen-Margulis-Sullivan measure 9 4. Integral Apollonian circle packings 15 5. Expanders and Sieve 19 References 25 1. Counting problems for Apollonian circle packings An Apollonian circle packing is one of the most of beautiful circle packings whose construction can be described in a very simple manner based on an old theorem of Apollonius of Perga: Theorem 1.1 (Apollonius of Perga, 262-190 BC). Given 3 mutually tangent circles in the plane, there exist exactly two circles tangent to all three. Figure 1. Pictorial proof of the Apollonius theorem 1 2 HEE OH Figure 2. Possible configurations of four mutually tangent circles Proof. We give a modern proof, using the linear fractional transformations ^ of PSL2(C) on the extended complex plane C = C [ f1g, known as M¨obius transformations: a b az + b (z) = ; c d cz + d where a; b; c; d 2 C with ad − bc = 1 and z 2 C [ f1g. As is well known, a M¨obiustransformation maps circles in C^ to circles in C^, preserving angles between them.
    [Show full text]
  • Some Curves and the Lengths of Their Arcs Amelia Carolina Sparavigna
    Some Curves and the Lengths of their Arcs Amelia Carolina Sparavigna To cite this version: Amelia Carolina Sparavigna. Some Curves and the Lengths of their Arcs. 2021. hal-03236909 HAL Id: hal-03236909 https://hal.archives-ouvertes.fr/hal-03236909 Preprint submitted on 26 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Some Curves and the Lengths of their Arcs Amelia Carolina Sparavigna Department of Applied Science and Technology Politecnico di Torino Here we consider some problems from the Finkel's solution book, concerning the length of curves. The curves are Cissoid of Diocles, Conchoid of Nicomedes, Lemniscate of Bernoulli, Versiera of Agnesi, Limaçon, Quadratrix, Spiral of Archimedes, Reciprocal or Hyperbolic spiral, the Lituus, Logarithmic spiral, Curve of Pursuit, a curve on the cone and the Loxodrome. The Versiera will be discussed in detail and the link of its name to the Versine function. Torino, 2 May 2021, DOI: 10.5281/zenodo.4732881 Here we consider some of the problems propose in the Finkel's solution book, having the full title: A mathematical solution book containing systematic solutions of many of the most difficult problems, Taken from the Leading Authors on Arithmetic and Algebra, Many Problems and Solutions from Geometry, Trigonometry and Calculus, Many Problems and Solutions from the Leading Mathematical Journals of the United States, and Many Original Problems and Solutions.
    [Show full text]
  • Apollonius of Pergaconics. Books One - Seven
    APOLLONIUS OF PERGACONICS. BOOKS ONE - SEVEN INTRODUCTION A. Apollonius at Perga Apollonius was born at Perga (Περγα) on the Southern coast of Asia Mi- nor, near the modern Turkish city of Bursa. Little is known about his life before he arrived in Alexandria, where he studied. Certain information about Apollonius’ life in Asia Minor can be obtained from his preface to Book 2 of Conics. The name “Apollonius”(Apollonius) means “devoted to Apollo”, similarly to “Artemius” or “Demetrius” meaning “devoted to Artemis or Demeter”. In the mentioned preface Apollonius writes to Eudemus of Pergamum that he sends him one of the books of Conics via his son also named Apollonius. The coincidence shows that this name was traditional in the family, and in all prob- ability Apollonius’ ancestors were priests of Apollo. Asia Minor during many centuries was for Indo-European tribes a bridge to Europe from their pre-fatherland south of the Caspian Sea. The Indo-European nation living in Asia Minor in 2nd and the beginning of the 1st millennia B.C. was usually called Hittites. Hittites are mentioned in the Bible and in Egyptian papyri. A military leader serving under the Biblical king David was the Hittite Uriah. His wife Bath- sheba, after his death, became the wife of king David and the mother of king Solomon. Hittites had a cuneiform writing analogous to the Babylonian one and hi- eroglyphs analogous to Egyptian ones. The Czech historian Bedrich Hrozny (1879-1952) who has deciphered Hittite cuneiform writing had established that the Hittite language belonged to the Western group of Indo-European languages [Hro].
    [Show full text]
  • Pappus of Alexandria: Book 4 of the Collection
    Pappus of Alexandria: Book 4 of the Collection For other titles published in this series, go to http://www.springer.com/series/4142 Sources and Studies in the History of Mathematics and Physical Sciences Managing Editor J.Z. Buchwald Associate Editors J.L. Berggren and J. Lützen Advisory Board C. Fraser, T. Sauer, A. Shapiro Pappus of Alexandria: Book 4 of the Collection Edited With Translation and Commentary by Heike Sefrin-Weis Heike Sefrin-Weis Department of Philosophy University of South Carolina Columbia SC USA [email protected] Sources Managing Editor: Jed Z. Buchwald California Institute of Technology Division of the Humanities and Social Sciences MC 101–40 Pasadena, CA 91125 USA Associate Editors: J.L. Berggren Jesper Lützen Simon Fraser University University of Copenhagen Department of Mathematics Institute of Mathematics University Drive 8888 Universitetsparken 5 V5A 1S6 Burnaby, BC 2100 Koebenhaven Canada Denmark ISBN 978-1-84996-004-5 e-ISBN 978-1-84996-005-2 DOI 10.1007/978-1-84996-005-2 Springer London Dordrecht Heidelberg New York British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Control Number: 2009942260 Mathematics Classification Number (2010) 00A05, 00A30, 03A05, 01A05, 01A20, 01A85, 03-03, 51-03 and 97-03 © Springer-Verlag London Limited 2010 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licenses issued by the Copyright Licensing Agency.
    [Show full text]
  • MATH 9 HOMEWORK ASSIGNMENT GIVEN on FEBRUARY 3, 2019. CIRCLE INVERSION Circle Inversion Circle Inversion (Or Simply Inversion) I
    MATH 9 HOMEWORK ASSIGNMENT GIVEN ON FEBRUARY 3, 2019. CIRCLE INVERSION Circle inversion Circle inversion (or simply inversion) is a geometric transformation of the plane. One can think of the inversion as of reflection with respect to a circle which is analogous to a reflection with respect to a straight line. See wikipedia article on Inversive geometry. Definition of inversion Definition. Given a circle S with the center at point O and having a radius R consider the transformation of the plane taking each point P to a point P 0 such that (i) the image P 0 belongs to a ray OP (ii) the distance jOP 0j satisfies jOP j · jOP 0j = R2. Remark. Strictly speaking the inversion is the transformation not of the whole plane but a plane without point O. The point O does not have an image. It is convenient to think of an “infinitely remote" point O0 added to a euclidian plane so that O and O0 are mapped to each other by the inversion. Basic properties of inversion We formulated and proved some basic properties of the inversion. The most important properties are that the inversion • maps circles and straight lines onto circles and straight lines • preserves angles These properties are stated as homework problems below. Try to prove them indepen- dently. In the following we denote the center of inversion as O, the circle of inversion as S and we use prime to denote the images of various objects under inversion. Classwork Problems The properties presented in problems 1-3 are almost obvious.
    [Show full text]
  • Greek Mathematics Recovered in Books 6 and 7 of Clavius’ Geometria Practica
    Introduction – Clavius and Geometria Practica Book 6 and Greek approaches to duplication of the cube Book 7 and squaring the circle via the quadratrix Conclusions Greek Mathematics Recovered in Books 6 and 7 of Clavius’ Geometria Practica John B. Little Department of Mathematics and CS College of the Holy Cross June 29, 2018 Greek Mathematics in Clavius Introduction – Clavius and Geometria Practica Book 6 and Greek approaches to duplication of the cube Book 7 and squaring the circle via the quadratrix Conclusions I’ve always been interested in the history of mathematics (in addition to my nominal specialty in algebraic geometry/computational methods/coding theory, etc.) Want to be able to engage with original texts on their own terms – you might recall the talks on Apollonius’s Conics I gave at the last Clavius Group meeting at Holy Cross (two years ago) So, I’ve been taking Greek and Latin language courses in HC’s Classics department The subject for today relates to a Latin-to-English translation project I have recently begun – working with the Geometria Practica of Christopher Clavius, S.J. (1538 - 1612, CE) Greek Mathematics in Clavius Introduction – Clavius and Geometria Practica Book 6 and Greek approaches to duplication of the cube Book 7 and squaring the circle via the quadratrix Conclusions Overview 1 Introduction – Clavius and Geometria Practica 2 Book 6 and Greek approaches to duplication of the cube 3 Book 7 and squaring the circle via the quadratrix 4 Conclusions Greek Mathematics in Clavius Introduction – Clavius and Geometria Practica Book 6 and Greek approaches to duplication of the cube Book 7 and squaring the circle via the quadratrix Conclusions Clavius’ Principal Mathematical Textbooks Euclidis Elementorum, Libri XV (first ed.
    [Show full text]
  • A Mathematician Reads Plutarch: Plato's Criticism of Geometers of His Time
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Scholarship@Claremont Journal of Humanistic Mathematics Volume 7 | Issue 2 July 2017 A Mathematician Reads Plutarch: Plato's Criticism of Geometers of His Time John B. Little College of the Holy Cross Follow this and additional works at: https://scholarship.claremont.edu/jhm Part of the Ancient History, Greek and Roman through Late Antiquity Commons, and the Mathematics Commons Recommended Citation Little, J. B. "A Mathematician Reads Plutarch: Plato's Criticism of Geometers of His Time," Journal of Humanistic Mathematics, Volume 7 Issue 2 (July 2017), pages 269-293. DOI: 10.5642/ jhummath.201702.13 . Available at: https://scholarship.claremont.edu/jhm/vol7/iss2/13 ©2017 by the authors. This work is licensed under a Creative Commons License. JHM is an open access bi-annual journal sponsored by the Claremont Center for the Mathematical Sciences and published by the Claremont Colleges Library | ISSN 2159-8118 | http://scholarship.claremont.edu/jhm/ The editorial staff of JHM works hard to make sure the scholarship disseminated in JHM is accurate and upholds professional ethical guidelines. However the views and opinions expressed in each published manuscript belong exclusively to the individual contributor(s). The publisher and the editors do not endorse or accept responsibility for them. See https://scholarship.claremont.edu/jhm/policies.html for more information. A Mathematician Reads Plutarch: Plato's Criticism of Geometers of His Time Cover Page Footnote This essay originated as an assignment for Professor Thomas Martin's Plutarch seminar at Holy Cross in Fall 2016.
    [Show full text]
  • A Short History of Greek Mathematics
    Cambridge Library Co ll e C t i o n Books of enduring scholarly value Classics From the Renaissance to the nineteenth century, Latin and Greek were compulsory subjects in almost all European universities, and most early modern scholars published their research and conducted international correspondence in Latin. Latin had continued in use in Western Europe long after the fall of the Roman empire as the lingua franca of the educated classes and of law, diplomacy, religion and university teaching. The flight of Greek scholars to the West after the fall of Constantinople in 1453 gave impetus to the study of ancient Greek literature and the Greek New Testament. Eventually, just as nineteenth-century reforms of university curricula were beginning to erode this ascendancy, developments in textual criticism and linguistic analysis, and new ways of studying ancient societies, especially archaeology, led to renewed enthusiasm for the Classics. This collection offers works of criticism, interpretation and synthesis by the outstanding scholars of the nineteenth century. A Short History of Greek Mathematics James Gow’s Short History of Greek Mathematics (1884) provided the first full account of the subject available in English, and it today remains a clear and thorough guide to early arithmetic and geometry. Beginning with the origins of the numerical system and proceeding through the theorems of Pythagoras, Euclid, Archimedes and many others, the Short History offers in-depth analysis and useful translations of individual texts as well as a broad historical overview of the development of mathematics. Parts I and II concern Greek arithmetic, including the origin of alphabetic numerals and the nomenclature for operations; Part III constitutes a complete history of Greek geometry, from its earliest precursors in Egypt and Babylon through to the innovations of the Ionic, Sophistic, and Academic schools and their followers.
    [Show full text]
  • Geometry in the Age of Enlightenment
    Geometry in the Age of Enlightenment Raymond O. Wells, Jr. ∗ July 2, 2015 Contents 1 Introduction 1 2 Algebraic Geometry 3 2.1 Algebraic Curves of Degree Two: Descartes and Fermat . 5 2.2 Algebraic Curves of Degree Three: Newton and Euler . 11 3 Differential Geometry 13 3.1 Curvature of curves in the plane . 17 3.2 Curvature of curves in space . 26 3.3 Curvature of a surface in space: Euler in 1767 . 28 4 Conclusion 30 1 Introduction The Age of Enlightenment is a term that refers to a time of dramatic changes in western society in the arts, in science, in political thinking, and, in particular, in philosophical discourse. It is generally recognized as being the period from the mid 17th century to the latter part of the 18th century. It was a successor to the renaissance and reformation periods and was followed by what is termed the romanticism of the 19th century. In his book A History of Western Philosophy [25] Bertrand Russell (1872{1970) gives a very lucid description of this time arXiv:1507.00060v1 [math.HO] 30 Jun 2015 period in intellectual history, especially in Book III, Chapter VI{Chapter XVII. He singles out Ren´eDescartes as being the founder of the era of new philosophy in 1637 and continues to describe other philosophers who also made significant contributions to mathematics as well, such as Newton and Leibniz. This time of intellectual fervor included literature (e.g. Voltaire), music and the world of visual arts as well. One of the most significant developments was perhaps in the political world: here the absolutism of the church and of the monarchies ∗Jacobs University Bremen; University of Colorado at Boulder; [email protected] 1 were questioned by the political philosophers of this era, ushering in the Glo- rious Revolution in England (1689), the American Revolution (1776), and the bloody French Revolution (1789).
    [Show full text]
  • Boethius the Demiurge
    BOETHIUS THE DEMIURGE: TIMAEAN DOUBLE-CIRCLE SPIRAL STRUCTURE IN THE CONSOLATIO by Cristalle N. Watson Submitted in partial fulfilment of the requirements for the degree of Master of Arts at Dalhousie University Halifax, Nova Scotia April 2020 © Copyright by Cristalle N. Watson, 2020 For my Opa, Karl Heinz Hiob 1926-1999 Vir doctissimus & lover of words, who first introduced me to Latin Ars longa, vita brevis ii TABLE OF CONTENTS LIST OF TABLES..............................................................................................................vi LIST OF FIGURES...........................................................................................................vii ABSTRACT.....................................................................................................................viii ACKNOWLEDGEMENTS................................................................................................ix CHAPTER 1: INTRODUCTION........................................................................................1 CHAPTER 2: POETRY AND THE CIRCLE IN THE CONSOLATIO: AN OVERVIEW….............................................................................................................3 2.1 A "MULTIFACETED" CONSOLATIO AND AUTHOR.............................................3 2.2 THE METERS OF THE CONSOLATIO: A NEGLECTED STUDY............................11 2.3 IIIM9: CENTRAL PIVOT, TIMAEAN PARAPHRASE, PRAYER...........................17 2.4 THE CIRCLE IN THE CONSOLATIO AND IN IIIM9.............................................22
    [Show full text]
  • Quadratrix of Hippias -- from Wolfram Mathworld
    12/3/13 Quadratrix of Hippias -- from Wolfram MathWorld Search MathWorld Algebra Applied Mathematics Geometry > Curves > Plane Curves > Polar Curves > Geometry > Geometric Construction > Calculus and Analysis Interactive Entries > Interactive Demonstrations > Discrete Mathematics THINGS TO TRY: Quadratrix of Hippias quadratrix of hippias Foundations of Mathematics 12-w heel graph Geometry d^4/dt^4(Ai(t)) History and Terminology Number Theory Probability and Statistics Recreational Mathematics Hippias Quadratrix Bruno Autin Topology Alphabetical Index Interactive Entries Random Entry New in MathWorld MathWorld Classroom About MathWorld The quadratrix was discovered by Hippias of Elias in 430 BC, and later studied by Dinostratus in 350 BC (MacTutor Contribute to MathWorld Archive). It can be used for angle trisection or, more generally, division of an angle into any integral number of equal Send a Message to the Team parts, and circle squaring. It has polar equation MathWorld Book (1) Wolfram Web Resources » 13,191 entries with corresponding parametric equation Last updated: Wed Nov 6 2013 (2) Created, developed, and nurtured by Eric Weisstein at Wolfram Research (3) and Cartesian equation (4) Using the parametric representation, the curvature and tangential angle are given by (5) (6) for . SEE ALSO: Angle trisection, Cochleoid REFERENCES: Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 223, 1987. Law rence, J. D. A Catalog of Special Plane Curves. New York: Dover, pp. 195 and 198, 1972. Loomis, E. S. "The Quadratrix." §2.1 in The Pythagorean Proposition: Its Demonstrations Analyzed and Classified and Bibliography of Sources for Data of the Four Kinds of "Proofs," 2nd ed.
    [Show full text]
  • 5. Hipparchus 6. Ptolemy
    introduction | 15 catalogue included into his oeuvre? Our answer is in Hipparchus. The catalogue itself has not survived. the positive. We have developed a method to serve However, it is believed that the ecliptic longitude and this end, tested it on several veraciously dated cata- latitude of each star was indicated there, as well as the logues, and then applied it to the Almagest. The reader magnitude. It is believed that Hipparchus localised the shall find out about our results in the present book. stars using the same terms as the Almagest: “the star Let us now cite some brief biographical data con- on the right shoulder of Perseus”,“the star over the cerning the astronomers whose activities are imme- head of Aquarius” etc ([395], page 52). diately associated with the problem as described above. One invariably ponders the extreme vagueness of These data are published in Scaligerian textbooks. One this star localization method. Not only does it imply must treat them critically, seeing as how the Scaligerian a canonical system of drawing the constellations and version of history is based on an erroneous chronol- indicating the stars they include – another stipulation ogy (see Chron1 and Chron2). We shall consider is that there are enough identical copies of a single star other facts that confirm it in the present book. chart in existence. This is the only way to make the verbal descriptions of stars such as the above work 5. and help a researcher with the actual identification of HIPPARCHUS stars. However, in this case the epoch of the cata- logue’s propagation must postdate the invention of Scaligerian history is of the opinion that astron- the printing press and the engraving technique, since omy became a natural science owing to the works of no multiple identical copies of a single work could be Hipparchus, an astronomer from the “ancient” Greece manufactured earlier.
    [Show full text]